“丰花”系列花生品种特异SSR标记筛选及其生理性状的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以山东农业大学选育的6个“丰花”系列花生新品种为主要材料,采用SSR分子标记技术研究该系列品种与其亲本以及其它栽培品种(44个)间的DNA差异,筛选获得品种的特异标记,并分析特异标记的遗传来源和在其它栽培品种中的出现几率,以评价“丰花”系列花生品种所聚合亲本遗传物质的特点。选用4个“丰花”系列品种与其它4个栽培品种按GriffingⅡ配制杂交组合,考察亲本和F1代植株叶片的光合速率、叶绿素含量、SOD活性、POD活性和MDA含量,对上述生理性状进行遗传分析。主要结果如下:
     1. 59个花生品种SSR指纹图谱及遗传特异性分析
     利用80对SSR引物进行59个品种的PCR扩增,筛选出7对多态性引物,共扩增出78个条带,其中72条具有多态性,多态性频率为92.31%。构建了59个栽培品种的SSR指纹图谱。有13个品种只能通过二岐分类法与其它品种鉴别开。丰花6号可以由引物P59进行PCR扩增鉴别;丰花1和丰花5分别可以用引物P5和引物P48进行鉴别;丰花3号可以用引物P5、引物P47和引物P48进行鉴别;丰花2号可以由引物P12、引物P44、引物P59及引物P74进行鉴别。
     2.“丰花”系列品种和亲本间的DNA差异分析
     丰花1号的29个多态性标记位点中,来自母本(蓬莱一窝猴)的占3.4%,来自父本(海花1号)的占65.5%,不同于亲本的特异标记位点占31.03%;丰花2号、丰花3、丰花4号、丰花5号分别能检测到1、3、3、7个与双亲均不同的特异位点。表明育成的“丰花”系列品种遗传来源不是父、母本的简单组合,辐射诱变丰富了其遗传物质基础。
     3.“丰花”系列品种中双亲SSR标记位点在其它品种中的分布
     分析“丰花”系列品种来自父本或母本的SSR标记位点在其它主栽品种(共44个)中出现的几率的结果表明:丰花1号来自父本的标记位点P5G的几率为22.7%;丰花2号来自父本的标记位点P74A和P74E的几率仅为6.8%;丰花4号来自母本的标记位点P59J的几率为20.5%,来自父本的标记位点P28E的几率为19.2%;丰花6号来自母本的标记位点P76B的几率为22.7%,来自父本的标记位点P33A的几率为24%。表明“丰花”系列品种聚合了亲本的稀有基因源。
     4.叶片生理性状配合力效应分析
     比较8个品种间各生理性状的一般配合力表明:A596光合速率的一般配合力较高,效应值为1.38,丰花5号的叶绿素含量的一般配合力较高,效应值为0.11,丰花2号SOD活性的一般配合力较高,效应值为86.60,荔浦大花生POD活性的一般配合力较高,效应值为12.51,MDA含量配合力方差差异不显著。
     比较28个杂交组合的特殊配合力的结果表明:光合速率特殊配合力较高的组合有丰花5号/荔浦大花生、白沙1016/丰花5号和丰花2号/丰花1号,其效应值依次为:2.89、1.49和1.43;丰花2号/白沙1016组合叶绿素含量的特殊配合力最高,效应值为0.29;SOD活性特殊配合力较高的组合有丰花2号/白沙1016和丰花1号/鲁花11,效应值分别为286.52和224.51;POD活性特殊配合力最高的组合为丰花5号/荔浦大花生,其次为丰花3号/荔浦大花生,效应值分别为20.21和6.62;A596/荔浦大花生MDA含量的特殊配合力有最高的负向效应,效应值为-0.60。
     5.花生叶片生理性状的遗传模型
     光合速率、SOD活性、POD活性及MDA含量四个生理性状的Wr-Vr的方差均达显著或极显著水平,表明这些性状的遗传受上位性效应的影响,遗传均符合“加性—显性—上位性”模型。
     6.花生叶片生理性状的遗传力估算
     SOD活性和POD活性的广义遗传力分别为94.99%和97.46%,狭义遗传力分别为63.83%和54.35%;MDA含量的狭义遗传力仅为0.50%,广义遗传力是93.34%;光合速率与叶绿素含量的狭义遗传力分别为为34.70%和28.85%,广义遗传力分别是84.38%和90.10%。SOD活性、POD活性、光合速率和叶绿素含量均可在早代选择,MDA含量适宜晚期世代选择。
     7.花生叶片生理性状的杂种优势评价
     在所有杂交组合中,丰花2号/丰花1号各生理性状除POD活性表现出负向的超亲优势(-21.26%)和平均优势(-11.63%)外,其余性状均表现出较高的杂种优势,其中叶绿素含量的杂种优势表现最明显,超亲优势为25.0%,平均优势为27.12%。
The six“Fenghua”peanut cultivars were main materials in this research. Specific molecular markers of“Fenghua”cultivars were found out through studying the difference between“Fenghua”cultivars and their parents and the difference between“Fenghua”cultivars and other 44 peanut varieties by SSR. The characteristic aggregation genetic material from the parents of“Fenghua”can be evaluated through the analysing genetic origins of specific markers and the odds in other varieties; four varieties of Fenghua cultivars and other four cultivars varieties were used to confect cross combination by GriffingⅡ. Investigated Photosynthesis rate, chlorophyll content, SOD activities, POD activities and MDA content of F1 and their parents and studied variance, combining ability, genetic model, heritability and heterosis of these physiological characters be investigated. .The results were summarized as follow.
     1. SSR fingerprint of 59 peanut varieties and analysis of their genetic specificity
     Seven pairs of SSR primers out of eighty identified have polymorphism bands when PCR of 59 varieties that 78 bands in total land were produced and 72 of whom were polylmorphic bands, accounted for 92.31%. SSR fingerprint was constructed of 59 peanut cultivars. 13 cultivars should be identificated with other cultivars by Second-chimata-classification. Fenghua 6 can be identificated by primer P59; Fenghua 1 and Fenghua 5 can be identificated by primer P5 and primer P48; Fenghua 3 can be identificated by primer P5, P47 and P48; Fenghua 2 can be identificated by primer P12, P44, P59 and P74.
     2. Analysis of DNA difference between Feng-hua and their parents
     In all 29 loci polymorphic markers of Fenghua 1,the markers from his mother (Penglaiyiwohou) was accounted for 3.4%, from his father (Haihua 1) accounted for 65.5% and the specificity different from the parent marker loci accounted for 31.03%; 1, 3, 3, 7 specific markers can be detected of Fenghua 2, Fenghua 3, Fenghua 4 and Fenghua 5 with their parents. Which showed that the genetic origin of Fenghua was not simple combination of male and female, radiation-induced mutation and strict selection of filial generation enrich the genetic basis more.
     3. Distribution of SSR sites of Feng-hua root in parents on other 44 peanut varieties
     Analysis of "Floribunda" series from their fayher or their mother species of SSR marker loci varieties grown in other (a total of 44) chance of appearing in the results showed that: the P5G site from father(Haihua 1) on Fenghua 1 accounted for 22.7%; the P74A and P74E sites from father(Lipudahuasheng) on Fenghua 2 accounted for 6.8%; the P59J site from mother(Baisha 1016) on Fenghua 4 accounted for 20.5%, the P28E site from father(A596), accounted for 19.2%; the P76B site from mother(Baisha 1016) on Fenghua 6 accounted for 22.7%, the P33A site from father(Burma peanut), accounted for 24%. Which showed that“Fenghua”converge far-between genome of their parents.
     4. Combining ability effects analysis of physiological characters of leaves
     Comparison of general combining ability of the physiological traits between the eight species showed that: A596 had higher general combining ability on photosynthetic rate, effect value of 1.38; Fenghua 5 had higher general combining ability on chlorophyll content with the effect value of 0.11; Floribunda on the 2nd general combining ability effect of SOD activity of Fenghua 2 was higher (86.60), Lipudahuasheng had higher general combining ability effect on POD activity in with 12.51, the combining ability variance MDA content had no obvious difference.
     The results of Comparison of 28 cross combinations of specific combining ability showed that: Fenghua 5/Lipudahuasheng, Baisha 1016/Fenghua 5, Fenghua 2/Fenghua 1 had higher specific combining ability on photosynthetic rate, the effect were: 2.89,1.49 and 1.43; special combination on chlorophyll content of Fenghua 2/Baisha 1016 was the highest (0.29);Fenghua 2/Baisha 1016 and Fenghua 1/Luhua 11 had higher specific combining ability on SOD activity with the effect of 286.52 and 224.51; POD activity of specific combining ability of the combination of the highest on the Fenghua 5/Lipudahuasheng, followed by the Fenghua 3/Lipudahuasheng, effect values were 20.21 and 6.62; MDA content of A596/Lipudahuasheng in the highest specific combining ability effect of the negative, effects of a value of -0.60.
     5. Genetic model of physiological characters of leaves on peanut The Wr-Vr variance of photosynthesis rate, SOD activity, POD activity and MDA content reached remarkable level or super remarkable level that they exist epistatic interactions effect and they fit the additive- dominance- epistasis model.
     6. Heritability of physiological characters of leaves on peanut The broad-sense heritability SOD activity and POD activity were 97.46% and 94.99%, respectively, the narrow heritability of 63.83% and 54.35%; the narrow sense heritability of MDA content was only 0.50%, broad-sense heritability was 93.34%; the narrow heritability of photosynthetic rate and chlorophyll content, respectively for 28.85% and 34.70%, broad-sense heritability were 84.38% and 90.10%. SOD activity, POD activity, photosynthetic rate and chlorophyll content can be selected in the early generation, MDA content in appropriate choice of the late generations.
     7. Evaluation of heterosis of physiological characters of leaves on peanut
     In all cross combination, the physiological characters without POD activities of Fenghua 2/Fenghua 1 has negative over-parent heterosis (-21.26) and mid-parent heterosis that other characters all have large heterosis. The heterosis of chlorophyll content is most obvious that the over-parent heterosis is 25.0 and the mid-parent heterosis is 27.12. They also have obvious heterosis of some characters when“Fenghua”were used as parents to compound cross combination that the heterosis of these characters can be used in production.
引文
[1] Clark M S.植物分子生物学实验手册[M].顾红雅,等译.北京:高等教育出版社, 1998: 6-9.
    [2]敖君.12个玉米自交系主要数量性状配合力及其遗传参数分析[J].玉米科学, 1995, 3(2): 14-17.
    [3]蔡骥业.国内外花生育种工作的主要成就[J].广西农业科学, 1996, 19(1): 7-11.
    [4]曹丽娟.糯玉米主要农艺形状遗传特性的研究[D].吉林:吉林农业大学, 2006.
    [5]陈本银,姜慧芳,廖伯寿,等.利用SSR技术研究花生属种间亲缘关系[J].植物遗传资源学报, 2007, 8(2): 140-144.
    [6]陈翠霞,赵平.花生杂交育种的几点体会与展望[J].中国种业, 2007, 16(2): 42-46.
    [7]陈新民,何中虎,史建荣,夏兰芹,RickWard,周阳,蒋国梁.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究[J].作物学报, 2003, 29(1): 13-19.
    [8]董文召,汤丰收,张新友.花生主要性状的遗传力及其基因效应[J].花生学报, 2002, 31(1): 37-39.
    [9]樊荣峰.作物杂种优势的预测和利用[J].杂粮作物, 2000, 20(4): 31-34.
    [10]高志红,章镇,韩振海,等.果梅SSR反应体系的优化[J].南京农业大学学报, 2002, 25(4): 19-22.
    [11]海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析[J].西北植物学报, 2002, 22(4): 751-757.
    [12]韩柱强,高国庆,韦鹏霄,等.利用SSR标记分析栽培种花生多态性及亲缘关系[J].花生学报, 2003, 32(增刊): 295-300.
    [13]韩柱强,高国庆,韦鹏霄,等.利用SSR标记分析栽培种花生多态性及亲缘关系[J].作物学报, 2004, 30(11): 1097-1101.
    [14]贺凉琼.花生种质资源的SSR分析及微卫星DNA的分离[D].广西大学硕士论文, 2005.
    [15]胡延吉,赵谭芳.小麦光合作用的遗传和改良潜力的初步研究[J].中国农业科学, 1995, 28(增刊): 14-21.
    [16]黄金堂,陈海玲,李清华,等.花生主要农艺性状的配合力和杂种优势分析[J].江西农业学报, 2007, 19(1): 29-30,33.
    [17]黄新阳,王传堂,杨新道,等.利用新开发的SSR标记分析花生栽培种的多态性[J].中国农学通报2006,22(10),44-48.
    [18]纪荣昌,唐兆秀,李光星.外引抗黄曲霉花生品种经济性状的遗传参数[J].福建农业科技, 2004, 16(2): 6-7.
    [19]冀小蕊.香蕉品种(系)遗传多样性微卫星检测及SSR指纹图谱构建[D].海南:华南热带农业大学, 2007.
    [20]姜慧芳,陈本银,任小平,等.利用重组近交系群体检测花生青枯病抗性SSR标记[J].中国油料作物学报, 2007, 29(1): 26-30.
    [21]姜慧芳,廖伯寿,任小平,等.抗青枯病花生种质的遗传多样性[J].作物学报, 2006, 32: 1156-1165.
    [22]赖明芳,曾彦,漆燕,等.花生主要经济性状遗传特点分析[J].中国油料作物学报, 2007, 29(2): 42-45.
    [23]李新海,傅骏骅,张世煌,等.利用SSR标记研究玉米自交系的遗传变异[J].中国农业科学, 2000, 33(2): 1-9.
    [24]李新海,高文伟,等.玉米杂交种DNA指纹图谱及其在亲子鉴定中的应用[J].作物学报, 2005, 31(3): 386-391.
    [25]林万明.PCR技术操作与应用指南[M].北京:人民军医出版社, 1993.
    [26]刘冠明,郑奕雄,陈建萍,等.汕油系列和粤油系列花生品种遗传多样性的SSR标记分析[J].安徽农业科学, 2006, 34(11): 2338-2339,2345.
    [27]刘冠明,郑奕雄,陈建萍,等.珍珠豆型花生品种遗传差异的SSR标记分析[J].河南农业科学, 2006, 20(10): 28-31.
    [28]刘冠明,郑奕雄,黎国良.20个花生品种的SSR标记指纹图谱构建[J].中国农学通报, 2006, 22(6): 49-51.
    [29]刘来福,毛圣贤,黄远樟.作物数量遗传[M].北京:农业出版社, 1994.
    [30]刘思衡,江树业.品种纯度和真伪的DNA分子标记鉴定和应用[J].农业生物技术学报, 2000, 8(2): 106-110.
    [31]吕慧芳.温室专用迷你黄瓜杂种优势利用与遗传研究[D].武汉:华中农业大学, 2008.
    [32]吕建林,陈如凯,张木清,等.甘蔗光合性状的遗传分析和高光效亲本评价研究[J].中国农业科学, 2000, 33(6): 95-97.
    [33]马树彬,郭瑞林,等.韭菜产量性状配合力及其遗传分析[J].园艺学报,2006,33(1): 78-83
    [34]聂以春,张献龙,杨细燕,等.抗虫杂交棉的光合及经济性状的优势及配合力研究[J].华中农业大学学报, 2005, 24(1): 5-9.
    [35]潘家驹.作物育种学总论[M].北京:中国农业出版社,1994.
    [36]孙大容.花生育种学[M].北京:中国农业出版社,1998.
    [37]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社, 2002: 256-259.
    [38]唐荣华,贺梁琼,高国庆,等.多粒型花生的SSR分子标记[J].花生学报, 2004, 33(2): 11-16.
    [39]唐荣华,庄伟建,高国庆,等.珍珠豆型花生的简单序列重复(SSR)多态性[J].中国油料作物学报, 2004, 26(2): 20-24.
    [40]万勇善,谭忠,范晖,等.花生脂肪酸组分的遗传效应研究[J].中国油料作物学报, 2002, 24(1): 26-28.
    [41]万勇善,谭忠.花生油脂O/L比率及主要经济性状的配合力分析[J].山东农业科学,1995,15 (1): 8-11.
    [42]王传堂,杨新道,陈殿绪,等.花生AFLP和SSR标记的初步研究[J].食物与能源安全中的中国油料.北京:中国农业科学技术出版社, 2004, 492-501.
    [43]王滑.我国核桃10个居群的遗传多样性分析[D].北京:中国林业科学研究院, 2007.
    [44]王若莺.辣椒产量相关性状杂种优势及遗传效应的研究[D].江苏:扬州大学, 2008.
    [45]王耀波,门爱军,王秀美,等.世界花生贸易的发展、现状及中国出口花生问题分析.花生科技, 1999(增刊): 17-22.
    [46]王耀波,张艺兵,张鹏,等.中国花生产业的发展和出口对策[J].花生学报, 2004, 33(2): 37-40.
    [47]吴敏生,王守才,戴景瑞.指纹图谱技术在品种鉴定和纯度分析上的应用[J].农业生物技术学报,1998, 6(1): 51-56.
    [48]吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报, 2001, 28(4): 359-366.
    [49]夏友霖,赖明芳,曾彦,等.花生产量和品质性状的配合力及相对遗传力分析[J].西南农业学报, 2006, 19(2): 260-264.
    [50]辛景树,郭景伦,张软斌.几种常用分子标记技术在种子纯度和品种真实性鉴定方面的比较与分析[J].种子, 2005, 24 (1): 58-60.
    [51]徐兴兴,梁海永,甄志先,等.苹果SSR反应体系的建立[J].果树学报, 2006, 23(2): 161-164.
    [52]徐宜民,甘信民,曹玉良.花生主要营养品质性状和农艺性状配合力的研究[J].中国农业科学,1995,28(2): 15-23.
    [53]殷冬梅,尚明照,崔党群花生主要农艺性状的遗传模型分析[J].中国农学通报, 2006, 22(7): 261-265.
    [54]殷冬梅,张新友,崔党群.花生主要农艺性状的配合力分析[J].中国油料作物学报, 2005, 27(1): 30-32.
    [55]翟虎渠,曹树青,唐运来.籼型杂交水稻光合性状的配合力及遗传力分析[J].作物学报, 2002, 28(2): 154-160.
    [56]张保亮.花生主要数量性状相关遗传参数分析[J].花生科技, 1999, 12 (3): 10-12.
    [57]张建成,王传堂,杨新道. SSR和STS标记在花生栽培品种鉴定中的应用研究[J].植物遗传资源学报, 2006, 7(2): 215-219.
    [58]张建成.分子标记技术在花生品种鉴定中的应用研究[D].中国农业大学硕士学位论文, 2005.
    [59]张颖.应用DNA分子标记鉴定几种蔬菜作物种子纯度和真实性的研究[D].浙江:浙江大学, 2008.
    [60]张正圣,李先碧,刘大军.陆地棉高强纤维品系和Bt基因抚虫棉的配合力杂种优势研究[J].中国农业科学, 2002, 35(12): 1450-14.
    [61]周桂元,洪彦彬,梁炫强,等.花生品种粤油14亲缘关系鉴定分析[J].花生学报, 2008, 37(4): 22-26.
    [62]周桂元,梁炫强.花生抗黄曲霉侵染主微效基因分析[J].花生学报, 2002, 31(3): 11-14.
    [63]朱军.遗传模型分析方法[M].北京:中国农业出版社, 1994.
    [64] Charlieu J.PCR technology:current innoviations.CRC Press, 1994.
    [65] Chin-ChihPan,Cheng Chen,Shun-FuLin.Molecular Identification of Peanut VarietiesCultivated in Taiwan. http://www.aac.org.tw /Main/ periodical/ 404/ 03. htm,2004.
    [66] Chuantang Wang,Xindao Yang,Dianxu Chen,et al.Isolation of simple sequence repeats from groundnut. http://www.ejbiote.chnology.info/content/vol10/issue3/full/10/.
    [67] Guohao He,Ronghua Meng,Melanie Newman,et al.Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)[J].BMC Plant Biolony,2003,3:3.
    [68] Guohao He,Ronghua Meng,Hui Gao,et al.Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.)[J].Euphytica (2005) 142:131–136.
    [69] Krishna G,Zhang J,Burow M,Pittman R N.Genetic diversity analysis in Valencia peanut(Arachis hypogaea L.) using microsatellite markers[J].Cellular &Biology Letters, 2004, 9: 685-697.
    [70] Marciode C M ,Hopkins M S,Mitchell S E,et al.Genetic diversity of peanut (Arachis hypogaea L.)and its wild relatives based on the analysis of hypervariable regions of the genome[J].BMC Plant Biology, 2004, 4: 11-19.
    [71] MuhamMDA H,Rahman,Barry J,et al.Optimization of PCR protocolin micrsatellite analysis with silver and SYBR stains[J].Plant Molecular Biology Reporter, 2000, 18: 339-348.
    [72] Ramsay L,Macaulay M,DegliIvanissevich S,et al.A Simple sequence repeat based linkage map of barley[J].Genetics, 2000, 156: 1997-2005.
    [73] Pande S, Narayana Rao J. Resistance of wild Arachis species to late leaf spot and rust in greenhouse trials[J]. Plant Dis, 2001, 85: 851-855.
    [74] He LQ, TangRH, GaoG Q. Molecular evidence for gene introgression from wild species to cultivated varieties in peanut[J]. Molecular Plant Breeding, 2005, 36: 815-820.
    [75] Moretzsohn M de C, Hopkins M S, Mitchell S E, et a.l Genetic diversity of peanut(Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome [J]. BMC Plant Biol, 2005, 6: 11-19.
    [76] He G H, Meng R H, Newman Melanie, et al. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaeaL.)[J].BMC Plant Biology, 2003, 3:3.
    [77] Hopkins M S, Casa A M, Wang T, et al. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in cultivated peanut (Arachis hypogaea L.)[J].Crop Sci, 1999, 39:1243-1247.
    [78] Ferguson M, Burrow M D, Schulze S R,et al. Microsatellite identification and characterization in peanut (A.hypogaea L.)[J].Theor Appl Genet, 2004, 108: 1064-1070 .
    [79] Perera L, Russell J R, Provan J, et al. Use of SSR markers to investigate the level of genetic diversity and population genetic structure of coconut [J]. Genome 2000, 43(1): 5-21.
    [80] Yang X, Wang C, Chen D, et al. Simple sequence repeats in cultivated peanut as revealed by GenBank inquiry [J]. Journal of Peanut Science, 2005, 34(2): 14-16.
    [81] Han Z Q, Gao G Q, Wei P X, et al. Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaeaL.) using microsatellite markers[J]. Acta Agronomica Sinica, 2004, 30(11): 1097-1101.
    [82] He G H, Meng R H, Gao H, et al. Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachishypogaea L.) [J]. Euphytica, 2005, 142: 131-136.
    [83] Barkley NA, Dean RE, Pittman RN, Wang ML, Holbrook CC, Pederson GA. Genetic diversity of cultivated andwild-type peanuts evaluated with M13-tailed SSR markers and sequencing[J]. Genet Res 2007, 4: 93-106
    [84] Gimenes MA, Hoshino AA, Barbosa AV, Palmieri DA, Lopes CR.Characterization and transferability of microsatellite markers of the cultivated peanut(Arachis hypogaea)[J]. BMC Plant Biol, 2007, 7: 9-9.
    [85] He G, Meng R,Newman M,Gao G,Pittman RN,Prakash CS.Microsatellites as DNA markers in cultivated peanut(Arachis hypogaea L.)[J].BMC Plant Biol 2003, 3: 3-3.
    [86] Yan-bin HONG, Xuan-qiang LIANG, Xiao-ping CHEN, et al. Construction of Genetic Linkage Map Based on SSR Markers in Peanut (Arachis hypogaea L.)[J].Agricultural Sciences in China, 2008, 7(8): 915-921.
    [87] Rong-hua TANG, Wei-jian ZHUANG, Guo-qing GAO, et al. Phylogenetic Relationships in Genus Arachis Based on SSR and AFLP Markers[J]. AgriculturalSciences in China, 2008, 7(4): 405-414.
    [88] Huifang Jiang, Boshou Liao, Xiaoping Ren, et al. Comparative Assessment of Genetic Diversity of Peanut (Arachis hypogaea L.) Genotypes with Various Levels of Resistance to Bacterial Wilt Through SSR and AFLP Analyses[J]. Journal of Genetics and Genomics, 2007, 34(6): 544-554.
    [89] Ronghua Tang, Guoqing Gao, Liangqiong He, et al. Genetic Diversity in Cultivated Groundnut Based on SSR Markers[J]. Journal of Genetics and Genomics, 2007, 34 (5): 449-459.
    [90] Mark Wilkinson, Yongfang Wan, Paola Tosi, et al. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain[J]. Journal of Cereal Science, 2008, 48(3): 722-728.
    [91] D. Poljuha, B. Sladonja. DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers[J]. Scientia Horticulturae, 2008, 115(3): 223-230.
    [92] Hai-shan ZHU, Tao WU, Zhen-xian ZHANG. Inheritance Analysis and Identification of SSR Markers Linked to Late Blight Resistant Gene in Tomato[J]. Agricultural Sciences in China, 2006, 5(7): 517-521.
    [93] Dong JIANG, Guang-Yan ZHONG, Qi-Bing HONG. Analysis of Microsatellites in Citrus Unigenes[J]. Acta Genetica Sinica, 2006, 33(4): 345-353.
    [94] Raina S N,Rani V,Kojima T,et al.RAPD and ISSR fingerprints as useful genetic markers for analysis of geneticdiversity,varietal identification,and phylo genetic relationships in peanut (Arachis hypogaea L.) cultivars and wild species [J]. Genome,2001,44(5): 763-772.
    [95] R. Sánchez-Pérez, D. Ruiz, F. Dicenta, et al. Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships[J]. Scientia Horticulturae, 2005, 103(3): 305-315.
    [96] Wichan Eiadthong, Keizo Yonemori, Akira Sugiura, et al. Identification of mango cultivars of Thailand and evaluation of their genetic variation using the amplified fragments by simple sequence repeat-(SSR-) anchored primers[J]. Scientia Horticulturae, 1999, 82(1): 57-66.
    [97] J. Anothai, A. Patanothai, K. Pannangpetch, et al. Multi-environment evaluation ofpeanut lines by model simulation with the cultivar coefficients derived from a reduced set of observed field data[J]. Field Crops Research, 2009, 110(2): 111-122.
    [98] Andy Jarvis, Annie Lane, Robert J. Hijmans. The effect of climate change on crop wild relatives[J]. Agriculture, Ecosystems & Environment, 2008, 126(1): 13-23.
    [99] P. Banterng, A. Patanothai, K. Pannangpetch, et al. Determination and evaluation of genetic coefficients of peanut lines for breeding applications[J]. European Journal of Agronomy, 2004, 21(3): 297-310.
    [100] Ken Hatano, Tetsuya Yamazaki, Koji Yoshino, et al. Synthesis and lectin-binding activity of luminescent silica particles peripherally functionalized with lactose[J] . Tetrahedron Letters, 2008, 49(39): 5593-5596.
    [101] Musti Joginadha Swamy, Dipti Gupta, Sanjeev K, et al. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin[J]. Carbohydrate Research, 1991, 213: 59-67.
    [102] S.K. Carlson, D.A. Emery, J.C. Wynne. The effect of temperature on radiation-induced macromutants of Arachis Hypogaea L. and expression of heterosis in F1 hybrid populations[J]. Radiation Botany, 1975, 15(3): 199-213.
    [103] Scott H. Sicherer, Terence J,et al. Genetics of peanut allergy: A twin study[J]. Journal of Allergy and Clinical Immunology, 2000, 106(1): 53-56.
    [104] B. R. Ntare, J. H. Williams. Heritability of components of a simple physiological model for yield in groundnut under semiarid rainfed conditions[J]. Field Crops Research, 1998, 58(1): 25-33.