低辐射薄膜的热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低辐射薄膜的热稳定性能具有重要的理论意义和实用价值,但尚未得到系统地研究和表征。本文以化学气相沉积法制备的掺杂F的SnO_2(FTO)低辐射薄膜和磁控溅射法制备的Ag基低辐射薄膜为研究对象,分别在马弗炉和钢化炉中进行后期高温处理,采用X射线衍射仪、场发射扫描电镜、原子力显微镜、紫外-可见分光光度计和综合物理性能测试系统研究了其结构、形貌、光电性质的温度和时间效应。采用显微拉曼光谱仪研究了FTO薄膜的室温光致发光机理。通过X光电子能谱分析了薄膜中元素的分布情况,探讨了薄膜电学性能的恶化机理。主要研究结果如下:
     具有SnO_2:F/SiO_xCy膜系结构的FTO低辐射薄膜具有良好的高温热稳定性,最高耐热温度为600℃,最长耐热时间为15min,当超过此条件时,光电性能恶化。FTO薄膜内部的主要组成为非化学计量比的SnO_(2-x):F(x≈0.8~0.9),是金红石结构的多晶SnO_2,以(200)晶面为最明显的择优取向。在325~650nm之间,FTO薄膜的室温PL谱明显地分为三个区域,紫外发光峰是激发态下电子空穴对的复合发光。385.20nm处的发光峰与取代位置的氟相关,409.33nm和441.69nm处的发光峰分别与带一个正电荷的氧空位VO和带两个正电荷的氧空位VO相关。蓝绿色发光峰与表面态、结构缺陷等相关。薄膜内部[O]/[Sn]比受高温钢化的影响较小,对导电性恶化的贡献较小。随钢化温度的升高和时间的延长,薄膜表层缺乏状态氧的相对含量逐渐降低,FTO和SiO_xCy阻挡层之间的界面扩散层中Si-O键相对含量逐渐增加,这一变化趋势与电阻率的升高一致。
     与玻璃/TiO_2/ZnO/Ag/NiCrO_x/SnO_2/Si_3N_4膜层结构的Ag基薄膜相比,在功能层Ag层下面预先沉积1.1nm NiCrO_x和12nm Si_3N_4得到的具有玻璃/Si_3N_4/TiO_2/NiCrO_x/ZnO/Ag/NiCrO_x/SnO_2/Si_3N_4膜层结构的改良型Ag基薄膜的热稳定性可提高至600℃,在温度为60±1℃,相对湿度为90±2%条件下进行水雾处理后,改良型Ag基薄膜的耐水性可提高至17天。Ag基薄膜是由结晶的Ag层以及无定形的其他膜层组成,当热处理温度高于600℃时,Ag层的择优取向由(111)晶面向(220)晶面转换。改良型Ag基薄膜在675±25℃钢化炉中钢化6min后,Ag中出现少量的Ag2O。在Ag层以下的NiCrO_x膜层中,与氧成键的CrI与无定形CrII的相对含量由钢化前的0.62增大到钢化后的0.74,说明Ag层的氧化是底层氧的扩散所致。钢化6min后,功能层Ag层致密度和结晶度的提高对于改善电阻率起到很大的促进作用。
The high-temperature thermal stability of low-emissivity (Low-E) films hasimportant theoretical significance and practical worth, but has not been investigated andcharacterized systematically. F-doped SnO_2(FTO) films deposited by chemical vapordeposition (CVD) and Ag-based multilayer films deposited by magnetron sputteringmethod were studied and post-treated at high temperatures in the muffle furnace andtoughening furnace, respectively. The temperature and time effects on the structures, filmmorphologies and photoelectrical properties were investigated by X-ray diffraction (XRD),field emission scanning electron microscope (FESEM), atomic force microscope (AFM),UV-Vis spectrophotometer and physical property measurement system (PPMS). Theroom-temperature photoluminescence (PL) mechanism of FTO films were studied withthe micro-Raman Spectroscopy. The element distribution in the films has been researchedby X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) andthe conductive mechanism has been discussed. The specific research contents are asfollows:
     FTO films with SnO_2:F/SiO_xCystructure possess good high-temperature thermalstability, the temperature resistance can be improved to600℃and the longest time is15min. When the temperaute and time are higher or longer than this condition, the opticaland electrical properties of FTO films become deteriorative. The main component in thefilm interior is non-stoichiometric SnO_(2-x):F (x≈0.8~0.9) with polycrystalline cassiteritetetragonal crystal structure and the most obvious preferred orientation of (200) plane, Fatoms occupy the substitutional positions in SnO_2lattice. The room temperaturephotoluminescence spectra of FTO films can be divided into three parts in the region of325~650nm. The ultraviolet emission is attributed to a recombination of photogeneratedelectrons with the holes. The violet emission at385.20nm is related with the fluorinesubstitutions, while the violet emissions at409.33nm and441.69nm belong to oxygenvacancies with a positive chargeV
     O and with two positive chargesV
     O, respectively.The bluegreen emission is related with the surface states and structural defects. The [O]/[Sn] ratio in the film interior has been less effected by tempering temperature andtime and has little contribution to the deterioration of conductivity. With the increasingtemperature and time, the relative content of oxygen vacancies at the surface layerdecreases, the diffusion and lattice distortion between FTO layer and SiO_xCylayerbecome more severe, which is in good agreement with the increase of film resistivity.
     Compared with the Ag-based films with glass/TiO_2/ZnO/Ag/NiCrO_x/SnO_2/Si_3N_4multilayer structure, when pre-deposited1.1nm NiCrO_xand12nm Si_3N_4under Ag layer,the modified Ag-based films with glass/Si_3N_4/TiO_2/NiCrO_x/ZnO/Ag/NiCrO_x/SnO_2/Si_3N_4multilayer structure possess better thermal stability and the highest temperature resistancecan be improved to600℃. When the modified Ag-based films are treated at60±1℃withthe humidity of90±2%, the water resistence has been improved to17days. The multilayerfilms contain a crystalline Ag layer with3C structure and amorphous layers. Atransformation of the preferred orientation from (111) plane to (220) plane occurs whenthe temperature is higher than600°C. When the modified Ag-based films were temperedat675±25℃for6min in the toughening furnace, some amount of Ag2O exists in Ag layer.The ratio of the relative content of CrIbonded with oxygen and CrIIin amorphous states inthe under NiCrO_xlayer increases from0.62to0.74after tempered for6min, whichindicates the oxidization of Ag layer may be resulted from the diffusion from the underlayers. The improved compactness and crystallinity of the functional Ag layer aftertempering play a positive role in decreasing the film resistivity.
引文
[1]刘志海,李超.低辐射玻璃及其应用[M].北京:化学工业出版社,2006:24-30.
    [2] C. Shacefer, G. Brauer, J. Szczybowski. Low-Emissivity Coatings on Architectural Glass [J].Surface and Coatings Technology,1997,93(1):37-45.
    [3]王茂良,管世锋,陈海嵘.建筑节能镀膜玻璃产品技术发展及应用[J].玻璃,2010,228(9):30-34.
    [4] Renewable Energy World, Review Issue2004-2005,7(2004)86.
    [5] J. Deubener, G. Helsch, A. Moiseev, et al. Glasses for solar energy conversion systems [J]. Journalof the European Ceramic Society,2009,29(7):1203-1210.
    [6] T.M. Razykov, C.S. Ferekides, D. Morel, et al. Solar photovoltaic electricity: Current status andfuture prospects [J]. Solar Energy,2011,85(8):1580-1608.
    [7] J. Krc, B. Lipovsek, M. Bokalic, et al. Potential of thin-film silicon solar cells by using high hazeTCO superstrates [J]. Thin Solid Films,2010,518(11):3054-3058.
    [8] D. Arai, M. Kondo, A. Matsuda. Reduction of light-induced defects by nano-structure tailoredsilicon solar cells using low-cost TCO substrates [J]. Solar Energy Materials and Solar Cells,2006,90(18-19):3174-3178.
    [9] J. Kr, M. Zeman, F. Smole, et al. Optical modeling of thin-film silicon solar cells deposited ontextured substrates [J]. Thin Solid Films,2004,451-452:298-302.
    [10]金炯.低辐射薄膜的制备与性能研究[D]浙江:浙江大学,2006:10-20.
    [11] V. Consonni, G. Rey, H. Roussel, et al. Preferential orientation of fluorine-doped SnO2thin films[J]. Acta Materialia,2013,61(1):22-31.
    [12] K.H. Yoon, J.S. Song. Properties of fluorine-doped SnO2films prepared by the pyrosol depositionmethod [J]. Solar Energy Materials and Solar Cells,1993,28(4):317-327.
    [13]苗莉,徐瑞松,马跃良. SnO2:F导电薄膜的制备方法和性能表征[J].材料导报,2008,22(1):121-123.
    [14]莫建良,陈华,曹涯雁,等. F掺杂SnO2透明导电薄膜微结构及性能研究[J].太阳能学报,2004,25(2):152-156.
    [15] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, et al. Effect of concentration of SnCl4on sprayedfluorine doped tin oxide thin films [J]. Journal of Alloys and Compounds,2008,455(1-2):440-446.
    [16] A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, et al. Effect of fluorine doping on highly transparentconductive spray deposited nanocrystalline tin oxide thin films [J]. Applied Surface Science,2009,255(23):9358-9364.
    [17] S.Y. Lee, B.O. Park. Structural, electrical and optical characteristics of SnO2:Sb thin films byultrasonic spray pyrolys [J]. Thin Solid Films,2006,510(1-2):154-158.
    [18] E. Elangovan, K. Ramesh, K. Ramamurthi. Studies on the structural and electrical properties ofspray deposited SnO2:Sb thin films as a function of substrate temperature[J]. Solid StateCommunications,2004,130(8):523-527.
    [19] X.H. Zhong, B.P. Yang, X.L. Zhang, et al. Effect of calcining temperature and time on thecharacteristics of Sb-doped SnO2nanoparticles synthesized by the sol–gel method [J].Particuology,2012,10(3):365-370.
    [20] J. Ma, Y.H. Wang, F. Ji, et al. UV–violet photoluminescence emitted from SnO2:Sb thin films atdifferent temperature [J]. Materials Letters,2005,59(17):2142-2145.
    [21] L. Yan, J.S. Pan, C.K. Ong. XPS studies of room temperature magnetic Co-doped SnO2depositedon Si [J]. Materials Science and Engineering B,2006,128(1-3):34-36.
    [22] S. Rani, S.C. Roy, M.C. Bhatnagar. Effect of Fe doping on the gas sensing properties ofnano-crystalline SnO2thin films [J]. Sensors and Actuators B: Chemical,2007,122(1):204-210.
    [23] N.S. Ramgir, Y.K. Hwang, I.S. Mulla, et al. Effect of particle size and strain in nanocrystallineSnO2according to doping concentration of ruthenium [J]. Solid State Sciences,2006,8(3-4):359-362.
    [24] G.W. Kim, C.H. Sung, M.S. Anwar, et al. Effect of trivalent element doping on structural andoptical properties of SnO2thin films grown by pulsed laser de position technique [J]. CurrentApplied Physics,2012,12(S4): S21-S24.
    [25] X. Pei, F. Ji, J. Ma, et al. Structural and photoluminescence properties of SnO2:Ga films depositedon α-Al2O3(0001) by MOCVD [J]. Journal of Luminescence,2010,130(7):1189-1193.
    [26]马鸣明.预先镀SiO2膜玻璃基片上SnO2:Sb薄膜的SOL-GEL法制备及表征[D].武汉:武汉理工大学,2009:20-30.
    [27] N. Oka, Y. Kawase, Y. Shigesato. High-rate deposition of high-quality Sn-doped In2O3films byreactive magnetron sputtering using alloy targets [J]. Thin Solid Films,2012,520(12):4101-4105.
    [28] J.A. Lee, J.H. Lee, Y.W. Heo, et al. Characteristics of Sn and Zn co-substituted In2O3thin filmsprepared by RF magnetron sputtering [J]. Current Applied Physics,2012,12(S4): S89-S93.
    [29] J.S. Park, J.I. Song, Y.W. Heo, et al. Effects of Zn content on structural and transparent conductingproperties of indium-zinc oxide films grown by RF magnetron sputtering [J]. Journal of VacuumScience&Technology B,2006,24(6):2737-2740.
    [30] K. Nomura, H. Ohta, K. Ueda, et al. Electron transparent in InGaO3(ZnO)m (m=interger) studiedusing single-crystalline thin films and transparent MISFETs [J]. Thin Solid Films,2003,445(2):322-326.
    [31] D.D. Edwards, T.O. Mason, W. Sinkler, et al. Tunneled intergrowth structures in the Ga2O3-In2O3-SnO2systems [J]. Solid State Chemisty,2000,150(2):294-304.
    [32]胡雪梅.透明导电氧化物半导体的制备及电学性质研究进展[D].沈阳:东北师范大学,2009:15-25.
    [33] T. Minami, H. Nanto, S. Takata. Highly conductive and transparent ZnO thin films prepared by r.f.magnetron sputtering in an applied external d.c. magnetic field [J]. Thin Solid Films,1985,124(1):43-47.
    [34] J.I. Nomoto, T. Hirano, T. Miyata, et al. Preparation of Al-doped ZnO transparent electrodessuitable for thin-film solar cell applications by various types of magnetron sputtering depositions[J]. Thin Solid Films,2011,520(5):1400-1406.
    [35] R. Yousefi, F. Jamali-Sheini, A. K. Zak, et al. Effect of indium concentration on morphology andoptical properties of In-doped ZnO nanostructures [J]. Ceramics International,2012,38(8):6295-6301.
    [36] F.L. Du, N. Wang, D.M. Zhang, et al. Preparation, characterization and infrared emissivity study ofCe-doped ZnO films [J]. Journal of Rare Earths,2010,28(3):391-395.
    [37] Y.Z. Tsai, N.F. Wang, C.L. Tsai. Fluorine-doped ZnO transparent conducting thin films preparedby radio frequency magnetron sputtering [J]. Thin Solid Films,2010,518(17):4955-4959.
    [38]许俊. Ag系低辐射薄膜结构特征与影响因素研究[D].上海:上海交通大学,2002:45-52.
    [39] Hans Joachim Glaser.德国冯·阿登纳真空技术有限公司组织翻译,大面积玻璃镀膜[M].上海:上海交通大学出版社,2006:130-135.
    [40] J.D. Yang, S.H. Cho, T.W. Hong, et al. Organic photovoltaic cells fabricated on a SnOx/Ag/SnOxmultilayer transparent conducting electrode [J]. Thin Solid Films,2012,520(19):6215-6220.
    [41] J.A. Jeong, H.K. Kim. Low resistance and highly transparent ITO-Ag-ITO multilayer electrodeusing surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells [J]. SolarEnergy Materials&Solar Cells,2009,93(10):1801-1809.
    [42] K.H. Choi, S. Jeon, H.K. Kim. A comparison of Ga:ZnO and Ga:ZnO/Ag/Ga:ZnO source/drainelectrodes for In-Ga-Zn-O thin film transistors [J]. Materials Research Bulletin,2012,47(10):2915-2918.
    [43] Y. Liu, C. Wang, X.G. Diao, et al. Optimization of the thickness of glass/TiO2/Ag/Ti/TiO2/SiONmultilayer film [J]. Vacuum,2012,86(12):2040-2043.
    [44]莫建良. CVD法F掺杂SnO2低辐射薄膜的制备、结构、性能及低辐射玻璃的产业化研究[D].浙江:浙江大学,2003:20-30.
    [45]胡雪梅.透明导电氧化物半导体的制备及电学性质研究进展[D].沈阳:东北师范大学,2009:10-30.
    [46] P.Y. Liu, J.F. Chen, W.D. Sun. Characterizations of SnO2and SnO2:Sb thin films prepared byPECVD [J]. Vacuum,2004,76(1):7-11.
    [47] S. Haireche, A. Boumeddiene, A. Guittoum, et al. Structural, morphological and electronicstudy ofCVD SnO2:Sb films [J]. Materials Chemistry and Physics,2013,139(2-3):871-876.
    [48] Z. Remes, M. Vanecek, H.M. Yates, et al. Optical properties of SnO2:F films deposited by atmos-pheric pressure CVD [J]. Thin Solid Films,2009,517(23):6287-6289.
    [49] A. Bhardwaj, B.K. Gupta, A. Raza, et al. Fluorine-doped SnO2films for solar cell application [J].Solar Cells,1981,5(1):39-49.
    [50] Q. Gao, H. Jiang, M. Li, et al. Improved mechanical properties of SnO2:F thin film by structuralmodification [J]. Ceramics International,2013, In Press.
    [51]刘志海,李超.低辐射玻璃及其应用[M].北京:化学工业出版社,2006:10-30.
    [52] J.H. Ko, I.H. Kim, D. Kim, et al. Transparent and conducting Zn-Sn-O thin films prepared bycombinatorial approach [J]. Applied Surface Science,2007,253(18):7398-7403.
    [53]王亚平. ZrNx/Ag/ZrNx低辐射薄膜的制备及性能研究[D].重庆:重庆大学,2007:20-40.
    [54]建设部令143号.民用建筑节能管理规定[E].2005.
    [55] A.F. Khan, M. Mehmood, M. Aslam, et al. Characteristics of electron beam evaporated nano-crystalline SnO2thin films annealed in air [J]. Applied Surface Science.2010,256(7):2252-2258.
    [56] C. Jagadish, A.L. Dawar, S. Sharma, et al. Effect of hydrogen annealing on electrical and opticalproperties of SnO2thin films [J]. Materials Letters,1988,6(5-6):149-151.
    [57] C. Luangchaisri, S. Dumrongrattana, P. Rakkwamsuk. Effect of heat treatment on electricalproperties of fluorine doped tin dioxide films prepared by ultrasonic spray pyrolysis technique [J].Procedia Engineering,2012,32:663-669.
    [58] Q. Gao, M. Li, X. Li, et al. Microstructural and functional stability of large-scale SnO2:F thin filmwith micro-nano structure [J]. Journal of Alloys and Compounds,2013,550:144-149.
    [59]郭煌.银系低辐射薄膜的研究[D].浙江:浙江大学,2007:30-50.
    [60]高春森.可钢化磁控溅射Low-E玻璃的研制[D].四川:西南科技大学,2010:10-35.
    [61]黄新民,解挺.材料分析测试方法[M].北京:国防工业出版社,2008:136-205
    [62]晋勇,孙小松,薛荠. X射线衍射分析技术[M].北京:国防工业出版社,2008:173-185.
    [63] A. Tucic, Z.V. Marinkovic, L. Mancic, et al. Pyrosol preparation and structural characterization ofSnO2thin films [J]. Journal of Materials Processing Technology,2003,143-144:41-45.
    [64] C.H. Chen, E.M. Kelder, J. Schoonman. Electrostatic sol-spray deposition (ESSD) and characteri-zation of nanostructured TiO2thin films [J]. Thin Solid Films,1999,342(1):35-41.
    [65]李晓伟,常明.基于X射线sin2Ψ法的择优取向金刚石膜残余应力分析[J].人工晶体学报,2010,39:43-47.
    [66] Physical Property Measurement System AC Transport Option User’s Manual Part Number1584-100, D-1
    [67]王斌.现代分析测试方法[M].北京:石油工业出版社,2008:332-323.
    [68] S.J Liu, L.Y. Chen, C.Y. Liu, et al. Physical properties of polycrystalline Cr-doped SnO2filmsgrown on glasses using reactive dc magnetron co-sputtering technique [J]. Applied SurfaceScience,2011,257(6):2254-2258.
    [69]张云,林栋梁.俄歇电子能谱定量分析方法及其在Ni3Al中的应用[J].理化检验—物理分册,1997,33(2):22-23.
    [70]雷雯.俄歇电子能谱学的历史现状与展望[J].真空与低温,1994,13(2):122-124.
    [71] W.C. Oliver, G.M. Pharr. An improved technique for determining hardness and elastic modulususing load and displacement sensing indentation experiments [J]. Journal of Materials Research,1992,7(6):1564-1583.
    [72]任凤霞.半导体光致发光特性研究[D].陕西:西安电子科技大学,2011:12-22.
    [73] S.J. Ikhmayies, R.N. Ahmad-Bitar. The effects of post-treatments on the photovoltaic properties ofspray-deposited SnO2:F thin films [J]. Applied Surface Science,2008,255(5):2627-2631.
    [74] A.I. Martinez, D.R. Acosta. Effect of the fluorine content on the structural and electrical propertiesof SnO2and ZnO–SnO2thin films prepared by spray pyrolysis [J]. Thin Solid Films,2005,483(1-2):107-113.
    [75] Q. Gao, Q.Y. Liu, M. Li, et al. Effect of glass tempering on microstructure and functionalproperties of SnO2:F thin film prepared by atmosphere pressure chemical vapor deposition [J].Thin Solid Films,2013,544:357-361.
    [76] J. Jeong, S.P. Choi, K.J. Hong, et al. Atomic scale faceting and its effect on the grain sizedistribution of SnO2thin films during deposition [J]. Materials Science and Engineering B,2004,110(3):240-242.
    [77] C.W. Park, D.Y. Yoon. Effects of SiO2, CaO2, and MgO additions on the grain growth of alumina[J]. Journal of the American Chemical Society A,2000,83(10):2605-2609.
    [78] S.B. Lee, D.Y. Yoon, M.F. Henry. Abnormal grain growth and grain boundary faceting in a modelNi-base superalloy [J]. Acta Materialia,2000,48(12):3071-3080.
    [79] G. Korotcenkov, A. Cornet, E. Rossinyol, et al, Faceting characterization of SnO2nanocrystalsdeposited by spray pyrolysis from SnCl4·5H2O water solution [J]. Thin Solid Films,2005,471(1-2):310-319.
    [80] V. Brinzari, G. Korotcenkov, J. Schwank, et al. Morphological rank of nano-scale tin dioxide filmsdeposited by spray pyrolysis from SnCl4·5H2O water solution [J]. Thin Solid Films,2002,408(1-2):51-58.
    [81] K. Murakami, K. Nakajima, S. Kaneko. Initial growth of SnO2thin film on glass substratedeposited by the spray pyrolysis technique [J]. Thin Solid Film,2007,515(24):8632-8636.
    [82] T. Serin, N. Serin, S. Karadeniz, et al. Electrical, structural and optical properties of SnO2thinfilms prepared by spray pyrolysis [J]. Journal of Non-Crystalline Solids,2006,352(3):209-215.
    [83] J. Lee. Effects of oxygen concentration on the properties of sputtered SnO2:Sb films deposited atlow temperature [J]. Thin Solid Films,2008,516(7):1386-1390.
    [84] B. Thangaraju. Structural and electrical studies on highly conducting spray deposited fluorine andantimony doped SnO2thin films from SnCl2precursor [J]. Thin Solid Films,2002,402(1-2):71-78.
    [85] D.V. Morgan, Y.H. Aliyu, R.W. Bunce, et al. Annealing effects on opto-electronic properties ofsputtered and thermally evaporated indium-tin-oxide films [J]. Thin Solid Films,1998,312(1-2):268-272.
    [86] J. Szczyrbowski, A. Dietrich, K. Hartig. Bendable silver-based low emissivity coating on glass [J].Solar Energy Materials,1989,19(1-2):43-53.
    [87]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2011:190-193.
    [88] J.W. Hutchinson, Z. Suo. Mixed mode cracking in layered material [J]. Advances in AppliedMechanics,1991,29:63-91.
    [89] A.G. Evans, J.W. Hutchinson. Thermomechanical integrity of thin films and multilayers[J]. ActaMetallurgica et Materialia,1995,43(7):2507-2530.
    [90]邵淑英,范正修,范瑞英,等.薄膜应力研究[J].激光与光电子学进展,2005,42:22-27.
    [91] X.J. Zheng, J.Y. Li, Y.C. Zhou. X-ray diffraction measurement of residual stress in PZT thin filmsprepared by pulsed laser deposition [J]. Acta Materialia,2004,52(11):3313-3322.
    [92] T.H. Fang, W.J. Chang. Nanomechanical characteristics of SnO2:F thin films deposited bychemical vapor deposition [J]. Applied Surface Science,2005,252(5):1863-1869.
    [93] L. Karlsson, L. Hultman, J.E. Sundgren. Influence of residual stresses on the mechanicalproperties of TiCxN1–x(x=0,0.15,0.45) thin films deposited by arc evaporation [J]. Thin solidFilms,2000,371(1-2):167-177.
    [94] F. Vaz, L. Rebouta, P. Rebouta, et al. Residual stress states in sputtered Ti1-xSixNyfilms [J]. ThinSolid Films,2002,402(1-2):195-202.
    [95] H. Kim, R.C.Y. Auyeung, A. Piqué. Transparent conducting F-doped SnO2thin films grown bypulsed laser deposition [J]. Thin Solid Films,2008,516(15):5052-5056.
    [96] W.F. Wu, B.S. Chiou. Mechanical properties of r.f. magnetron sputtered indium tin oxide films [J].Thin Solid Films,1997,293(1-2):244-250.
    [97] R.P. Howson, H. Barakova, A.G. Spencer, Reactive sputtering of electrically conducting tin oxide[J]. Thin Solid Films,1991,196(2):315-321.
    [98] Z.W. Chen, J.K.L. Lai, C.H. Shek. Insights into microstructural evolution from nanocrystallineSnO2thin films prepared by pulsed laster deposition [J]. Physical Review B,2004,70(16):165314-165320.
    [99]S. Chacko, M.J. Bushiri, V.K. Vaidyan. Photoluminescence studies of spray pyrolytically grownnanostructured tin oxide semiconductor thin films on glass substrates [J]. Journal of PhysicsD-Applied Physics,2006,39(21):4540-4543.
    [100] A.A. Yadava, E.U. Masumdar, A.V. Moholkar, et al. Electrical, structural and optical properties ofSnO2:F thin films: Effect of the substrate temperature [J]. Journal of Alloys and Compounds,2009,488(1):350-355.
    [101] C. Agashe, S. Mahamuni. Competitive effects of film thickness and growth rate in spraypyrolytically deposited fluorine-doped tin dioxide films [J]. Thin Solid Films,2010,518(17):4868-4873.
    [102] M. Gaidi, A. Hajjaji, R. Smirani, et al. Structure and photoluminescence of ultrathin films ofSnO2nanoparticles synthesized by means of pulsed laster deposition [J]. Journal of AppliedPhysics,2010,108(6):063537-063541.
    [103] S.S. Lekshmy, G.P. Daniel, K. Joy. Microstructure and physical properties of sol gel derivedSnO2:Sb thin films for optoelectronic applications [J]. Applied Surface Science,2013,274:95-100.
    [104] J. Tauc. Absorption edge and internal electric fields in amorphous semiconductors [J]. MaterialsResearch Bulletin,1970,5(8):721-729.
    [105] F. Gu, S.F. Wang, M.K. Lü, et al. Photoluminescence properties of SnO2nanoparticlessynthesized by sol-gel method[J]. Journal of Physical Chemistry B,2004,108(24):8119-8123.
    [106] P. Ravikumar, K. Ravichandran, B. Sakthivel. Effect of Thickness of SnO2:F over Layer onCertain Physical Properties of ZnO:Al Thin Films for Opto-electronic Applications [J]. Journal ofMaterials Science&Technology,2012,28(11):999-1003.
    [107] D.S. Ginley, H. Hosono, D.C. Paine. Handbook of Transparent Conductors [M]. Springer,2010:52.
    [108] S. Rani, S.C. Roy, N. Karar, et al. Structure, microstructure and photoluminescence properties ofFe doped SnO2thin films [J]. Solid State Communications,2007,141(4):214-218.
    [109] L.J. Li. Growth and photoluminescence properties of SnO2nanobelts [J]. Materials Letters,2013,98:146-148.
    [110] B. Wang, P. Xu. Growth mechanism and photoluminescence of the SnO2nanotwists on thin filmand the SnO2short nanowires on nanorods [J]. Chinese Physics B,2009,18(1):324-332.
    [111]王冰,徐平.二氧化锡纳米结构的光致发光及生长机制研究[J].电子元件与材料,2008,27(8):52-54.
    [112] J. Jeong, S.-P. Choi, C.I. Chang, et al. Photoluminescence properties of SnO2thin films grown bythermal CVD [J]. Solid State Communications,2003,127(9-10):595-597.
    [113] P.S. Shewale, K.U. Sim, Y.B. Kim, et al. Structural and photoluminescence characterization ofSnO2:F thin films deposited by advanced spray pyrolysis technique at low substrate temperature[J]. Journal of Luminescence,2013,139:113-118.
    [114] J.X. Zhou, M.S. Zhang, J.M. Hong, et al. Raman spectroscopic and photoluminescence study ofsingle-crystalline SnO2nanowires [J]. Solid State Communications,2006,138(5):242-246.
    [115] T.Y. Wei, C.Y. Kuo, Y.J. Hsu, et al. Tin oxide nanocrystals embedded in silica aerogel:Photoluminescence and photocatalysis [J]. Microporous and Mesoporous Materials,2008,112(1-3):580-588.
    [116] F. Trani, M. Causà, D. Ninno, et al. Density functional study of oxygen vacancies at the SnO2surface and subsurface sites [J]. Physical Review B,2008,77(24):245410-245417.
    [117] S.A. Knickerbocker, A.K. Kulkarni. Calculation of the figure of merit for indium tin oxide filmsbased on basic theory [J]. Journal of Vacuum Science&Technology A,1995,13(3):1048-1052.
    [118] G.K. Williamson, W.H. Hall. X-ray line broadening from filed aluminium and wolfram [J]. ActaMetallurgica,1953,1(1):22-31.
    [119] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, et al. Amorphous interlayers between crystallinegrains in ferromagnetic ZnO films [J]. Materials Letters,2012,71:21-24.
    [120] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, et al. Ferromagnetic properties of the Mn-dopednanograined ZnO films [J]. Journal Applied Physics,2010,108(7):3923-3926.
    [121] M. Kwoka, L. Ottaviano, M. Passacantando, et al. XPS study of the surface chemistry of L-CVDSnO2thin films after oxidation [J]. Thin Solid Films,2005,490(1):36-42.
    [122] M. Kwoka, L. Ottaviano, M. Passacantando, et al. XPS depth profiling studies of L-CVD SnO2thin films [J]. Applied Surface Science,2006,252(21):7730-7733.
    [123] M. Kwoka, L. Ottaviano, M. Passacantando, et al. XPS study of the surface chemistry ofAg-covered L-CVD SnO2thin films [J]. Applied Surface Science,2008,254(24):8089-8092.
    [124] M. Kwoka, L. Ottaviano, N. Waczyńska, et al. Influence of Si substrate preparation on surfacechemistry and morphology of L-CVD SnO2thin films studies by XPS and AFM [J]. AppliedSurface Science,2010,256(19):5771-5775.
    [125] J.M. Themlin, M. Chtaib, L. Henrard, et al. Characterization of tin oxides by X-rayphotoemission spectroscopy [J]. Physical Review B,1992,46(4):2460-2466.
    [126] V.K. Jain, P. Kumar, M. Kumar, et al. Study of post annealing influence on structural, chemicaland electrical properties of ZTO thin films [J]. Journal of Alloys and Compounds,2011,509(8),3541-3546.
    [127] F.A. Akgul, C. Gumus, A.O. Er, et al. Structural and electronic properties of SnO2[J]. Journal ofAlloys and Compounds,2013,579:50-56.
    [128] H. Mahmoudi Chenari, L. Weinhardt, N.S. Rodriguez Lastra, et al. Structural properties andx-ray photoelectron spectroscpic study of SnO2nanoparticles [J]. Materials Letters,2012,85:168-170.
    [129] R. Snyders, M. Wautelet, R. Gouttebaron, et al. Correlation between the gas composition and thestoichiometry of SnOxfilms prepared by DC magnetron reactive sputtering [J]. Surface andCoatings Technology,2001,142-144:187-191.
    [130] J. Szuber, G. Czempik, R. Larciprete, et al. XPS study of the L-CVD deposited SnO2thin filmsexposed to oxygen and hydrogen [J]. Thin Solid Films,2001,391(2):198-203.
    [131] http://srdata.nist.gov/xps/
    [132] C.D. Wagner, W.M. Riggs, L.E. Davis, et al. Handbook of X-Ray Photoelectron Spectroscopy
    [M], Perkin-Elmer,1979.
    [133] A.A. Shaltout, H.H. Afify, S.A. Ali. Elucidation of fluorine in SnO2:F sprayed films by differentspectroscopic techniques [J]. Journal of Electron Spectroscopy and Related Phenomena,2012,185(5-7):140-145.
    [134] A. Martel, F. Caballero-Briones, P. Bartolo-Perez, et al. Chemical and phase composition ofSnO2:F films grown by DC reactive sputtering [J]. Surface and Coatings Technology,2001,148:103-109.
    [135] B. Yea, H. Sasaki, T. Osaki, et al. Investigation of substrate-dependent characteristics of SnO2thin films with Hall effect, X-ray diffraction, X-ray photoelectron spectroscopy and atomic forcemicroscopy mesurements [J]. Japnese Journal of Applied Physics,1999,38(4A):2103-2107.
    [136] J.C.C. Fan, J.B. Goodenough. X-ray photoemission spectroscopy studies of Sn-doped indium-oxide film [J]. Journal of Applied Physics,1977,48(8):3524-3531.
    [137] J. Szuber, G.. Czempik, R. Larciprete, et al. XPS study of the L-CVD deposited SnO2thin filmsexposed to oxygen and hydrogen [J]. Thin Solid Films,2001,391(2):198-203.
    [138] D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis. Dependence of sensitivity of SnOxthin-filmgas sensors on vacancy defects [J]. Journal of Applied Physics,1996,80(10):6050-6054.
    [139]朱瑛,姚英学,周亮.纳米压痕技术及其试验研究[J].工具技术.2004,38(8):13-16.
    [140]黎明,温诗铸.纳米压痕技术及其应用[J].中国机械工程.2002,13(16):1437-1439.
    [141] M. Kwoka, L. Ottaviano, M. Passacantando, et al. Comparative photoemission study of theelectronic properties of L-CVD SnO2thin films [J]. Applied Surface Science,2006,252(21):7734-7738.
    [142] E. Paparazzo. X-ray photoemission and auger spectra of damage induced by Ar+-ion etching atSiO2surfaces [J]. Journal of Physics D-Applied Physics,1987,20(8):1091-1095.
    [143] Y. Okamoto, W.J. Carter, D.M. Hercules. A study of the interaction of Pb-Sn solder with O2, H2O,and NO2by X-ray photoelectron (ESCA) and auger (AES) spectroscopy [J]. AppliedSpectroscopy,1979,33(3):287-293.
    [144] M.P. Delplancke, J.M. Powers, G.J. Vandentop, et al. Preparation and characterization ofamorphous Sic:H thin films [J]. Journal of Vacuum Science&Technology A,1991,9(3):450-455.
    [145] X. Yu, H. Hantsche. Vertical differential charging in monochromatized small spot X-rayphotoelectron spectroscopy [J]. Surface and Interface Analysis,1993,20(7):555-558.
    [146] J.H. Park, Y.Y. Choi, H.K. Kim, et al. The Effects of Rapid Thermal Annealing on The Electrical,Optical, and Structural Properties of Nb:TiO2Multilayer Electrodes with An Inserted NanoscaleAg Layer for Organic Solar Cells [J]. Journal of Applied Physics,2010,108(08):3509-3518.
    [147] D.P. Traey, D.B. Knorr. Texture and Microstructure of Thin Copper Films [J]. Journal ofElectronic Materials,1993,22(6):611-616.
    [148] P. Hirsch, A. Howie, R. B. Nicholson, et al. Electron Microscopy of Thin Crystal [M]. New York:Roberte Krieger Publishing Company,1977:251-263.
    [149]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术[M].浙江:浙江大学出版社,2006:313-314.
    [150] D.R. Sahu, C.Y. Chen, S.Y. Lin, et al. Effect of substrate temperature and annealing treatment onthe electrical and optical properties of silver-based multilayer ciating electrodes [J]. Thin SolidFilms,2006,515(3):932-935.
    [151] Y.S. Jung, K.H. Kim. Effects of intermediate metal layer on the properties of Ga-Al dopedZnO/metal/Ga-Al doped ZnO multilayers deposited on polymer substrate [J]. Materials ResearchBulletin,2012,47(10):2895-2897.
    [152] M. Neghabi, A. Behjat, S.M.B. Ghorashi, et al. The effect of annealing on structural, electricaland optical properties of nanostructured ZnS/Ag/ZnS films [J]. Thin Solid Films,2011,519(16):5662-5666.
    [153] R.J. Martin-Palma, J.M. Martinez-Duart. Ni-Cr Passivation of very thin Ag films for Low-emissivity multilayer coatings [J]. Journal Vacancy Science&Technology A,1999,17(6):3449-3451.
    [154]名芩.玻璃风化及其防止法[M].武汉:武汉工业大学出版社.1996:188-255.
    [155] A. Kloppel, W. Kriegseis, B.K. Meyer, et al. Dependence of the electrical and optical behaviourof ITO-silver-ITO multilayers on the silver properties [J]. Thin Solid Films,2000,365(1):139-146.
    [156] S.B. Rivers, G. Bernhardt, M.W. Wright, et al. Structure, conductivity, and optical absorption ofAg2-xO films [J]. Thin Solid Films,2007,515(24):8684-8688.
    [157] J.A Jeong, H.K. Kim. Al2O3/Ag/Al2O3multilayer thin film passivation prepared by plasmadamage-free linear facing target sputtering for organic light emitting diodes [J]. Thin Solid Films,2013, In Press.
    [158] L.H. Tjeng, M.B.J. Meinders, J. van Elp, et al. Electronic structure of Ag2O [J]. Physical ReviewB,1990,41(5):3190-3199.
    [159] G.C. Allen, S.J. Harris, J.A. Jutson, et al. A study of a number of mixed transition metal oxidespinels using X-ray photoelectron spectroscopy. Applied Surface Science,1989,37(1):111-134.
    [160] L. Gaouyat, F. Mirabella, O. Deparis. Critical tuning of magnetron sputtering process parametersfor optimized solar selective absorption of NiCrOxcermet coatings on aluminium substrate.Applied Surface Science,2013,271:113-117.
    [161] J.M. Grimal, P. Marcus. XPS study of the segregation of sulphur on Ni21Cr8Fe(100) alloy.Surface Science Letters.1991,249(1-3): A265.