节水抗旱种衣剂对冬小麦生理调节作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是小麦生产和获得丰收的主要限制因素,化学节水技术对防旱抗旱具有一定的效果。本文研究的目的在于通过节水抗旱种衣剂在冬小麦不同抗旱性品种间的应用实验,从形态、生理等角度出发,在借鉴现有研究成果的基础上,运用植被生态学、植物生理生态学、农业生态学的研究方法,探讨其对冬小麦抗旱形态及生理指标的影响以及冬小麦不同品种间抗旱能力强弱的表现特征,为高新生物技术在干旱地区农业生产上的推广应用提供科学依据和理论基础。
     实验处理方法是对冬小麦种子进行人工包衣(大面积时可采用机械包衣),而后进行田间和盆栽试验。实验测定指标包括出苗率、生物量和根茎长、产量、光合作用、根系活力以及叶中ABA含量。实验结论如下:
     1、节水抗旱种衣剂能提高小麦种子的出苗率,提高的幅度在2-10个百分点,保苗效果好,促使麦苗生长,有利于形成冬前壮苗。
     2、节水抗旱种衣剂对幼苗根、茎、叶的生长有促进作用,包衣处理的单株地上部分、地下部分及其鲜重和干重都高于对照。抗旱性强的品种比抗旱性弱的品种有较长的根长和较高的根干重,这种差异可能是由冬小麦品种的不同抗旱能力决定的。
     3、节水抗旱种衣剂能使小麦产量构成因素变优,经方差分析,包衣与不包衣间的增产效果达到显著水平。
     4、节水抗旱种衣剂能有效提高冬小麦的根系活力,使得作物在干旱条件下
    
    能更加充分地吸收和利用有限的水分,抗旱性较强的冬小麦品种能维持较强的
    根系活力。
     5、节水抗早种衣剂能有效降低作物的蒸腾作用,抗旱品种比普通品种有着
    较低的蒸腾速率和气孔导度。
     6、节水抗旱种衣剂处理后的冬小麦叶中ABA的含量明显提高,在越冬期表
    现的尤为明显,说明包衣能提高冬小麦的防寒御寒能力。抗旱性不同的冬小麦
    品种累积ABA的能力是不同的,一般而言,抗旱性强的小麦品种比抗旱性弱的
    品种累积更多的ABA。
Drought is one of limited factors for wheat output and good harvest. Chemical water saving technology has positive effect on drought-precaution and drought-resistance. In this paper, on the basis of other researches, we experiment how water saving and drought-resistance seed coating vary among different types of winter wheat and attempt to discuss its effect on morphological or physiological indexes of winter wheat.
    Method: coating artificially the wheat seeds (or mechanically), then proceeding with field test and pot plant test. Determination indices include the rate of seedling, biomass, root and stem length, output, root vigor, and the ABA contents in the leaves. The results as follows:
    1. water saving and drought-resistance seed c oating c an heighten the rate of seedling by 2 to 10 percentage.
    2. water saving and drought-resistance seed coating can promote the growth of root, stalk and leaf of seedling. The wet weight and dry weight of root and shoot of treated types with seed coating are higher than no seed coating types. And the higher drought resistance varieties have longer root length and higher root dry weight, which depend on the ability of drought- resistance.
    
    3. water saving and drought-resistance seed coating could optimize wheat output composition. According to variance analysis, both coating seed and no coating seed are different significantly, and the drought variety is more significant.
    4. water saving and drought-resistance seed coating can enhance the root vigor of winter wheat, absorbing adequately and using limited water under drought condition, the higher drought resistance winter wheat varieties may sustain higher root vigor.
    5. water saving and drought-resistance seed coating can decrease crop transpiration efficiently. Drought-resistance varieties have lower transpiration rate and stomatal conductance.
    6. ABA contents in the leaves of winter wheat with seed coating increase significantly, especially during the course of winter. Shows seed coating can enhance drought-precaution and drought-resistance of winter wheat. The higher drought-resistance varieties can accumulate more ABA contents than the lower.
引文
[1] 汤章城,Ⅰ植物对水分胁迫的反应和适应性,Ⅱ植物对干旱的反应和适应性,植物生理通讯,1983,(4):1~7
    [2] 黎裕,作物抗旱鉴定方法与指标,干旱地区农业研究,1993,11(1):91~100
    [3] 王玮、邹琦,作物抗旱性鉴定研究进展,山东科学技术出版社,1994,30-33
    [4] 上官周平、陈培元,土壤干旱对小麦叶片渗透调节和光合作用的影响,华北农学报,1989,4(4):44~49
    [5] 卫云宗、张定一等,冬小麦不同品种类型生长动态分析,麦类作物学报,2000,20(4):59-62
    [6] 周桂莲、杨慧霞,小麦抗旱性鉴定的生理生化指标及其分析评价,干旱地区农业研究,1996,14(2):65-71
    [7] 丁静等,植物内源激素的提取方法[J],植物生理学通讯,1979(2):27-39.
    [8] 于世林编著,高效液相色谱方法及应用,北京:化学工业出版社,1999
    [9] 刘祖琪、张百城等主编,植物抗性生理学,北京:中国农业出版社1994,84-123.
    [10] 王韶唐主编,植物生理学实验指导,西安:陕西科技出版社,1986:35-36,148-151
    [11] 陈雪梅、王沙生等,HPLC法定量分析植物组织中ABA、IAA和NAA,植物生理学通讯,1992,28(5):368-371
    [12] 杨红等,麦草敌的高效液相色谱分析,色谱,1997,15(3):266-267
    [13] 李玲,干旱条件下植物ABA积累对脯氨酸水平的影响,植物学通报1991:8(2):21-24
    [14] 丁静等,棉花幼龄发育过程中内源激素水平的变化及赤霉素对它的影响,植物生理学报,1980,6(4):407-417
    [15] 沈镇德等,应用赤霉素防止棉铃脱落(简报),植物生理学通讯,1966(4):5-7
    [16] 袁宝玉、付国占等,小麦品种抗旱性鉴定方法比较研究,1998,16(4):98-102
    [17] 袁晓华,杨中汉主编,植物生理生化实验,北京:高等教育出版社,1983
    [18] 王月福、于振文等,水分胁迫对耐旱性不同小麦籽粒发育和激素含量的影响,麦类作物,1999,19(1):49-51
    [19] 石岩、于振文等,土壤水分胁迫对小麦衰老过程中脱落酸和细胞分裂素(iPAs)含量的影响(简报),植物生理学通讯,1998,34(1):32-34
    [20] 朱利泉主编,生物化学研究技术,北京:中国农业出版社,1995
    
    
    [21] 邹琦主编,植物生理生化实验指导,西安:陕西科学技术出版社,1994
    [22] 吴颂如等,酶联免疫法(ELISA)测定内源植物激素,植物生理学通讯,1988(5),53-57
    [23] 王玮、邹琦等,渗透调节对不同抗旱性小麦品种胚芽鞘生长的影响[J],植物生理学通讯,1997,33(3):168-171
    [24] 兰彦平、许雪峰等,反相高效液相色谱法测定平邑甜茶植株内源ABA、IAA含量,生物技术,2000,10(6):43-45
    [25] 董振国、于沪宁主编,农田作物层生态环境[C],北京:中国农业出版社,1994,370-417
    [26] 马兴林等,冬小麦分蘖衰亡过程中内源激素作用的研究[J],作物学报,1997,23(2):200-207
    [27] 马庆虎、谭志一等,简评植物激素的几种测定方法,植物生理学通讯,1987(1):7-11
    [28] 张永强、姜杰,水分胁迫对冬小麦叶片水分生理生态过程的影响,干旱区研究,2001,18(1):57-61
    [29] 李宗霆、周燮等,植物激素及其免疫检测技术[M],江苏科学出版社,1996,137-151
    [30] 石元春、刘昌明主编,节水农业应用基础研究进展[C],北京:中国农业出版社,1995,89-99
    [31] 魏良明、贾了然等,玉米抗旱性生理生化研究进展,干旱地区农业研究,1997,15(4):66-71
    [32] 张福锁主编,环境胁迫与植物营养,北京:北京农业大学出版社,1993:71-100
    [33] 周昕译,玉米叶片ABA合成的遗传特征对快速干旱胁迫及田间条件的反应,国外农学:杂粮作物,1993,4:12-14
    [34] 谈锋,植物激素的高效液相色谱,植物生理学通讯,1986(5):15-23
    [35] 李妮亚、高俊风,水分胁迫对抗旱性不同的冬小麦幼芽蛋白质的影响,干旱地区农业研究,1997,15(1):85-90
    [36] 程炳蒿主编,植物生理与农业研究,北京:中国农业科技出版社,1995:332-337
    [37] 王霞、侯平,植物对干旱胁迫的适应机理,干旱区研究,2001,18(2):42-46
    [38] 李德全等,土壤干旱下不同小麦品种的渗透调节和渗透调节物质[J],植物生理学报,1992,18(1):37-44
    [39] 高爱丽等,水分胁迫下小麦叶片渗透调节与抗旱性的关系[J],西北植物学报,1991,11(1):58-63
    [40] 贺继临、刘鸿先等,干旱胁迫下不同抗旱性小麦叶片内源激素含量的变化与抗旱力强弱的关系,热带亚热带植物学报,1998,6(4):341-346
    
    
    [41] 李德全、邹琦、程炳蒿等,冬小麦抗旱生理特性的研究,作物学报,1993,19(2):125-132
    [42] 付蕾、王明珠,苹果幼树梢尖3-吲哚乙酸、赤霉素和脱落酸的高效液相色谱测定法的研究,山东农业大学学报,1999,30(4):445-447
    [43] 吴耕西、毕桂红,高效液相色谱法测定苹果叶片中的吲哚乙酸和脱落酸,山东农业大学学报,1994,25(1):51-55
    [44] 包其富,反相高效液相色谱法测定植物组织中的脱落酸,色谱,1988,6(6):357-359
    [45] 沈镇德、邵大森、丁静等,用高效液相色谱测定细胞分裂素,植物生理学通讯,1984,5:45-48
    [46] 许旭旦等,ABA等内源激素与植物的抗旱性,植物生理学通讯:1998,23(1),1-8
    [47] 周燮、夏凯,脱落酸的生物合成、代谢与作用机理,植物生理与分子生物学(第二版),中国科学院研究生教育丛书,科学出版社,1998,476-491
    [48] 袁少敏、郑本亨等,脱落酸的提纯和测定方法的研究,华南师范大学学报(自然科学版),1990,1:57-60
    [49] 冯广龙、罗远培等,不同水分条件下冬小麦根与冠生长及功能间的动态消长关系,干旱地区农业研究,1997,15(2):73-79
    [50] 张林刚、邓西平,小麦抗旱性生理生化研究进展,干旱地区农业研究,2000,18(3):87-92
    [51] 王环、胡荣海、昌小平,水分胁迫下小麦地上部和地下部的反应及其抗旱性研究,西北植物学报,1996年,16(2):107-115
    [52] 曹敏、薛永常、李云荫,不同抗旱性的冬小麦幼苗中脱落酸和细胞分裂素含量的变化,见:赵可夫主编,植物抗性生理研究,济南:山东科学技术出版社,1991
    [53] 赵世伟、管秀娟等,不同生育期干旱对冬小麦产量及水分利用效率的影响,灌溉排水,2001,20(4):56-59
    [54] 陈立松、刘星辉,作物抗旱鉴定指标的种类及其综合评价,福建农业大学学报,1997,26(1):48~55
    [55] 刘桂茹、张荣芝、卢建祥等,冬小麦抗旱鉴定指标的研究,华北农学报,1996,11(4):84~88
    [56] 刘友良,植物水分逆境生理,北京:农业出版社,1992
    [57] 刘祖祺主编,植物抗性生理学,第一版,北京:中国农业出版社,1994
    [58] 吕德彬、杨建平、李莲芝等,水分胁迫下不同小麦品种抗性反应与产量表现的相关研究,河南农业大学学报,1998,28(3):231~235
    
    
    [59] 余叔文、汤章城主编,植物生理与分子生物学,第二版,北京:科学出版社,1998
    [60] 赵可夫、王韶唐,作物抗性生理,北京:农业出版社,1990
    [61] 张正斌、山仑,作物抗性生理性状遗传研究进展,科学通报,1998,43(17):1812-1817
    [62] 丁雷、王学臣,干旱胁迫下ABA对气孔运动的作用机制,干旱地区农业研究,1993,11(2):50~56
    [63] 郭卫东、沈向、李嘉瑞等,植物抗旱分子机理,西北农业大学学报,1999,27(4):102~108
    [64] 贾文锁、王学臣、张蜀秋等,水分胁迫下ABA由蚕豆根向地上部运输及其在叶片组织中的分布,植物生理学报,1996,22(4):363~367
    [65] 蒋明义、荆家海,根源ABA与土壤水分亏缺的传感,植物生理学通讯,1993,29(3):205~209
    [66] 梁建生、张建华,根系逆境信号ABA的产生和运输及其生理作用,植物生理学通讯,1998,34(5):329~338
    [67] 潘瑞炽、李玲,植物生长发育的化学调控,广州:广东高等教育出版社,1995
    [68] 石岩、于振文、位东斌等,土壤水分胁迫对小麦衰老过程中脱落酸和细胞分裂素(iPAs)含量的影响(简报),植物生理学通讯,1998,34(1):32~34
    [69] 宋松泉、王彦荣,植物对干旱胁迫的分子反应,应用生态学报,2002,13(8):1037-1044
    [70] 杨建昌、乔纳圣·威尔斯、朱庆森等,水分胁迫对水稻叶片气孔频率、气孔导度及脱落酸含量的影响,作物学报,1995,21:533~539
    [71] 张存浩、李杰芬,水分胁迫对小麦幼苗激素水平的影响,北京师范大学学报,1991,27(1):82~86
    [72] 康书江、赵春江、杨宝祝,小麦内源激素脱落酸研究进展,麦类作物,1997,3:47~51
    [73] 卢振民、熊勤学,冬小麦根系各种参数垂直分布实验研究[J],应用生态学报,1991,2(2):127
    [74] 李德全、郭清福、张以勤等,冬小麦抗旱生理特性的研究[J],作物学报,1993,19(2):125
    [75] Takahashi Nobutaka. Chemistry of plant hormone. CRC Press, Inc. 1986
    [76] 李合生主编,植物生理生化实验原理和技术,高等教育出版社,2000
    [77] 李广敏、关军锋主编,作物抗旱生理节水技术研究,气象出版社,2001
    [78] 柳小妮,ABA等生理指标在不同胁迫下的变化及其与早熟禾抗逆性关系的研究,硕士学位论文,1999
    [79] 崔读昌主编,世界农业气候与作物气候,浙江科学技术出版社,1994
    
    
    [80] 刘殿英、黄炳茹、董庆裕,土壤水分对冬小麦根系的影响,山东农业大学学报,1991;22(2):102-110
    [81] 林炳承、邹雄、韩培祯,高效液相色谱在生命科学中的应用,山东科学技术出版社,1996
    [82] 宋炳煜、李燕红、颜铭,锡林河流域羊草草原的植物蒸腾特点及其群落水分利用的初步研究,草原生态系统研究(第1集),中国科学院内蒙古草原生态系统定位研究站编,北京:科学出版社1985
    [83] 李秉真、易津等,高效液相色谱测定休眠的羊草种子中脱落酸的含量,色谱,1992,10:123
    [84] 任建宏,水分胁迫下不同抗旱性小麦品种根中蛋白质代谢的差异,麦类作物学报,2001,21(3):90-92
    [85] 李玉中、程延年、安顺清编著,北方地区干旱规律及抗旱综合技术,中国农业科学技术出版社,2003
    [86] 西北农业大学农业水土工程研究所、农业部农业水土工程重点开放实验室主编,西北地区农业节水与水资源持续利用,中国农业出版社,1999
    [87] 杨持编著,内蒙古自治区生命科学教材编委会组编,生物统计学,内蒙古大学出版社,1996
    [88] 李育中、王炜、裴浩等译,Jhon A.拉德维格[澳]、James F.蓝诺兹等著,统计生态学—方法和计算入门,内蒙古大学出版社,1990
    [89] 梁杰,喷施抗旱剂对小麦抗旱增产的研究[J],吉林农业科学,2000,25(2):41-44
    [90] 孙洪波,新型抗旱剂对小麦增产原因的分析[J],山东师范大学学报,2000,15(1):73-76
    [91] 张宪政,MI增产素对小麦抗旱增产生理效应初报[J],沈阳农业大学学报,1992,(1):59-60
    [92] 罗文新等,植物生长抑制物质对小麦抗旱性的影响[J],干旱地区农业研究,1992,14(1):32-36
    [93] 信乃诠等主编,中国北方早区农业研究,中国农业出版社,2002
    [94] 孙儒冰、李博等,普通生态学,高等教育出版社,1993
    [95] 郑大玮、张波主编,农业灾害学,中国农业出版社,2000
    [96] 纵瑞收、邹芳刚等,种子包衣剂在小麦上的应用研究,种子,2001,5:52-53
    [97] 邹琦主编,作物抗旱生理生态研究,山东科学技术出版社,1994
    [98] 邹琦、李德全主编,作物栽培生理研究,中国农业科技出版社,1998
    [99] 高爱丽、赵秀梅、秦鑫,水分胁迫下小麦叶片渗透调节与抗旱性的关系[J],西北植物学
    
    报,1991,11(1):58-64
    [100] 上官周平、陈培元,不同抗旱性小麦品种渗透调节的研究[J],干旱地区农业研究,1991,9(4)60-63
    [101] 周桂莲、杨慧霞,小麦抗旱性鉴定的生理生化指标及其分析评价[J],干旱地区农业研究,1996,14(2):65-71
    [102] 张维强、沈秀瑛,水分胁迫和复水对玉米叶片光合速率的影响,华北农学报,19949(3):44-47
    [103] 王畅、林秋萍、贡冬花等,夏玉米的干旱适应性及其生理机制的研究,华北农学报,1990,5(4):54-60
    [104] 胡荣海,农作物抗旱鉴定方法和指标,作物品种资源,1986,(4):36-38
    [105] 张雄,用“TTC”法(红四氮唑)测定小麦根和花粉的活力及其应用,植物生理学通讯,1982(3):48-50
    [106] 徐孟亮、姜孝成等,干旱对水稻根系活力与结实性状的影响,湖南师范大学自然科学学报,1998,21(3):64-68
    [107] 潘庆民、于振文、王月福等,小麦开花后iPA和ABA含量的变化及与旗叶光合、根系活力和籽粒灌浆的关系,西北植物学报,2000,20(5):733-738
    [108] A.Rodrigiguez and R.Sanchez Tames,Analysis of 3-indolylacetic acid and abscisic acid by high performance liquid chromatography and gas liquid chromatography, Analytical Biochemistry 1985,146:184-190
    [109] A.T.Andrews.Electrophoresis,Theory, Techniques and Biochemical and Clinical Applications.Clarendon Press Oxford, 1981
    [110] Assmann SM.Ins and outs of guard cell ABA reception. Plant Cell, 1994,6:1187-1190
    [111] Bakhtenko-E-Yu.Platonov-AV. The effect of abscisic acid on the growth rates and flooding resistance of wheat and oat plants. Russian Agricultural-Sciences. 1998,publ. 1999,No.7,5-8
    [112] Blant,M.R.Potassium channel currents in intact stomatal guard cell:rapid enhancement by abscisie acid.Planta 1990,180:445-455
    [113] Blum A.Plant under stress (eds.Jones H G et al.), Cambridge University Press, Cambridge, 1989:197-255
    [114] Colorado P, Rodriguez A, Nicolas G, et al., Abscisic acid and stress regulate gene expression during germination of chick-pea seeds, Possible role of calcium, Physiol Plant, 1994,83:457-462
    [115] Creelman R A, Mason H S, Bensen R J, et al., Water defict and abscisic acid cause differential
    
    inhibition of shoot versus root growth in soybean seedings, Plant Physiol, 1990,92:205-214
    [116] Davies W J, Zhang J, Root signals and regulation o fgrowth and development of plants in drying soil, Ann Rev Plant Physiol Plant Mol Biol, 1991,42:55-76
    [117] Davies, P. J. (1995). Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer.
    [118] Davison RM,Young H. Abscisic acid content of xylem sap.Planta, 1973,109:95-98
    [119] Espelund M, Saeboe-Larssen S,Hughes D W, et al., Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and Osmotic stress, Plant J, 1992,2:241-252
    [120] G.T.VAUGHAN and B.V.MILBORROW, resolution of RS-abscisic acid and the separation of abscisic acid metabolites from plant tissue by high performance liquid chromatography, Journal of Chromatography,1984,336:221-228
    [121] Gilmour S J, Thomashow M F, Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana, Plant Mol Bio1,1991,17:1233-1240
    [122] Gowing DJG, Jones HG, Davies WJ.Xylem-transported abscisic acid: the relative importance of its mass and its concentration in the control of stomatal aperture[J].Plant cell and Environ, 1993,16:453-459
    [123] Han,B., P. Berjak, N. Pammenter, J. Farrant, and A.R. Kermode 1997 The recalcitrant plant species, Castanospermum australe and Trichilia dregeana, differ in their ability to produce dehydrin-related polypeptides during seed maturation and in response to ABA or water-deficit-related stresses. Jour. Exp. Bot., 48:1717-1726
    [124] Harris,M.J.and Outlaw, W.H.Jr. Rapid adjustment of guard cell abscisic acid levels to current leafwater status, Plant physiol. 1991,95:171-173
    [125] Hartung, W.,Heilmann,B.,Crimmler, H. Do chloroplasts play a role in abscisic acid synthesis? Plant Sci. Lett. 1981,22:242-253
    [126] Hartung,W. The site of action of abscisic acid on the guard cell plsmolemmaof Valerianella locusta.Plant cell Environ, 1983,6:427-428
    [127] Heilmann,B.,W.Hartung, H.Gimmler. The distribution of abscisic acid between chloroplast and cytoplasm leaf cells and the permeability of the chloroplast envelope for abscisic acid. Z.Pflanzenphysiol. 1980,97:67-78
    [128] Hillman, J.R., 1978: Isolation of Plant Growth Substances,PP: 102-106
    [129] Hornberg,C.,Weiler, E.W. High affinity binding sites for abscisic acid on the pasmolemma of Vicia faba guard cell,Nature(London) 1984,310:521-524
    [130] Hubick K,Reid DH(1980) A rapid method for the extraction and analysis of abscisic acid from
    
    plant tissue. Plant Physiol 65:523-525
    [131] Ilahi I, Dorffling K.Changes in abscisic acid and proline levels in maize varieties of different drought resistance.Physiol Plant, 1982,55:129
    [132] Ilahi I,Dorffling K. Changes in abscisic acid and praline levels in maize varieties of different drought resistance. Physiol Plant,1982,55:129
    [133] Itai C, Vaadia Y. Kinetin-like activity in root exudates of water stressed sunflower plants.Plant Physiol, 1965,18:941-944
    [134] Karssen C M, van Loon L C, V reugdenhil Deds Progress in plant growth regulation. Netherlands: Kluwer Academic Publishers, 1992.214-225
    [135] Kawakami, N., Y. Miyake, K. Noda 1997 ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. Jour.Exp. Bot., 48:1415-1421.
    [136] Larque Saavedra A,Wain R L. Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L.Nature, 1974,251:716
    [137] MacRobbie, E.A.C.Ca~(2+)-independent events in the initiation of stomatal closure by abscisic acid. Proc. of Royal Soci.(Lond) 1990,B 241:214-219
    [138] McAinsh,M.R.,Brownlee,C.& Hetherington,A.M. Early cellular events in the response of guard cells to abscisic acid.British Socity for Plant Groeth Regulation.Nonograph: Importance of Root to Shoot communication in the Responses to Environmental Stress.pp1-11
    [139] McGaw, B. A. (1995). "Cytokinin biosynthesis and metabolism". Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer. pp.98-117.
    [140] McKeon, T. A., Femandez-Maculet, J. C. and Yang, S. F. (1995). "Biosynthesis and metabolism of ethylene". Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer. pp. 118-139.
    [141] Milborrow, B.V.Inhibitors, In Wukins, M.B.(ed.):"Advanced plant physiology",London: Pitman publishing, 1984.76-110
    [142] Morgan J M. Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol, 1984;35:299-319
    [143] Michael G., Beringer H. In: physiological aspects of crop productivity[C], 1981;35:85-116
    [144] Munns R,King R W, Abscisic acid is not the only stomatal inhibitor in the transpiration stream. Plant Physiol, 1988,88:703-708
    [145] Munns,R.,C.J.Bracely, E.W.R.Barlow, Solute accumulation in the apex and leaves of wheat during water stress[J].Aust.J.Plant physiol,1979,(6):379-389
    [146] Ouatter S et al. Effect of drought on water relations of developing maise kernels[J].Crop Since, 1987,27:730-734
    
    
    [147] Passioura J B.Root signals control leaf expansion in wheat seedings growing in drying soil. Aust J Plant Physiol, 1988,15:687-693
    [148] Pharis R P.Rood S Beds. Plant growth substance.Berlin: Springer Verlag, 1988.65-73
    [149] Quarrie S A, Jones A G. Genotypie variation in leaf water potential stomtol conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann Bot,1979,44:323
    [150] Quarrie S A,Jones A G.Genotypic variation in leaf water potential stomtol conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann Bon, 1979,44:323
    [151] Raven, P. H., Evert, R. F., and Eichhorn, S. E. (1992). Biology of Plants. New York: Worth. pp. 545-572.
    [152] Reeve,D.R.&Crozier, A.1980. Quantitative analysis of plant hormone, In Encyclopedia of Plant Physiology, New Series Vol.9,pp.41-48.Springer, Berlin.
    [153] Richard N. ARTECA,B.W.POOVAIAH AND ORRIN E.SMITH. Use of high performance liquid chromatography for the determination of endogenous hormone levels in solanum tuberosum L.subjected to carbon dioxide enrichment of the root zone.Plant Physiol.1980.65:1216-1219
    [154] Ron,N.H.et al. Real time adaptive irrigation scheduling under a limited water supply[J].Agricultural Water Management, 1992,20:267-279
    [155] Sawada, K. (1912). "Disease of agricultural products in Japan". Formosan Agr. Rev. 36:10.
    [156] Shind.Y WW.OE Smith 1975 Identification of plant hormones from cotton ovules. Plant Physiol 55:550-554
    [157] Singh T N et al. Proline accumulation and varietal adaptability to drought in barley: a potential metabolic measure of drought resistance. Nature New Biol, 1972;236:188-190
    [158] Sponsel, V. M. (1995). "Gibberellin biosynthesis and metabolism" Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer. pp. 66-97.
    [159] Stillwell,W.,Brengle,B.,Hester, P.& Wassall,S.R. Interaction of abscisic acid with phospholipids membranes.Bilchemistry 1989,28:2798-2804
    [160] Sullivan C Y. W M Ross. In H Mussel and R Staple(ed). Stress Physiology in Crop Plant, 1979:263-263
    [161] Walton, D. C., and Li, Y. (1995). "Abscisic acid biosynthesis and metabolism". Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer. pp. 140-157.
    [162] Walton,D.,Dashek, W.&Galson,E. 1979,Aradioimmunoassay for abscisic acid. Planta 146:139-145
    
    
    [163] Wang, M. 1997 The role of abscisic acid in the regulation of barley grain germination. Seed Sci. Technol., 25:67-74
    [164] Wang, M., van der Meulen, R.M., Visser, K., Van Schaik, H.-P., Van Duijn, B. and de Boer, A.H. 1998 Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Science Research, 8:129-137
    [165] Wang.M,The role of abscisic acid in the regulation of barley grain germination,Seed Sci.&Technol. 1996,25,67-74
    [166] Weiler, E.W, 1982, Plant hormone immunoassay, Physiol.Plant,54:230-234
    [167] Weir A H, Barraclough P B. The effect of drought on root growth of winter and on its water uptake from a deep loam. Soil use and management,1986;2(3):91-96
    [168] Zeevaart j A, Creelman R A, Metabolism and physiology of abscisic acid, Ann Rev Plant Physiol, 1988,39:439-473
    [169] Zhang, J.,Schurr, U.,Davies,W.J. Control of stomatal behaviour by abscisic acid which apparently criginates in the roots, J.Exp.Bot. 1987,38:1174-1181
    [170] Zhang DP, He FL, Jia WS. Cell biological mechanism for triggering of ABA accumulation under water stress in Vicia faba leaves. Science in china series C-life sciences 44 (4): 421-428 Aug 2001
    [171] Zhang DP, Yang HQ, Jia WS, Huang CL. Protein phosphorylation is involved in the water stress-induced ABA accumulation in the roots of Malus hupehensis Rehd.Chinese science bulletin 46 (10): 855-858 MAY 2001
    [172] Zhang J.,Davies WJ. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of thew soil[J] .Plant cell and Environ, 1989,12:73-81
    [173] Zhang,J.,W.J.Davies. Abscisic acid production in dehydrating roots may enable the plant to measure the water status of the soil. Plant cell Environ. 1989,12:73-81