水曲柳苗木根系对氮胁迫的形态和生理反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是植物生长发育中所不可缺少的,但也通常是土壤中的限制资源,在氮素胁迫条件下,植物根系能够通过自身调节做出形态、结构和生理上的适应性反应,以增加其在胁迫条件下的生存机会。细根是植物吸收水分和养分的重要器官,水曲柳苗木细根形态、解剖及生理对不同的氮水平将产生怎样的反应我们并不清楚?因此,本研究采用温室沙培技术,以1年生水曲柳苗木为试验材料,设计3个供N水平(其中1,16 mmol·L~(-1)为胁迫处理,8 mmol·L~(-1)为对照),通过测定整株苗木根系形态对氮胁迫的反应、1-3级根形态对氮胁迫的反应以及1-3级根C,N含量及生理指标对氮胁迫的反应,来分析苗木对不同N水平的响应机制,以期为水曲柳林分的经营管理和苗木的培育提供理论基础。主要研究结果如下:
     单株苗木根系总表面积和总长度在各生长时期(7、8、9月)随着氮浓度的提高而显著增大;各个氮处理(N1、N8、N16)在不同的生长时期也随着时间的增长而增大。根系平均直径在7,8月份时低氮处理显著高于对照和高氮处理,而9月份时高氮处理下平均直径显著大于对照和低氮处理;而各个氮处理在不同的生长时期单株根系的平均直径差异不显著。根系比根长在7月份时随着氮浓度的提高而增大,8,9月份时比根长表现为对照大于低氮处理和高氮处理;各个氮处理整株根系比根长随着生长期的延长而显著减小。在水曲柳苗木各个生长时期,与对照相比低氮处理显著降低了单株苗木的高生长、地径、地上、地下、总的生物量以及冠根比,而高氮处理与对照相比使苗木的各生长指标显著增大,且不同氮处理苗木的各个生长指标除了冠根比随着生长期的延长而变小外,其他生长指标都随着时间的增长而增大。
     水曲柳苗木1-3级根表面积和长度在各生长时期随着氮浓度的提高而增大;各个氮处理在不同的生长时期也随着时间的增长而增大。1-3级根平均直径在各生长时期的变化为低氮处理明显高于对照和高氮处理;而各个氮处理在不同的生长时期1-3级根平均直径几乎没有变化。7,8月份时,与对照相比低氮处理明显降低了1-3级根的比根长,9月份时与对照相比低氮和高氮处理均使比根长明显减小;各个氮水平在不同生长时期1-3级根比根长随着生长期的延长而显著减小。1-3级根皮层厚度和维管束直径随着根序升高而显著增大。各生长时期,与对照相比,低氮处理使皮层厚度增加,高氮处理使维管束直径增大;随着根序的升高,皮层细胞层数变大,在各个月份不同氮处理对同一根序根的皮层细胞层数影响均不显著,而低氮处理使得皮层细胞直径变大。1-3级根细胞长度在不同氮水平处理下各个月份均是随着氮浓度提高而显著减小。
     水曲柳苗木1-3级根氮含量随根序升而高减小,在不同的生长期随着供N水平的提高而显著增加;不同的氮处理随着生长时间的延长1-3级根氮含量显著增加。可溶性糖、淀粉、非结构性碳水化合物(TNC)含量随根序升高而增加,在不同的生长时期随着氮水平的提高而下降,而随着生长时间的延长而不断增加。9月份根系活力在同一级别根中对照显著大于高氮处理,高氮处理大于低氮处理;质膜透性表现为低氮处理显著大于高氮处理,高氮处理大于对照。
     综上,不同氮水平对水曲柳苗木根系的形态、结构、生理均产生了显著影响,低氮胁迫和高氮胁迫都对水曲柳苗木产生了不利影响,但苗木对这些不利环境产生了较强的调节和适应能力。
Nitrogen is indispensable to plant growth and development, but it is usually confine resource in the soil, the plant roots can be made morphology, structure and physiological adaptive response through self-regulation at nitrogen stress, by which root can increase the chances of survival in the stress condition. Fine root absorb nutrients and water from soil, which is vital organs of plant, how the root morphology, structure and physiological of Ash response to the different N availability does is ambiguous? Therefore, in this study, one-year-old seedlings of Ash were studied by sand-cultured in pots with three nitrogen (N) level treatments (1,8,16 mmol/L ) in greenhouse. We measured the parameters of morphology of total roots and the first three order roots, anatomical properties, the N, C contents and roots physiological, then analyzed the mechanism of seedlings response to the nitrogen level treatments, these results may improve the technology of forestry management and production of seedlings. The main results were below:
     Morphology of total seedling roots was significant changed under different N treatment. The total surface area and total length increased significantly with increasing N concentrations supplied at July, August and September; which increased significantly along with the extension of time at every N level. The mean diameter was higher in low N treatment than in control and high N treatments at July and August, while it was higher in high N treatment than in control and low N treatments at September; the mean diameter had insignificant change along with the extension of time at every N level. The specific root length (SRL) increased significantly with increasing N concentrations supplied at July; however, it was higher in control than in low N treatment and high N treatments at August and September; which decreased significantly along with the extension of time at every N level. At the seeding different growth phase, significant decrease in height, collar diameter, overground, underground, total biomass and S/R in low N treatment compared to the control, while the high N treatments just the opposite whit low N treatment; The above growth Index increased along with the extension of time at every N level besides of the S/R.
     The mean surface area and length of the first three order individual roots increased significantly with increasing N concentrations supplied at July, August and September; which increased significantly along with the extension of time at every N level. Low N treatment resulted higher diameter comparing with control or high N treatments at the seeding different growth month; the mean diameter had also insignificant change along with the extension of time at every N level. The SRL decreased obvious in low N treatment at July and August; while it was the highest in control at September; the SRL of the first three order individual roots decreased significantly along with the extension of time at every N level. The low N treatment in the first three order roots increased cortical thickness, while high N treatment increased vascular bundle significantly at the seeding different growth phase. The layer of cortical thickness had insignificant change in the same root order indifferent N concentrations at the seeding different growth month, so the low N treatment increase the diameter of cortical thickness cell compare to the control and high N treatments. The cell lengths in the first three order roots were decreased markedly with the increasing N concentrations supplied at the seeding different growth phase.
     The N contents decreased with increasing the root order, which increased significantly with increasing N concentrations supplied at July, August and September; N contents increased significantly along with the extension of time at every N level. The soluble sugar, starch and total non-structural carbohydrate content of 1-3 order roots increased with increasing the root order, which decreased obvious with increasing N concentrations supplied the seeding different growth phase; and they increased along with the extension of time at every N level. The root vigor at low N treatment were the greatest of three N levers at first three order individual roots, and it higher at high N treatment then low N treatment; the membrane penetration showed that: low N treatment > high N treatment >control.
     In conclusion, the effects of N on morphology, structure and physiological of Ash seedling roots' are significant. The low N stress and high N stress all negative to seedling's growth ability, but the seedlings also have the acclimation and adaptation to the disadvantage environment.
引文
[1]Larcher W.Plant ecophysiology.Verlag Eugen Ulmer Gmbh and Co,Germany,1994
    [2]Lea RWC,Tierson DH,Bickelhaupt.Differential foliar response of northern hardwoods to fertilization[J].Plant and soil,1980,54:419-439
    [3]Attiwill PM and Adams MA.Nutrient cycling in forests[J].New Phytol,1993,124:561-582
    [4]李春俭,张福锁.植物营养胁迫及其适应性反应的调节.见冯锋,张福锁,杨新泉编著.植物营养研究-进展与展望[M].北京:中国农业人学出版社,2000
    [5]Adama MB,Campbell RG,Allen HL and Davey CB.Root and foliar nutrient concentrations in loblolly pine:effects of season,site and fertilization[J].Forest Science,1987,33:984-996
    [6]Atkinsin BK.Effect of phosphorus supply to soil on root growth of difference plants[J].Soil Science,1989,148(4):293-302
    [7]Caldwell MM and RA Virginia.Root systems.In:Pearcy RW,J Ehleringer,HA Mooney and PW.Rundel.Edited.Plant physiological ecology:field methods and instrumentation [J].New York:Chapman & Hall Ltd,1989,367-398
    [8]Nambiar EKS and Fife DN.Growth and nutrient re-translocation in needles of radiata pine in relation to nitrogen supply[J].Ann Bot(London),1987,60:147-156
    [9]Sword MA,Gravatt DA and Faulkner PL et al.Seasonal branch and fine root growth of juvenile loblolly pine five growing seasons after fertilization[J].Tree Physiology,1996,16:899-904
    [10]Zhang H,Forde BG.An Arabidopsis MARS-box gene that controls nutrient-induced changes in root architecture[J].Science,1998,279:407-409
    [11]Larigauderie A,Reynolds JF,Strain BR.Root response to CO_2 enrichment and nitrogen supply in loblolly pine[J].Plant and Soil,1994,165(1):21-32
    [12]Boukcim H,Pages L,Plassard C et al.Root system architecture and receptivity to mycorrhizal infection in seedlings of Cedrus atlantica as affected by nitrogen source and concentration[J].Tree Physiology,2001,21:109-115
    [13]严小龙,张福锁著.植物营养遗传学[M].北京:中国农业大学出版社,1997
    [14]Russell RS.Plant Root System.McGraw-Hill[M].Book Company Lt,1977
    [15]Clemensson LA and Persson H.Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies[J].Plant and soil,1995,168-169:167-172
    [16]Nadelhoffer KJ,Aber JD and Melillo JM.Fine roots,net primary production,and soil nitrogen availability:A New hypothesis[J].Ecology,1985,66(4):1377-1390
    [17]Pregitzer KS, Hendrick RL and Fogel R. The demography of fine roots in response to patches of water and nitrogen [J]. New Phytolist, 1993,125: 575-580
    [18]Stanturf JA, Stone EL, Jr and McKittrick RC. Effects of added nitrogen on growth of hardwood trees in southern New York [J]. Canadian Journal of Forest Research, 1989, 19: 279-284
    [19]Seith B, George E, Marschner H, Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp R. Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L] Karst). I. Shoot and root growth and nutrient uptake [J]. Plant Soil, 1996,184: 291-298
    [20]Chapin FS III. The mineral nutrition of wild plants [J]. Annual Review of Ecology and Systematics, 1980,11:233-260
    [21]Bijlsma RJ, Lambers H, Kooijman ALM. A dynamic whole plant model of integrated metabolism of nitrogen and carbon. I. Comparative ecological implications of ammonium nitrate interactions [J]. Plant and Soli, 2000,220: 49-69
    [22]Chapin FS III, Bloom AJ, Field CP and Waring RH. Plant responses to multiple environmental factors [J]. BioScience, 1987, 37: 49-57
    [23]Coomes DA, Grubb PJ. Responses of juvenile trees to above and belowground competition in nutrient-starved Amazonian rain forest [J]. Ecology, 1998, 79(3): 768-782
    [24]Coleman MD, Dickson RE, Isebrands JG. Growth and physiology of aspen supplied with different fertilizer addition rates [J]. Physiologia Plantarum, 1998,103(4): 513-526
    [25]Calviere I, Duru M. The effect of N and P fertilizer application and botanical composition on the leaf/stem ratio patterns in spring in Pyrenean meadows [J]. Grass and Forage Science, 1999,54(3): 255-266
    [26]Wang JR, Hawkins CDB, Letchford T. Relative growth rate and biomass allocation of paper birch (Betula papyrifera) populations under different soil moisture and nutrient regimes [J]. Canadian Journal of Forest Research, 1998, 28(1): 44-55
    [27]Andrews K, Sppent JI, Raven JA and Eady PE. Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies [J]. Plant Cell and Environment, 1999,22: 949-958
    [28]Jackson RB, J. Canadell JR, Ehleringer et al. A Global Analysis of Root Distributions for Terrestrial Biomes [J]. Oecologia, 1996,108:389-411
    [29]Cairns MA, Brown S, Helmer EH et al. Root Biomass Allocation in the World's Upland Forests [J]. Ecologia, 1997,111:1-11
    [30]Kuiper LC and Coutts MP. Spatial disposition and extension of the structural root system of Douglas-fir. Forestry Ecologia Manage [J], 1992, 47:111-125
    [31]Blacksburn P, Petty JA and Miller KF. An assessment of the static and dynamic factors involved in wind throws[J].Forestry,1988,63:73-91
    [32]Coutts MP.Growth of Sitka spruce seedlings with roots divided between soils of unequal matrix potential[J].New Phytologist,1982.92:49-61
    [33]Eissenstat DM et al,The growth and function of pine roots[J].Ecological Bulletns,1994,43:76-91
    [34]Fahey TJ and Arthur MA.Further Studies of Root Decomposition Following Harvest of a Northern Hardwood Forest[J].Forest Science,1994,40:618-629
    [35]Dixon RK,Brown S,Houghton RA,Solomon AM,Trexler MC and Wisniewski J.Carbon pools and flux of global forest ecosystems[J],Science.1994,263:185-190
    [36]Pregitzer KS,DeForest JL,Burton AJ,Allen MF,Ruess RW and Hendrick RL.Fine root architecture of nine North American trees[J].Ecological Monographs,2002,72:293-309
    [37]Cronan CS.Belowground biomass,Production,and carbon cycling in mature Norway spruce,Maine,USA.Canadian Journal of Forest Research[J],2003,33(2):339-350
    [38]Hendrick RL and Pregitzer KS.The demography of fine roots in a northern hardwood forest[J].Ecology,1992,73:1094-1104
    [39]Hendrick RL and Pregitzer KS.Patterns of fine root mortality in two sugar maple forests [J].Nature,1993,361:59-61
    [40]Nadelhoffer KJ.The potential effects of nitrogen deposition on fine root production in forest ecosystems[J].New Phytologist,2000,147:131-139
    [41]Van Den Driessche R.Importance of current photosynthate to new root growth in planted conifer seedlings[J].Canadian Journal of Forest Research,1987,17:776-782
    [42]Vogt KA,Grier CC,Gower ST and Sprugel DG.Over-estimation of net root production:a real or imaginary problem?[J].Ecology,1986,67:577-579
    [43]Raich JW and Nadelhoffer KJ.Below ground carbon allocation in forest ecosystems:global trends[J].Ecology,1989,70:1346-1354
    [44]Gill RA and Jackson RB.Global patterns of root turnover for terrestrial ecosystems[J].New Phytologist,2000,147:13-31
    [45]Vogt KA,Vogt DJ,Moore EE,Littke W,Grier CC and Leney L.Estimating Douglas-fir Fine Root Biomass and Production from Living Bark and Starch[J].Canadian Journal Forest Research,1985,15:177-179
    [46]张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138
    [47]张小全.环境因子对树木细根生物量、生产与周转的影响[J].林业科学研究,2001,14(5):566-573
    [48]Ostertag R.Effects of Nitrogen and Phosphorus Availability on Fine-Root Dynamics in Hawaiian Montane Forests[J].Ecology,2001,82:485-499
    [49]Robertson G.P,Wedin D,Groffmann PM,Blair JM,Holland EA,Nadelhoffer KJ and Harris D.Soil Carbon and Nitrogen Availability:Nitrogen Mineralization,Nitrification,and Soil Respiration Potentials.In:Robertson G.P,Wedin D,Groffmann PM,Blair JM,Holland EA,Nadelhoffer KJ,Harris D,Robertson P,Coleman DC,Bledsoe C and Sollins P.Standard Soil Methods for Long-term Ecological Research.Vol.2.Oxford University Press[M].New York,1999,258-271
    [50]王向荣,王政权,韩有志,谷加存,郭大立,梅莉.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报,2005,29(6):871-877
    [51]Pregitzer KS,Laskowski MJ,Burton AJ,Lessard VC and Zak DR.Variation in Sugar Maple Root Respiration with Root Diameter and Soil Depth[J].Tree Physiology,1998,18:665-670
    [52]Guo DL,Mitchell RJ and Hendricks JJ.Fine Root Branch Orders Respond Differentially to Carbon Source-sink Manipulations in a Longleaf Pine Forest[J].Oecologia,2004,140:450-457
    [53]Vogt KA,Vogt DJ and Bloomfield J.Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level[J].Plant and Soil,1998,200:71-89
    [54]Murach D and Partha.Assessment of methods Used in root ecological field studies of the research center forest ecosystems in Goettingen[M].Goertingen,2000:55-59
    [55]Vogt KA and Persson H.Measuring growth and development of roots.In:Lassoie JP and Hinckley TM.Techniques and Approaches in Forest Tree Ecophysiolgy.Boston:CRC Press,Inc[M],1991:477-501
    [56]Hendricks JJ,Nadelhoffer KJ and Aber JD.Assessing the Role of Fine Roots in Carbon and Nutrient Cycling[J].Trends in Ecology and Evolution,1993,8:174-178
    [57]Gower ST,Vogt KA and Grier CC.Carbon Dynamics of Rocky Mountain Douglas-fir:Influence of Water and Nutrient Availability[J].Ecological Monographs,1992,62:43-65
    [58]Hendricks JJ,Aber JD,Nadelhoffer KJ and Hallett RD.Nitrogen Controls on Fine Root Substrate Quality in Temperate Forest Ecosystems[J].Ecosystems,2000,3:57-69
    [59]Alexander IJ and Fairley RI.Effects of N Fertilization on Populations of Fine Roots and Mycorrhizae in Spruce Humus[J].Plant and Soil,1983,71:49-53
    [60]Ingestad T and Agren GI.Theories and Methods on Plant Nutrition and Growth[J].Physiology and Plant,1992,84:177-184
    [61]Vogt KA,Vogt DJ,Palmiotto A,Boon P,O'Hara J and Asbjornsen H.Review of root dynamics in forest ecosystems grouped by climate,climatic forest type and species[J].Plant and Soil,1996,187:159-219
    [62]Eissenstat DM,Wells CE,Yanai RD and Whitbeck JL.Building roots in a changing environment:implications for root longevity[J],New Phytologist,2000,147:33-42
    [63]Norby RJ and Jackson RB. Root Dynamics and Global Change: Seeking an Ecosystem Perspective [J]. New Phytologist, 2000,147:3-12
    [64]Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL and Allen MF. Root Respiration in North American Forests: Effects of Nitrogen Concentration and Temperature Across Biomes [J]. Oecologia, 2002,131:559-568
    [65]King JS, Albaugh TJ, Allen HL, Buford M, Strain BR and Dougherty P. Seasonal Dynamics of Fine Roots Relative to Foliage and Stem Growth in Loblolly Pine (Pinus taeda L.) as Affected by Water and Nutrient Availability [J]. New Phytologist, 2002, 154:389-398
    [66]Fahey TJ and Hughes JW. Fine Root Dynamics in Northern Hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH [J]. Journal of Ecology, 1994, 82:533-548
    [67]Malagoli M, Dal Canal A, Quaggiotti S, Pegoraro P and Bottacin A. Differences in Nitrate and Ammonium Uptake between Scots Pine and European Larch [J]. Plant and Soil, 2000, 221:1-3
    [68]Mou P, Jonse RH and Mitchell RJ. Spatial distribution of roots in sweet gum and Loblolly pine monocultures and relations with above-ground biomass and soil nutrients [J]. Functional Ecology, 1995, 9(3): 689-699
    [69]Geroge E, Seith E and Schaeffer C. Responses of Picea, Pinus and Pseudotsuga Root to Heterogeneous Nutrient Distribution in soil [J].Tree Physiology, 1997,17(1) :39-45
    [70]Fabiao A, Madeira M, Steen E, Katter T, Ribeiro C and Araujo C. Development of root Biomass in a Eucalyplus Globulus Plantation under Different Water and Nutrient Regimes [J]. Plant and Soil, 1995,168/169:215-223
    
    [71]Lynch JP. Root architecture and plant productivity [J]. Plant Physiologists, 1995,109:7-13
    [72]Pregitzer KS, Kubiske ME, Yu CK and Hendrick RL. Relationships among Root Branch Order, Carbon, and Nitrogen in Four Temperate Species [J]. Oecologia, 1997,111:302-308
    [73]Bauhus J and Messier C. Soil Exploitation Strategies of Fine Roots in Different Tree Species of the Southern Boreal Forest of Eastern Canada [J]. Canadian Journal of Forest Research, 1999, 29(2):260-273
    [74]Mou P, Mitchell RJ and Jones RH. Root Distribution of Two Tree Species under a Heterogeneous Environment. Journal of Applied Ecology, 1997, 34:645-656
    [75]Schiefelbein JW and Benfy PN. The Development of Plant Root: New Approaches to Underground Problem [J]. Plant Cell, 1991, 3:1147-1154
    [76]Hutchings MJ and Kroon De, Foraging H. in Plants: the Role of Morphological Plasticity in Resource Acquisition [J]. Advances in Ecological Research, 1994, 25:159-238
    [77]Williamson LC, Ribrioux SPCP, Fitter AH and Leyser HMO. Phosphate Availability Regulates Root System Architecture in Arbidopsis [J]. Plant Physiologists, 2001, 126(2):875-882
    [78]Thaler P and Pages L. Modeling the Influence of Assimilate Availability on Root Growth and Architecture [J]. Plant and Soil, 1998,201:307-320
    [79]Jackson RB and Caldwell MM. The Scale of Nutrient Heterogeneity Around Individual Plants & its Quantification with Geostatistics [J]. Ecology, 1993, 74: 612-614
    [80]Gross KL, Pregitzer KS and Burton AJ. Spatial Variation in Nitrogen Availability in three Successional Plant Communities [J]. Journal of Ecology, 1995, 83:357-368
    [81]Farley RA and Fitter AH. The response of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches [J]. Journal of Ecolopy, 1999, 87: 688-697
    [82]Cain ML, Subler S, Evans JP and Fortin MJ. Sampling Spatial and Temporal Variation in Soil Nitrogen Availability [J]. Oecologia, 1999,118:397-404
    
    [83]Hutchings MJ. Differential foraging for resources at structural plasticity in plants [J]. Trends in Ecology and Evolution, 1988,3:200-204
    [84]Campbell BD, Grime JP and Mackey JML. A trade-off between Scale and Precision in Resource Foraging [J]. Oecologia, 1991, 87:532-538
    [85]Mordelet P, Barot S and Abbadie L. Root foraging stratigies and soil patchiness in a humid savanna [J]. Plant and soil, 1996,182:171-176
    
    [86]Jackson RB and Caldwell MM. Integrating Resource Heterogeneity and Plant Plasticity: Modelling Nitrate & Phosphate Uptake in a Patch Soil Environment [J]. Journal Ecology, 1996, 84:891-903
    [87]Robinson D. Resource Capture by Localized Root Proliferation: Why do Plants Bother? [J].Annals of Botany, 1996,77:179-185
    
    [88]Einsmann JC, Jones RH, Mou P and Mitchell RJ. Nutrient Foraging Traits in 10 Cooccuring Plant Species of Contrasting Life Forms [J]. Journal of Ecology, 1999, 87:609- 619
    
    [89]Wijesinghe DK and Hutchings MJ. The Effects of Spatial Scale of Environmental Heterogeneity on the Growth of a Clonal Plant: An Experimental Study with Glechoma Hederacea [J]. Journal Ecology, 1997, 85:17-28
    
    [90]Fransen B, Kroon de H and Berendse F. Root Morphological Plasticity and Nutrient Acquisition of Perennial Grass Species from Habitats of Different Nutrient Availability [J]. Oecologia, 1998,115:351-358
    [91]Berntson GM. Modeling root architecture: Are There Tradeoffs between Efficiency and Potential of Acquisition? [J]. New Phytologist, 1994,127:483-493
    
    [92]Robinson D. The Responses of Plants to Non-uniform Supplies of Nutrients [J]. New Phytologist, 1994,127: 635-674
    
    [93] 黄建辉,韩兴国,陈灵芝. 森林生态系统根系生物量研究进展[J]. 生态学报, 1999, 19(2):270-277
    [94]张小全,吴可红,Murach D.树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883
    [95]王政权,张彦东.水曲柳落叶松根系之间相互作用研究[J].植物生态学报,2000,4(3):346-350
    [96]王庆成,程云环.土壤养分空间异质性与植物根系的觅食反应[J].应用生态学报,2004,15(6):1063-1068
    [97]翟明普.北京西山地区油松元宝枫混交林根系的研究[J].北京林学院学报,1982,4(1):1-11
    [98]刘春江.北京西山地区人工油松栓皮栎混交林根系研究初报[J].北京林学院学报,1985,7(1):77-84
    [99]李振问,杨玉盛,吴擢溪,赖仕嶂.杉木火力楠混交林根系的研究.生态学杂志,1993,12(1):20-24
    [100]韩有志,梁胜发.华北落叶松人工林根系分布及根系生物量研究[J].山西林业科技,1997,3:36-40
    [101]季永华,张纪林,卢义山,韦晓云.河堤防护林带树木根系形态特征的研究[J].南京林业大学学报,1998,22(3):31-34
    [102]单建平,陶大立,王淼,赵士洞.长白山阔叶红松林细根周转的研究[J].应用生态学报,1993,4(3):241-245
    [103]廖利平,陈楚莹,张家武,高洪.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7-10
    [104]廖利平,邓仕坚,于小军,韩士杰.不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征[J].生态学报,2001,21(4):569-573
    [105]廖利平,杨跃军,汪思龙,高洪.杉木(Cunninghamia lanceolata)、火力楠(Michelia macclurei)纯林及其混交林细根分布、分解与养分归还[J].生态学报,1999,19(3):342-346
    [106]林益明,林鹏,扬志伟.绿竹林细根周转的研究[J].厦门大学学报(自然科学版),1998,37:429-435
    [107]温达志,魏平,孔国辉,叶万辉.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报,1999,23:361-369
    [108]王政权,张彦东,王庆成.水曲柳幼苗根系对土壤养分和水分空间异质性的反应[J].植物研究,1999,19:329-334
    [109]张彦东,白尚斌,刘雪峰,王政权.磷胁迫条件下落叶松幼苗对难溶性磷的利用.应用生态学报[J],2000,11(5):668-670
    [110]陈金林,许新健,姜志林,张武兆,张井义,贾永正.空青山次生栎林细根周转[J].南京林业大学学报,1999,23(1):6-10
    [111]李凌浩,林鹏,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报,1998,9(4):337-340
    [112]杨丽韫,李文华.长白山原始阔叶红松林细根分布及其周转的研究[J].北京林业大学学报,2005,27(2):1-5
    [113]杨玉盛,陈光水,何宗明,陈银秀,谢锦升.杉木观光木混交林群落细根净生产力及周转[J].林业科学,2001,37(1):35-41
    [114]杨玉盛,陈光水,何宗明,陈银秀,黄荣珍.杉木观光木混交林细根的分布[J].热带亚热带植物学报,2002,10(2):111-117
    [115]梅莉,王政权,程云环,郭大立.林木细根寿命及其影响因子研究进展[J].植物生态学报,2004,28(4):704-710
    [116]张秀娟,梅莉,王政权,韩有志.细根分解研究及其存在的问题[J].植物学通报,2005,22(2):246-254
    [117]张福锁,申建波,根际微生态系统理论框架的初步构建[J].中国农业科技导报,1999,1(4):15-20
    [118]马元喜,王晨阳,贺德先.中国农业栽培植物根系研究史料[J].河南农业大学学报,1994,28(4),332-338
    [119]廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异[J].植物学报,2000,42(2):158-163
    [120]史正军,樊小林.水稻根系生长及根构型对氮素供应的适应性变化[J].西北农林科技大学学报(自然科学版),2002,30(6):1-6
    [121]樊小林,史正军,吴平.水、肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林科技大学学报(自然科学版),2002,30(2):1-5
    [122]王向荣.曲柳和落叶松细根构型研究[D].东北林业大学硕士论文,2005:2-42
    [123]徐文静,王政权,范志强,孙海龙,贾淑霞,吴楚.遮荫对水曲柳幼苗细根衰老的影响[J].植物生态学报.2006,30(1):104-111
    [124]王庆成,张彦东,王政权.微立地土壤水分--物理性质差异及对水曲柳幼林生长的影响[J].应用生态学报,2001,12(3):335-338
    [125]张彦东,白尚斌,王政权.混交条件下水曲柳落叶松根系的生长与分布[J].林业科学,2001,5:16-23
    [126]韩有志,王政权,谷加存.林分光照空间异质性对水曲柳更新的影响[J].植物生态学报,2004,28(4):468-475
    [127]范志强,王政权吴楚,李红心.不同供氮水平对水曲柳苗木生物量、氮分配及其季节变化的影响[J].应用生态学报,2004,15(9):1497-1501
    [128]吴楚,王政权,范志强,孙海龙.不同氮浓度和形态比例对水曲柳叶绿素合成、光合作用及生物量分配的影响[J].植物生态学报,2003,27(6):771-779
    [129]吴楚,王政权,范志强,孙海龙.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分 配的影响[J].应用生态学报,2004,15(11):2034-2038
    [130]范志强,王政权,吴楚,孙海龙,徐文静,霍常富.水曲柳苗木根系和叶片氮的分配及对生物量的影响[J].中国农业通报,2008,24(1):45-51
    [131]范志强.氮磷营养及氮形态对水曲柳幼苗生长和生理的影响机制[D].东北林业大学博士论文,2004
    [132]孙海龙.氮磷营养对水曲柳苗木光合作用和氮同化的影响[D].东北林业大学硕士论文,2005
    [133]Lambers H,Freijsen N,Poorter H et al.Analysis of growth based on net assimilation rate and nitrogen productivity their physiological background.In:Lambers H,Cambridge ML,Konings,Pons TL,eds.Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants.The Hague,the Netherlands:SPB Academic Publishing[M],1990,1-18
    [134]Eckstein RL,Karlsson PS.Variation in nitrogen-use efficiency among and within subarctic graminoids and herbs[J].New Phytol,2001,150:641-651
    [135]Poorter H,Nagel O.The role of biomass allocation in the growth response of plants to different levels of light,CO_2,nutrients and water:A quantitative review[J].Aust J Plant Physiol,2000,27:595-607
    [136]Steponkus PL,Lanphear FO.Refinement of the triphenyl tetrazolium chloride method of determining cold injury[J].Plant physiology,1967,42:1423-1426
    [137]Louise,comas,Davidm,essenstant and /Mann.Lakso Assessing root death and root system dynamics in a study of grape canopy pruning[J].New phytologist,2000,147,171-178
    [138]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,261-263
    [139]De Pinheiro Henriques AR,Marcells LFM.Regulation of growth at steady-state nitrogen nutrition in Lettuce(Lactuca sativa L.):interactive effects of nitrogen andirradiance[J].Annals of Botany,2000,86:1073-1080
    [140]King JS,Thomas RB,Strain BR.Morphology and tissue quality of seeding root systems of Pinus teada and Pinus ponderosa as affected by varying CO_2,temperature,and nitrogen [J].Plant and soil,1997,195:107-119
    [141]Jose S,Merritt S,Ramsey CL.Growth,nutrition,photosynthesis and transpiration responses of longleaf pine seedlings to light,water and nitrogen[J].Forest Ecology and Management,2003,180:335-344
    [142]Lachandran S,Osmond CB.Susceptibility of tobacco leaves to photo inhibition following infection with two strains of tobacco mosaic virus under different light and nitrogen nutrition regimes[J].Plant Physiology,1994,04:1051-57
    [143]Hodge A.The plastic plant:root responses to heterogeneous supplies of nutrients[J]. New Phytologist,2004,162:9-24
    [144]Hodge A,Stewart J,Robinson D,Griffiths BS,Fitter AH.Spatial and physical heterogeneity of N supply from soil does not influence N capture by two grass species[J].Functional Ecology,2000,14:645-653
    [145]Agren GI,Ingestad T.Root:shoot ratio as balance between nitrogen productivity and photosynthesis[J].Plant Cell and Environment,1987,1(10):579-586
    [146]郑圣先,聂军,戴平安等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194
    [147]刘建军.秦岭油松、锐齿栎根系生态研究.西安:西北大学出版社[M],2002,36-67
    [148]刘建军.林木根系生态研究综述[J].西北林学院学报,1998,13(3):74-78
    [149]Eissenstat DM.On the relationship between specific root length and the rate of root proliferation:A field study using citrus rootstocks[J].New Phytologist,1991,118,63-68
    [150]Ingestad T and Agren GL.The influence of plant nutrition on biomass allocation[J].Ecology Appl,1991,1:168
    [151]Kranse GH et al[J].Photosynthesis Reseach,1984,5:139-157
    [152]Ibrahim L,Proe MF,Cameron AD.Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in popular[J].Tree Physiology,1998,18:481-487
    [153]任书杰,张雷明,张岁岐,上官周平.氮素营养对小麦根冠协调生长的调控[J].西北植物学报,2003,23(3):395-400
    [154]Bilbrough CA,Caldwell MM.The effects of shading and N status on root proliferation in nutrient patches by the perennial grass Agropyron desertorum in the field[J].Oecologia,1995,103:10-16.
    [155]王启现,王璞,杨相勇,翟志席,王秀玲,申丽霞.不同施氮时期对玉米根系分布及其活性的影响[J].中国农业科学,2003,36(12):1469-1475
    [156]Burton AJ,Pregitzer KS,Hendrick RL.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J].Oecologia,2000,125(3):389-399.
    [157]于水强,王政权,史建伟,全先奎,梅莉,孙玥,贾淑霞,于立忠.水曲柳和落叶松细根寿命的估计[J].植物生态学报,2007,31(1):102-109
    [158]Wells CE,Eissenstat DM.Marked differences in survivorship among apple roots of different diameters[J].Ecology,2001,82:882-892
    [159]Baddeley JA,Watson CA.Influences of root diameter,tree age,soil depth and season on fine root survivorship in Prunus avium[J].Plant and Soil,2005,276:15-22
    [160]Gordon WS,Jackson RB.Nutrient concentrations in fine roots[J].Ecology,2000,81(1):275-280
    [161]霍常富.光氮对水曲柳苗木生长、光合作用及碳氮代谢的影响.东北林业大学硕士论文[D],2007,pp.13-19
    [162]Fitter AH.Characteristics and functions of root systems.In:Waisel Y,Eshel E,Kafkafi U eds.Plant Roots:the Hidden Half.Second edition.Dekker New York USA[M],1996,1-20
    [163]Koch KE.Carbohydrate-modulated gene expression in plants[J].Ann Rev Plant Physoil and Plant Mol Biol,1996,47:509-540
    [164]Van den Ende W,de Roover J and Van Laere A.Effect of nitrogen concentration on fructan and fructan metabolizing enzymes in young chicory plants(Cichorium intybus)[J].Physiologia Plantarum,1999,105:2-8
    [165]Loewe R and Freeman J.Interpreting diabetes mellitus:Differences between patient and provider models of disease and their implications for clinical practice[J].Culture,Medicine and Psychiatry,2000,24:379-401
    [166]Fischer C and H(o|¨)ll W.Food Reserves of Scots Pine(Pinus sylvestris L.) I.Seasonal Changes in the Carbohydrate and Fat Reserve of Pine Needles[J].Trees,1991,5:187-195
    [167]Gregory RA and Wargo PM.Timing of Defoliation and Its Effect on Bud Development,Starch Reserves,and Sap Sugar Concentration in Sugar Maple[J].Canadian Journal of Forest Research,1986,16:10-17
    [168]Loescher WH,McCamant T and Keller JD.Carbohydrate Reserve,Translocation and Storage in Woody Plant Roots[J].HortScience,1990,25:274-281
    [169]Johansson T.Seasonal Changes in Contents of Root Starch and Soluble Carbohydrates in 4-6-Year-Old Betula Pubescens and Populus Tremula[J].Scand Journal Forest Research,1993,8:94-106
    [170]Livonen S,Rikala R,Vapaavuori E.Seasonal root growth of Scots pine seedlings in relation to shoot phenology,Carbohydrate status and nutrient supply[J].Canadian Journal of Forest Research,2001,31:1569-1578
    [171]Burton A J,Pregitzer KS,Zogg GP et al.Latitudinal variation in sugar maple fine root respiration[J].Canadian Journal of Forest Research,1996,26:1761-1768
    [172]Li MH,Hoch G and K6rner C.Source/sink Removal Affects Mobile Carbohydrates in Pinus Cembraat the Swiss Treeline[J].Trees,2002,16:331-337
    [173]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):806-812
    [174]Grechi I,Vivin P,Hilbert G,Milin S,Robert T,Gaudilere JP.Efect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine[J].Environmental and Experimental Botany,2007,59:139-149
    [175]Paul MJ,Stitt M.Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates,respiratory enzymes and metabolites in seedlings of tobacco and their responses to exogenous sucrose[J].Plant Cell and Environment,1993,16:1047-1057
    [176]Freeden AL,Rao IM,Terry N.Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max[J].Plant Physiology,1989,89:225-230
    [177]Rufty TW,Huber SC,Volk RJ.Alterations in leaf carbohydrate metabolism in response to nitrogen stress[J],Plant Physiology.1988,88:725-736
    [178]关义新,马兴林,凌碧莹.种植密度与施氮水平对高淀粉玉米郑单18淀粉含量的影响[J],玉米科学.2004,12:101-103
    [179]白宝璋.植物生理学.北京:中国农业科技出版社[M],1996,12-30
    [180]Gregory RA and PM Wargo.Timing of Defoliation and Its Effect on Bud Development,Starch Reserves and Sap Sugar Concentration in Sugar Maple[J].Canadian Journal of Forest Research,1986,16:10-17
    [181]Loescher WH,McCamant T and Keller JD.Carbohydrate Reserve,Translocation and Storage in Woody Plant Roots[J].HortScience,1990,25:274-281
    [182]Johansson T.Seasonal Changes in Contents of Root Starch and Soluble Carbohydrates in 4-6-Year-Old Betula Pubescens and Populus Tremula[J].Scand Journal of Forest Research,1993,8:94-106
    [183]魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究[J].应用生态学报,2004,15(9):1565-1569
    [184]Ambler JR,Morgan.PW,Jordan WR.Amounts of zeatin and zeatin riboside in xylem sap of senescent and nonsenescent sorghum[J].Crop Science,1992,32:411-419
    [185]Bloomfield J,Vogt K,Wargo PM.Tree root turnover and senescence.In:Waisel Y,Eshel A,Kafkaf U,eds,Plant Roots:the hidden half,2nd,ed.New York,Naarcel Dekker[M],1996,363-381.
    [186]H(o|¨)gberg P,Nordgren A,Buchmann N,Taylor AFS,Ekblad A,H(o|¨)gberg MN,Nygerg G,Ottosson-L(o|¨)venius,Read DJ.Large-scale forest girdling shows that current photosynthesis drives soil respiration[J].Nature,2001,411:789-792.
    [187]徐文静.遮阴对水曲柳苗木细根衰老的影响.东北林业大学硕士论文[D],2005,pp.17-18
    [188]黄健,唐学玺,宫相忠,李永祺.低浓度毒物对海洋微藻生长刺激效应的初步研究[J].应用生态学报,2002,13(11):1516-1518.
    [189]潘瑞炽,董愚得.植物生理学(第三版).北京:高等教育出版社[M],1995,319-320
    [190]宋纯鹏.植物衰老生物学.北京:北京大学出版社[M],2001,23-57