光学薄膜鲁棒设计、参数表征和反向工程等若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学薄膜作为关键元件,支撑和确保了事实上几乎所有现代光学系统的各种成功应用,其中光学薄膜软件技术发挥过、也必将持续发挥着关键性的作用。论文围绕光学薄膜软件技术中特别具有实用价值的若干前沿或关键方向进行了细致的基础理论和应用技术研究,主要包括决定膜系设计软件计算速度的核心数学算法、面向成品率的鲁棒膜系设计方法、膜材料光学参数表征中测量数据误差处理技术和多层膜反向工程算法开发等内容。这些关键技术的研究,有利于提高国内光学薄膜软件的算法水平和性能指标,有助于软件技术在镀膜生产和薄膜测量中发挥更显著的实用价值,有助于解决工业生产中的成本控制和高端应用中的苛刻光谱质量等突出问题。论文的主要内容和贡献如下:
     (1)理论上建立了决定膜系设计软件计算速度和精度的核心数学模型——多层膜膜系光谱系数对膜层参数的一阶及二阶偏导数的解析计算模型,并得到了群延迟和群延迟色散的解析计算表达式。该解析模型,与矩阵法具有一致的物理背景,普遍适用于各向同性的均匀膜系统,形式上简明,数学上严格准确,编程上具有快速算法特性,应用上可用于薄膜光学的各个领域,可以作为薄膜工作者进行膜系分析、设计、表征和反向工程等技术的有力高阶工具。
     (2)基于上述膜系光谱系数偏导数解析模型,提出了膜系设计评价函数梯度和Hesse矩阵的准确计算模型和快速实现算法,证明了该解析算法相比于有限差分近似模型在计算精度、计算量和计算时间上的优势,有利于采用二阶最优化方法来加快膜系优化设计的速度,特别是对于提高大膜层数的膜系设计速度有实用价值。
     (3)运用上述膜系光谱系数偏导数解析模型,提出了一种新型的三棱锥形玻璃基片光学薄膜超声水听器,在不增加敏感膜膜层数的情况下,其最佳工作点的声光灵敏度较平板玻璃基片光学薄膜超声水听器提高了约一个量级,同时在光路调节、准直及稳定性,无扭曲测量时间和空间平均修正等方面体现了优势。
     (4)基于膜系误差灵敏度主动控制思想,提出了新的光学薄膜鲁棒设计方法,研究了其快速实现算法。纵向上与传统膜系设计,横向上与其他鲁棒膜系设计思想,在计算精度和计算时间上进行了对比研究,结果证实了该鲁棒膜系设计方法在计算精度、计算量和时间消耗上的优势。应用上,通过对斜入射消偏振单点减反膜、宽带减反膜、可见—红外双波段减反膜、中性分光膜和线性透射率滤光片等多类光学薄膜的鲁棒设计实验,验证了该鲁棒膜系设计方法的误差控制效果。
     (5)针对正交偏振激光器中应用的高性能偏振分光膜,对比研究了不同应用方案的误差响应特性,通过鲁棒设计实验研究,找到了该偏振分光膜膜系误差灵敏度的本质决定因素,提出了一种高鲁棒性的高性能激光偏振分光膜方案,其膜系结构简单,易于实际镀膜,为原方案镀膜过程中的低成品率和光谱质量退化问题提供了一种可能的解决方案。
     (6)基于光谱测量系统误差和随机误差的不同特性分析,提出了一种新的膜材料光学参数表征中测量数据误差处理技术。针对难以消除的测量系统误差,利用膜系光谱系数对膜层参数的一阶偏导数的零点位置和符号信息进行有利于反演计算的光谱测量数据筛选,以最小化测量系统误差对薄膜光学参数表征的误差传递作用。针对不可分离的测量随机误差,提出多次在实测光谱数据中人为注入随机噪声的思想,利用统计平均来减小甚至消除实测光谱数据中随机误差对薄膜光学参数表征不确定度的影响。将上述方法分别应用于基于光度法和椭偏法的薄膜表征实验中,以可复现的数值模拟实验探讨了其技术实施细节,以充分的数值实验数据和合理的理论解释支持和验证了这种误差处理技术的可靠性和应用价值。
     (7)对比研究了多层膜反向工程中各种局部优化方法在搜索能力、多解性处理、跳出局部极值的可能性、约束条件的影响及其施加策略等方面的性能,通过数值模拟实验给出了反向工程算法中理想的局部优化技术方案。探讨了多层膜反向工程中局部优化算法的有限适用性,提出了一种局部与全局一体化的多层膜反向工程算法,通过对12层锗基红外宽带减反膜、19层规整高反片和29层规整窄带滤光片等薄膜在各种人为模拟的镀膜厚度误差下的反向工程数值模拟实验,以可复现的数据验证了该一体化算法对多层膜反向工程具有良好的可靠性、较局部优化算法的优越性和对各类薄膜的普遍适用性。实验验证上,对15层红光滤光片、31层近红外高反膜、34层高精度激光偏振分光膜和一个未知理论设计结构的美国某高反膜片等已镀薄膜进行了多步骤离线反向工程实验分析,通过复现实测光谱曲线的特征信息(如波峰位置偏移、由系统或随机厚度误差造成的典型光谱特征),得到了多层膜中有物理意义的膜材料折射率色散关系、较可靠的膜系厚度及镀膜误差分布情况,验证了该局部与全局一体化的多层膜反向工程算法的可靠性。
As vital components, thin film optical coatings support or assure the success ofvirtually any modern optical system, among which the optical coating softwaretechnologies had played and will go on to play a critical role. The dissertationinvestigates basic theories and application technologies in details of some front or keyaspects with especially practical significance of optical coating software technologies.The research contents include the core mathematical algorithms determining opticalcoating design software’s calculation speed, the robust design methods of multilayeroptical coatings aiming for high manufacture yield, the spectral measurement data errorstreating techniques of optical parameters characterization of thin film materials, and thereverse engineering algorithm development of multilayer optical coatings. Research onthese key technologies can help to improve the algorithm level and performancespecifications of home-made optical coatings software, and can make the softwaretechnologies play a more prominent role in the manufacture and measurement of opticalcoatings. In a word, they might help to conquer the urgent problems of cost control ofindustrial mass production and spectral quality requirement of high-level applications.The main contents and contributions of this dissertation include:
     (1) This dissertation theoretically establishes the core mathematical algorithms ofoptical coating design software, i.e. the analytical computation models of multilayersystem’s spectral coefficients’ first and second order partial derivatives with respect tolayer parameters, which also result in the analytical computation expressions of groupdelay and group delay dispersion. The analytical model of spectral coefficients’ partialderivatives is applicable to any isotropic homogeneous thin film system. And it isconcise in expressions, strict in mathematics, fast in calculation algorithms whileprogramming, and universal in all kinds of application fields of optical coatings. Allthese characteristics enable it to be a powerful research tool for optical coatingengineers to investigate the performance analysis, design, optical characterization andreverse engineering of thin film optical coatings.
     (2) Based on the above analytical model of thin film spectral coefficients’ partialderivatives, this dissertation presents accurate calculation model and fast realizationalgorithm of thin film design merit function’s gradients and Hesse matrix with respectto design parameters. Numerical experiments had been conducted to testify theadvantage of the analytical model over the finite differentiating approximation model incalculation amount, accuracy and time of thin film design merit function’s gradients andHesse matrix. And it is best suitable to use second order optimization methods to speedup thin film design process with the established analytical model, where theimprovement in design speed is especially significant when the layer number is large.
     (3) Based on the above analytical model of thin film spectral coefficients’ partialderivatives, this dissertation solves the deficiency problem in acoustic-optic sensitivityof an optical multilayer hydrophone with a plate glass substrate. A novel concept opticalmultilayer ultrasonic hydrophone is proposed with the sensing film deposited on atriangular pyramid glass substrate. This dissertation presents reasonable method andadjusting strategy for the optimum working point selection of the ultrasoundmeasurement. Besides of all the other merits of a plate glass substrate optical multilayerhydrophone, the novel hydrophone possesses about8.8-time improved detectionsensitivity without adding the layer number of the sensing film. Moreover, it ischaracterized with more stable optical path alignment and adjustment, longermeasurement time without distortion, and simplified spatial spot area correction, whichcan decrease the difficulty of high frequency signal circuits and will contribute to theaccurate calibration of the hydrophone’s wideband frequency response.
     (4) Based on the active control concept of thin film’s sensitivity to layerparameters’ errors, this dissertation presents a novel robust design method of multilayeroptical coatings. And the analytical model and fast calculation algorithm have beenestablished. A thorough comparison in calculation accuracy and time had beenconducted among the presented robust design method, traditional deign method andother robust design thoughts of thin film systems, which demonstrated the advantage ofthe presented robust design method in both aspects. We demonstrated its effectivenessin errors control by applications into a variety of optical coatings, such as broadbandantireflection coating, dual-band antireflection coating, neutral beam splitter and linearramp transmittance filter. It shows that the presented robust design method ownsinherent fast computation characteristic and the designed film is insensitive tomonitored layer parameters’ errors in deposition process, which is of practicalsignificance to improve the mass production yields and repetitive production of highquality optical coatings.
     (5) Based on the above robust design method of multilayer systems, the spectralcharacteristic responses to layer parameters’ errors were researched comparativelyamong three different application solutions of a high-performance thin-film polarizingbeam splitter (PBS) used in a novel orthogonal polarized dual-frequency laser. Theinherent factor of laser PBS’s errors sensitivity had been found by elaborately arrangednumerical robust design experiments. A robust thin film structure had been designed forthe high-performance laser PBS with moderate layer number and easy-manufacturablelayer thicknesses. This PBS design solution is very suitable for mass production at lowcost and high yield, which will play a positive role in the development, engineering andapplication of the orthogonal polarized dual-frequency laser.
     (6) Based on the different characteristic analysis of systematic and random errorsin spectral measurement data, this dissertation presents a novel errors treating technique of optical parameters characterization of single-layer thin film materials. In order tominimize the characterization deviations of thin film optical parameters from real valuescaused by systematic errors hard to eliminate, it is advised to select measurement dataused in optical characterization from spectral bands characterized with opposite signs orsingle zero of first-order spectral coefficients’ partial derivatives with respect to layerthickness and refractive index for most measurement incident angles, and to excludespectral bands characterized with the same signs or both zeros of spectral coefficients’first-order partial derivatives for all measurement incident angles. The essence of thistechnique is to minimize the errors transfer effect of spectral measurement data on thinfilm optical parameters characterization through spectral measurement band selectionby first-order partial derivatives analysis. In order to minimize the characterizationuncertainties of thin film optical parameters from real values caused by random errorsimpossible to exclude, it is creatively presented to inject independent random noise withthe same distribution law and magnitudes into actual measurement data, which areutilized for many times as target spectral coefficients of the investigated film in theprocess of optical characterization. The statistics mean values of all fit opticalparameters obtained each time by the characterization algorithm are then chosen asestimates of the real optical parameters of the investigated film, whose uncertainiesdecrease to one of square root of characterization times equal parts of the initial valueswithout random errors injection. Numerical simulations had been comparably conductedwith both photometric and ellipsometric data to research the applicability and selectionskills of the range of measurement incident angles. The reliability of this technique issupported by resumable numerical experiments’ results and reasonable theoreticalexplanations. It shows this novel errors treating technique might play a practicalsignificance in in-situ characterization and thickness monitoring of thin films.
     (7) Different local optimization algorithms in the reverse engineering of multilayeroptical coatings have been compared with characteristics of search ability, multiplesolutions treatment, escaping possibility of local extremum and influence of therestriction condition settings. Numerical experiments show that there is a reasonablelocal optimization method based on the Levenberg-Marquardt algorithm which is bestsuitable for reverse engineering algorithm development of multilayer optical coatings.And the limited applicability of the local optimization algorithm is investigated in termsof reverse engineering quality by numerical simulated experiments. A hybrid reverseengineering algorithm is presented based on genetic algorithm with elite selectionstrategy and nonlinear least-squares method with Levenberg-Marquardt algorithm. Thegood reliability, superiority and universality of the hybrid reverse engineering algorithmis tested and supported by resumable numerical reverse engineering experiments’ resultsof a12-layer infrared antireflection coating, a19-layer quarter-wave mirror and a29-layer quarter-wave narrow band filter under intentionally simulated layer thicknesses errors. As for actual reverse engineering experiments, four multilayer optical coatings,including a15-layer red band-pass filter, a31-layer infrared mirror, a34-layerpolarizing beam splitter and a unknown mirror made in America, were used to prove thereliability and significance of the presented hybrid reverse engineering algorithm withphotometric measurement data by Lambda950spectrometer. Physically sensibledispersion relations of thin-film material’s refractive indices in multilayer coatings arefirstly determined according to the wavelength positions deviations of extremum in themeasured spectral curves. And reliable thicknesses information is secondly determinedby tying to recur the special characteristics in the measured spectral curves which aretypically caused by systematic or random thickness errors. The closeness of fitted modelspectral curves to measured curves and the recurrence of special characteristics inmeasured curves both indicate that the reverse engineered results are reliable both frommathematical and physical point of view.
引文
[1] Mayer H. Physik Dünner Schichten,ⅠandⅡ[M]. Germany: Stuttgart,1950,1955.
    [2] Heavens O S. Optical Properties of Thin Solid Films [M]. London: Butlerworths,1955.
    [3] Holland L. Vacuum Deposition of Thin Films [M]. London: Chapman Hall,1956.
    [4] Vasicek A. Optics of Thin Films [M]. Amsterdam: North-Holland,1960.
    [5] Anders H. Dünne Schichten für die Optik [M]. Stuttgart: WissenschaftlicheVerlagsgesellschaft,1965.[English translation1967Thin Films in Optics (FocalPress)]
    [6] Knittl Z. Optics of Thin Films [M]. London: Wiley,1976.
    [7] Liddell H M. Computer-Aided Techniques for the Design of Multilayer Filters[M]. Bristol: Adam Hilger,1981.
    [8] Pulker H K. Coatings on Glass [M]. Amsterdam: Elsevier,1984.
    [9] Rancourt J D. Optical Thin films: Users’ Handbook [M]. New York: Macmillan,1987.
    [10] Jacobson M R (ed).1989Deposition of Optical Coatings1(SPIE MilestoneSeries) ed B J Thompson [M]. Bellingham: SPIE,1989.
    [11] Jacobson M R (ed). Design of Optical Coatings (SPIE Milestone Series) ed B JThompson [M]. Bellingham: SPIE,1990.
    [12] Jacobson M R (ed).1992Characterization of Optical Coatings1(SPIE MilestoneSeries) ed B J Thompson [M]. Bellingham: SPIE,1992.
    [13] Thelen A. Design of Optical Interference Coatings [M]. McGraw-Hill,1989.
    [14] Furman S A, Tikhonravov A V. Basics of Optics of Multilayer Systems [M].Gif-sur-Yvette: Editions Frontières,1992.
    [15] Flory F R (ed). Thin films for optical systems1Optical Engineering ed B JThomson [M]. New York: Marcel Dekker,1995.
    [16] Hartnagel H L, Dawar A L, Jain A K, Jagadish C. Semiconducting TransparentThin Films [M]. Bristol: Institute of Physics,1995.
    [17] Hummel R E, Guenther K H (ed). Thin films for optical coatings Handbook ofOptical Properties1st edn [M]. Boca Raton, FL: Chemical Rubber Company,1995.
    [18] Willey R R.1996Practical Design Production of Optical Thin Films [M]. NewYork: Marcel Dekker,1996.
    [19] Bach H, Krause D (ed). Thin Films on Glass [M]. Berlin: Springer,1997.
    [20] Aicha E R, Barlow F D. Thin Film Technology Handbook[M]. McGraw-Hill,1997.
    [21] Weber M J. Handbook of Optical Materials [M]. CRC,2003.
    [22] Kaiser N, Pulker H K ed. Optical Interference Coatings [M]. Springer,2003.
    [23] Kochergin V. Omnidirectional Optical Filters [M]. Kluwer,2003.
    [24] Baumeister P W. Optical Coating Technology [M]. SPIE,2004.
    [25] Mitsunobu Kbiyama. Design of Thin-Film Optical Coatings [M]. Japan,2006.
    [26] Willey R R. Field Guide to Optical Thin Films [M]. SPIE,2006.
    [27] Willey R R. Practical Monitoring Control of Optical Thin Films,2nd edn [M].New York: Marcel Dekker,2007.
    [28] Willey R R. Practical Design Production of Optical Thin Films,2nd edn [M]. NewYork: Marcel Dekker,2007.
    [29] Macleod H A. Thin-Film Optical Filters3rd edn [M]. Briston Philadelphia: IOPPublishing Ltd,2006.[4th edn2010]
    [30]唐晋发,郑权.应用薄膜光学[M].上海:上海科学技术出版社,1984
    [31]尹树百.薄膜光学—理论与实践[M].北京:科学出版社,1987
    [32]林永昌,卢维强.光学薄膜原理[M].北京:国防工业出版社,1990
    [33]卢进军,刘卫国.光学薄膜技术[M].西安:西北工业大学出版社,2005
    [34]唐晋发,顾陪夫,刘旭,李海峰.现代光学薄膜技术[M].浙江:浙江大学出版社,2006
    [35] Stolz C J, Tilsch M, Ristau D. Optical Society of America’s2010TopicalMeeting on Optical Interference Coatings Introduction by the feature editors [J].Applied Optics,2011,50(9): OIC1~OIC2.
    [36] Kaiser N, Stolz C J. Optical Society of America’s2007Topical Meeting onOptical Interference Coatings: Overview [J]. Applied Optics,2008,47(13):OIC1~OIC7.
    [37] Wilbrandt S, Stenzel O, Kaiser N. All-oxide Broadband Antireflection Coatingsby Plasma Ion Assisted Deposition: Design, Simulation, ManufacturingRe-optimization [J]. Optics Express,2010,18(19):19732~19742.
    [38] Amotchkina T V, Trubetskov M K, Pervak V, et al. Comparison of AlgorithmsUsed for Optical Characterization of Multilayer Optical Coatings [J]. AppliedOptics,2011,50(20):3389~3395.
    [39] Freidrich K, Wilbrandt S, Stenzel O, et al. Computational Manufacturing ofOptical Interference Coatings: Method, Simulation Results, Comparison withExperiment [J]. Applied Optics,2010,49(16):3150~3162.
    [40] Rademacher D, Verg hl M, Richter U. In Situ Thickness Determination ofMultilayered Structures Using Single Wavelength Ellipsometry ReverseEngineering [J]. Applied Optics,2011,50(9): C222~C227.
    [41] Janicki V, Zorc H. Refractive Index Profiling of CeO2Thin Films Using ReverseEngineering Methods [J]. Thin Solid Films,2002,413:198~202.
    [42] Tikhonravov A V, Trubetskov M K, Kokarev M A. Reverse Engineering ofFabricated Coatings Using Off-Line and On-Line Photometric Data [C]//inOptical Interference Coatings,2007OSA Technical Digest Series, ppWA3-1~3.
    [43] Tikhonravov A V, Trubetskov M K, Pervak V, et al. Design, Fabrication andReverse Engineering of Broad Band Chirped Mirrors [C]//in Optical InterferenceCoatings,2007OSA Technical Digest Series, ppWB4-1~3.
    [44] Macleod H A. Optical Thin Film Coating Design [C]//Proceedings of SPIE,1996,2776:2~9.
    [45] Macleod H A. Monitoring of Optical Coatings [J]. Applied Optics,1981,20(1):82~89.
    [46] Macleod H A, Carniglia C K. Feature Issue on Optical Interference Coatings [J].Applied Optics,1993,32(28):5415~5416.
    [47] Macleod H A. Challenges in the design production of narrow-band filters foroptical fiber telecommunication [C]//Proceedings of SPIE,2000,4094:46~57.
    [48] Macleod H A. Evolution of the Measurement of Thin Films [J]. Optics&Photonics News,2001, September, p20~25.
    [49] Macleod H A. Tutorial on the design of telecommunication filters [C]//in OpticalInterference Coatings,2001OSA Technical Digest Series, ppWC1-1~3.
    [50] Macleod H A. Advances in Thin Films [J]. OFC2003, p8~9.
    [51] Macleod H A. The Future of Optical Coatings [C]//in Optical InterferenceCoatings,2004OSA Technical Digest Series, ppMA1-1~3.
    [52] Macleod H A. Some Current Topics in Optical Coatings [C]//in OpticalInterference Coatings,2010OSA Technical Digest Series, ppMA1-1~3.
    [53] Thin Film Centre Inc.. Essential Macleod Optical Coating Design AnalysisProgram User’s Manual [OL]. http://www.thinfilmcenter.com,393pages.
    [54] Noe T D. Design of Reflective Phase Compensator Filters forTelecommunications [J]. Applied Optics,2002,41(16):3183~3186.
    [55] Software Spectra Inc.. TFCalcTMThin Film Design Software Manual [OL].http://www.sspectra.com,92pages.
    [56] Goldstein F T.‘Gedankenspektrum’ Methods in Optical Coatings [C]//Proceedingsof SPIE, Advances in Optical Thin Films III,2008,7101:710105-1~6.
    [57] Goldstein F T. Automating Spectral Measurements [C]//Proceedings of SPIE,Optical Fabrication, Testing, Metrology III,2008,7102:71020S-1~14.
    [58] Goldstein F T. Computer Software for Designing Manufacturing Optical ThinFilm Coatings [C]//Proceedings of30th Annual Technical Conference-Society ofVacuum Coaters,1987, p43~48.
    [59] Goldstein F T. Algorithms for Optical Thin Film Software [C]//Proceedings ofSPIE,1986,652:95~99.
    [60] Goldstein F T. Analyzing Quasi-inhomogeneous Coating Designs with StandardOptical Thin Film Software [C]//Proceedings of SPIE, Inhomogeneous Quasi-Inhomogeneous Optical Coatings,1993,2046:30~34.
    [61] Goldstein F T. Multilayer Software for Thin Film Deposition Controllers [C]//Proceedings of Annual Technical Conference-Society of Vacuum Coaters,1994,p59~62.
    [62] Claypool C. Reflection, Transmission Spectrophotometry Characterizes OLEDMaterials [J]. Laser Focus World,2005, August, p108~110.
    [63] Wang W E, Balooch M, Claypool C, et al. Combined Reflectometry-ellipsometryTechnique to Measure Graphite Down to Monolayer Thickness [J]. Solid StateTechnology,2009, June, p18~21.
    [64] Scientific Computing International. Film WizardTMOptical Thin Film SoftwareGetting Started Manual Professional Version [OL]. http://www.sci-soft.com,177pages.
    [65] Tikhonov A N Jr., Tikhonravov A V, Trubetskov M K. Second OrderOptimization Methods in the Synthesis of Multilayer Coatings [J]. Comp. Maths.Math. Phys.,1993,83:1339~1352.
    [66] Tikhonravov A V. Some Theoretical Aspects of Thin Film Optics and TheirApplications [J]. Applied Optics,1993,32(28):5417~5426.
    [67] Tikhonravov A V, Dobrowolski J A. Quasi-optimal Synthesis for AntireflectionCoatings: a New Method [J]. Applied Optics,1993,32(22):4265~4275.
    [68] Tikhonravov A V, Sullivan B T, Borisova M V. Discrete-Fourier-transformApproach to Inhomogeneous Layer Synthesis [J]. Applied Optics,1994,33:5142~5150.
    [69] Tikhonravov A V, Bikov A A. Mathematical Modeling and Simulation ofResonance Field Phenomena in Thin Films with Periodic SurfaceInhomogeneities [C]//Proceedings of SPIE,1994,2253:1172~1183.
    [70] Tikhonravov A V, Klibanov M V, Zuev I V. Numerical Study of the PhaselessInverse Scattering Problem in Thin Film Optics [J]. Inverse problems,1995,11:251~270.
    [71] Klibanov M V, Sacks P E, Tikhonravov A V. The Phase Retrieval Problem [J].Inverse problems,1995,11:1~28.
    [72] Tikhonravov A V, Trubetskov M K, Hrdina J, Sobota J. Characterization ofQuasi-rugate Filters Using Ellipsometric Measurements [J]. Thin Solid Films,1996,277:83~89.
    [73] Tikhonravov A V, Trubetskov M K, Tikhonov A N, et al. Study of Thin FilmInhomogeneity with a Fast-scanning Acoustooptic Spectrophotometer [C]//Proceedings of SPIE, in Developments in Optical Component Coatings,1996,2776:212~220.
    [74] Tikhonravov A V, Trubetskov M K. Design of Multilayers FeaturingInhomogeneous Coating Properties [C]//Proceedings of SPIE, in Developments inOptical Component Coatings,1996,2776:48~57.
    [75] Tikhonravov A V, Trubetskov M K, DeBell G W. Application of the NeedleOptimization Technique to the Design of Optical Coatings [J]. Applied Optics,1996,35(28):5493~5508.
    [76] Tikhonravov A V, Baumeister P W, Popov K V. Phase Properties of Multilayers[J]. Applied Optics,1997,36(16):4382~4392.
    [77] Verly P G, Tikhonravov A V, Trubetskov M K. Efficient Refinement Algorithmfor the Synthesis of Inhomogeneous Optical Coatings [J]. Applied Optics,1997,36(7):1487~1495.
    [78] Tikhonravov A V, Trubetskov M K, Sullivan B T, Dobrowolski J A. Influence ofSmall Inhomogeneities on the Spectral Characteristics of Single Thin Films [J].Applied Optics,1997,36(7):7188~7198.
    [79] Tikhonravov A V, Trubetskov M K, Krasilnikova A V. SpectroscopicEllipsometry of Slightly Inhomogeneous Non-absorbing Thin Films withArbitrary Refractive Index Profiles: Theoretical Study [J]. Applied Optics,1998,37:5902~5911.
    [80] Tikhonravov A V, Trubetskov M K, Clarke G, Sullivan B T, Dobrowolski J A.Ellipsometric Study of Optical Properties and Small Inhomogeneities of Nb2O5films [C]//Proceedings of SPIE, in Advances in Optical Interference Coatings,Claude Amra, Angus Macleod Ed.,1999,3738:183-187.
    [81] Tikhonravov A V, Trubetskov M K, Masetti, Krasilnikova A V, Kochikov I V.Sensitivity of the Ellipsometric Angles Psi and Delta to the SurfaceInhomogeneity [C]//Proceedings of SPIE, in Advances in Optical InterferenceCoatings, Claude Amra, Angus Macleod Ed.,1999,3738:173~182.
    [82] Thelen A, Tikhonravov A V, Trubetskov M K. Push-button Technology inOptical Coating Design: Pro et Contra [C]//Proceedings of SPIE, in Advances inOptical Interference Coatings, Claude Amra, Angus Macleod Ed.,1999,3738:210~220.
    [83] Tikhonravov A V, Trubetskov M K, Keller U, Matuschek N. Designing ofCoatings for Femtosecond Lasers with Phase Derivatives Targets [C]//Proceedings of SPIE, in Advances in Optical Interference Coatings, Claude Amra,Angus Macleod Ed.,1999,3738:221~229.
    [84] Tikhonravov A V, Trubetskov M K, Protopopov V V, Voronov A V. Applicationof The Needle Optimization Technique to the Design of X-ray Mirrors [C]//Proceedings of SPIE, in Advances in Optical Interference Coatings, Claude Amra,Angus Macleod Ed.,1999,3738:248~254.
    [85] Szipocs R, Kohazi-Kis A, Lako S, Apai P, et al. Negative Dispersion Mirrors forDispersion Control in Femtosecond Laser: Chirped Dielectric Mirrors andMulti-cavity Gires-Tournois Interferometers [J]. Appl. Phys. B.,2000,70:1~7.
    [86] Sveshnikov A G, Tikhonravov A V, Trubetskov M K. Modern Methods forSynthesizing Multilayer Optical Coatings [J]. J. of Communications Technologyand Electronics,2000,45(Suppl.2): S151-S159.
    [87] Tikhonravov A V, Trubetskov M K, Kochikov I V. Real-Time Characterizationand Optimization of E-Beam Evaporated Optical Coatings [C]//in OpticalInterference Coatings,2001OSA Technical Digest Series, ppME8-1~3.
    [88] Tikhonravov A V, Trubetskov M K, Kokarev M A, Amotchkina T V et al. Effectof Systematic Errors in Spectral Photometric Data on the Accuracy ofDetermination of Optical Parameters of Dielectric Thin Film [J]. Applied Optics,2002,41(13):2555~2560.
    [89] Tikhonravov A V, Trubetskov M K. Automated Design and Sensitivity Analysisof Wavelength-division WDM Filters [J]. Applied Optics,2002,41(16):3176~3182.
    [90] Tikhonravov A V, Trubetskov M K, Tikhonravov A A, Duparre A. Effects ofInterface Roughness on the Spectral Properties of Thin Films and Multilayers [J].Applied Optics,2003,42(25):5140~5148.
    [91] Tikhonravov A V, Trubetskov M K, Amotchkina T, et al. Key Role of the CoatingTotal Optical Thickness in Solving Design Problems [C]//Proceedings of SPIE,2004,5250:312-321.
    [92] Tikhonravov A V, Trubetskov M K. Computational Manufacturing as a Bridgebetween Design and Production [J]. Appl. Opt.,2005,44(32):6877-6884.
    [93] Tikhonravov A V, Trubetskov M K, Amotchkina T V, et al. New OptimizationAlgorithm for the Synthesis of Rugate Optical Coatings [J]. Appl. Opt.,2006,45(7):1515-1524.
    [94] Tikhonravov A V, Trubetskov M K, Amotchkina T V, Thelen A. Optical CoatingDesign Algorithm Based on the Equivalent Layers Theory [J]. Appl. Opt.,2006,45(7):1530-1538.
    [95] Tikhonravov A V, Trubetskov M K, Amotchkina T V. Investigation of the Effectof Accumulation of Thickness Errors in Optical Coating Production by BroadbandOptical Monitoring [J]. Appl. Opt.,2006,45(27):7026-7034.
    [96] Tikhonravov A V, Trubetskov M K, Amotchkina T V. Statistical Approach toChoosing a Strategy of Monochromatic Monitoring of Optical Coating Production[J]. Appl. Opt.,2006,45(30):7863-7870.
    [97] Tikhonravov A V, Trubetskov M K, DeBell G W. Optical Coating DesignApproaches Based on the Needle Optimization Technique [J]. Appl. Opt.,2007,46(5):704-710.
    [98] Tikhonravov A V, Trubetskov M K, Amotchkina T V, Dobrowolski J A.Estimation of the Average Residual Reflectance of Broadband AntireflectionCoatings [J]. Appl. Opt.,2008,47(13): C124-C130.
    [99] Tikhonravov A V, Trubetskov M K, Amotchkina T V. Application of ConstrainedOptimization to the Design of Quasi-rugate Optical Coatings [J]. Appl. Opt.,2008,47(28):5103-5109.
    [100] Wilbrandt S, Stenzel O, Kaiser N., Trubetskov M K, Tikhonravov A V. In SituOptical Characterization and Reengineering of Interference Coatings [J]. Appl.Opt.,2008,47(13): C49-C54.
    [101] Tikhonravov A V, Trubetskov M K, Amotchkina T V, et al. Optical Parameters ofOxide Films Typically Used in Optical Coating Production [J]. Appl. Opt.,2011,50(9): C75-C85.
    [102] Tikhonravov A V, Trubetskov M K, Amotchkina T V, Pervak V. Estimations ofProduction Yields for Selection of a Practical Optimal Optical Coating Design [J].Appl. Opt.,2011,50(9): C141-C147.
    [103] Mansuripur M. Analysis of Multilayer Thin Film Structures Containing-Magneto-Optic Anisotropic Media at Oblique Incidence Using2′2-Matrices [J].Journal of Applied Physics,1990,67:6466~6475.
    [104] Mansuripur M. Computer Modeling of Optical Storage Media Systems [C]//Proceedings of SPIE,1990,1316:70~80.
    [105] Li Dongguang, Burt Nathan. Global Optimization Advances Multi-variableThin-film Design [J]. Laser Focus World,1996,32(5):135~136.
    [106] Li Dongguang, Smith C. A New Global Optimization Algorithm Based on LatinSquare Theory [C]//Proceedings of1996IEEE international conference onevolutionary computation,1996, p628~630.
    [107] Li Dongguang, Watson A C. A Global Optimisation Technique For Optical ThinFilm Design [C]//DCABES2002Proceedings,2002, p170~174.
    [108] Li Dongguang. Optical Thin-film Design System with DGL Global OptimizationAlgorithm [C]//Proceedings of fifth international conference on informationmanagement sciences, China: Chengdu,2006, p237~241.
    [109] Li Dongguang. Ballistics Projectile Image Analysis for Firearm Identification [J].IEEE Transactions on Image Processing,2006,15(10):2857~2865.
    [110] Li Dongguang. Gene Expression Studies with DGL Global Optimization for theMolecular Classification of Cancer [J]. Soft Comput.,2011,15:111~129.
    [111] Larouche S, Martinu L. OpenFilters: Open-source Software for the Design,Optimization, Synthesis of Optical Filters [J]. Applied Optics,2008,47(13):C219~C230.
    [112] Larouche S, Martinu L. Dispersion Implementation in Optical Filter Design by theFourier Transform Method Using Correction Factors [J]. Applied Optics,2007,46(30):7436~7441.
    [113] Larouche S, Martinu L. Optical Filters with Prescribed Optical Thickness RefinedRefractive Indices [J]. Applied Optics,2008,47(22):4140~4146.
    [114] Larouche S, Martinu L. Step method: A New Synthesis Method for The Design ofOptical Filters with Intermediate Refractive Indices [J]. Applied Optics,2008,47(24):4321~4330.
    [115]蒋百川,郑权.摄影镜头减反膜的设计[J].仪器制造,1976,5.
    [116]唐晋发.消偏振薄膜分光镜的理论和设计[J].浙江大学学报,1978,1:6~14.
    [117]唐晋发,顾培夫.吸收薄膜系统的理论和设计[J].浙江大学学报,1979,1.
    [118]唐晋发,蒋百川,郑权.光学薄膜自动设计(Ⅰ)—评价函数的构成[J].浙江大学学报,1979,3:13~18.
    [119]郑权,唐晋发,蒋百川.光学薄膜自动设计(Ⅱ)—最优化数值方法及其应用[J].浙江大学学报,1980,5:1~14.
    [120]郑权,唐晋发.光学薄膜合成的Sossi方法[J].不详,1980,10:68~72.
    [121]顾培夫.用波导法测量薄膜的折射率和厚度[J].仪器仪表学报,1986,7(1):54~59.
    [122]范正修,钱伟珍.光学薄膜的自动设计[J].光学学报,1981,1(3):273~208.
    [123]范正修.用矢量合成法设计倍频增透膜[J].兵器激光,1986,3:25~28.
    [124] Tang J F, Zheng Q. Automatic design of optical thin-film systems—meritfunction and numerical optimization method [J]. J. Opt. Soc. Am.,1982,72(11):1522-1528.
    [125]战元龄,王立,尹士琢.代数法确定无吸收光学薄膜的参数[J].光学学报,1985,5(4):343~347.
    [126]赵强.在APPLE-Ⅱ兼容机上进行膜系设计的探讨[J].不详,约1986, p28~31.
    [127] Zheng Y F, Tang J F. New automatic design technique for optical coatings [J].Applied Optics,1987,26(8):1546-1549.
    [128]郑燕飞,唐晋发.以模拟计算的制造成品率为最终评价指标的光学薄膜自动设计[J].光学学报,1987,7(9):818~823.
    [129]毛文凡.微型计算机在三层增透膜设计中的应用[J].光学仪器,1987,9(1):25~34.
    [130]金天峰,袁幼心.光学薄膜膜系的一种快速优化设计的方法[J].量子电子学,1987,4(3):258~264.
    [131]何淑贞,唐晋发,顾培夫.光学多层膜的特性计算和分析的计算机软件[J].光学仪器,1990,12(5):44~50.
    [132]凌洁华,张明,宋利敏.光学薄膜优化设计[J].光学仪器,1990,12(5):33~43.
    [133]凌洁华,徐福候,庄松林.光学薄膜计算机辅助设计CADOC软件[J].光学技术,1993,5:27~28,37.
    [134]周鹏飞,梁月山,张明.光学薄膜数据库[J].光学仪器,1990,12(5):51~56.
    [135]周健,林永昌.一种新的膜系设计方法—Needle法[J].光学学报,1997,17(10):1445~1449.
    [136]张诚,林永昌.膜系自动设计中的隧行方法[J].光子学报,1999,28(l):61~64.
    [137]林永昌,顾永琳,张诚,周健.针法与初始膜系设计[J].光学学报,1999,19(10):1433~1436.
    [138]林永昌,张诚,李芳.Needle-Tunneling法膜系自动设计[J].光学仪器,1999,21(4-5):12~15.
    [139]李芳,张诚,林永昌.膜系优化设计中的模糊输入及评价函数的改进[J].光子学报,2000,29(1):68~71.
    [140]李芳,林永昌.膜系优化设计中的逃逸函数法[J].光学仪器,2001,23(5-6):1~13.
    [141]李芳,林永昌,刘育良.新型减反膜的设计与制备[J].光学仪器,2004,26(2):115~117.
    [142]林永昌,李芳,刘育良,辛红丽.增益平坦滤光片的设计[J].光学仪器,2004,26(2):5~7.
    [143]李芳.光学薄膜优化设计软件与光通信薄膜滤光片的研制[D].北京:北京理工大学,2001.
    [144]白胜元.光学薄膜设计及其在光波分复用系统中的应用[D].浙江:浙江大学,2001.
    [145]杨开勇,龙兴武.非偏振大角度高精度减反膜的设计[J].中国激光,2002,29(8):703~706.
    [146]杨开勇.全自动光学薄膜软件的研制[D].长沙:国防科技大学,2003.
    [147]刘梦夏.光学薄膜膜系优化设计的实现[D].西安:西安工业学院,2001.
    [148]张晓晖.WDM光纤通信用光学薄膜的研究[D].武汉:华中科技大学,2001.
    [149]林军.基于遗传算法的1.55微米窄带滤光片的设计与工艺研究[D].广州:华南理工大学,2002.
    [150]吴素勇.遗传算法在膜系设计中的应用[D].长沙:国防科技大学,2007.
    [151]伦宝利.云南一米红外太阳塔真空封窗减反膜膜系设计[D].昆明:中国科学院云南天文台,2006.
    [152]宋玲玲.光学薄膜优化设计的实现[D].合肥:合肥工业大学,2006.
    [153]潘洪昌.光学薄膜特性多维计算、设计、测试与分析综合软件[D].广州:中山大学,2008.
    [154]江绍基,潘洪昌,王超义等.SYSU_OTFLab光学薄膜设计软件1.0[Z].软件版权,版权号:2007SR09811.
    [155]楚栋.薄膜参数测量优化算法及其软件实现[D].浙江:浙江大学,2010.
    [156] Tikhonravov A V, Trubetskov M K. Thin-film Coatings Design Using Second-order Optimization Methods [C]//Proceedings of SPIE,1992,1782:156~164.
    [157] Tikhonravov A V. On the optimality of thin film optical coating design [C]//Proceedings of SPIE,1990,1270:28~35.
    [158] Mouchart J. Thin-film Optical Coatings EM Dash1.Optical Coatings Stabilities[J].Applied Optics,1977,16(9):2486~2490.
    [159] Pervak V, Krausz F, Apolonski A. Dispersion Control over theUltraviolet–visible–near-infrared Spectral Range with HfO2/SiO2-chirpedDielectric Multilayers [J]. Optics Letters,2007,32(9):1183~1185.
    [160] Trubetskov M K, Tikhonravov A V, Pervak V. Time-domain Approach forDesigning Dispersive Mirrors Based on the Needle Optimization Technique.Theory.[J]. Optics Express,2008,16(25):20637~20647.
    [161] Pervak V, Teisset C, Sugita A, Naumov S, Krausz F, Apolonski A.High-dispersive Mirrors for Femtosecond Lasers [J]. Optics Express,2008,16(14):10220~10233.
    [162] Pervak V, Ahmad I, Trubetskov M K, Tikhonravov A V, Krausz F. Double-angleMultilayer Mirrors with Smooth Dispersion Characteristics [J]. Optics Express,2009,17(10):7943~7951.
    [163] Pervak V, Trubetskov M K, Tikhonravov A V. Robust Synthesis of DispersiveMirrors [J]. Optics Express,2011,19(3):2371~2380.
    [164] Pervak V. Recent Development and New Ideas in the of Dispersive MultilayerOptics [J]. Applied Optics,2011,50(9): C50~C61.
    [165] Baumeister P. Methods of Altering the Characteristics of a Multilayer Stack [J]. J.Opt. Soc. Am.,1962,52(10):1149~1152.
    [166] Laan C J, Frankena H J. Fast Computation Method for Derivatives of MultilayerStack Reflectance [J]. Applied Optics,1978,17(4):538-541.
    [167] Dupoisot H, Morizet J. Thin Film Coatings: Algorithms for the Determination ofReflectance and Transmittance, and Their Derivatives[J]. Applied Optics,1979,18(15):2701~2704.
    [168] Mouchart J. Calcul Matriciel Appliqué aux Couches Minces élaboration desDérivées Partielles du Coefficient de Réflexion [J]. Optica acta,1980,27(3):401~408.
    [169] Mouchart J, Begel J, Chalot S. Stabilisation Spectrale des Dépots Optiques enCouches Minces [J]. J. Modern Optics,1987,34(10):1297~1325.
    [170] Humlícek J. Evaluation of Derivatives of Reflectance and Transmittance byStratified Structures and Solution of the Reverse Problem of Ellipsometry [J].Optica acta,1983,30(1):97~105.
    [171] Peng Ke-Ou, Fonteijne M R de la. Derivatives of Transmittance and Reflectancefor an Absorbing Multilayer Stack [J]. Applied Optics,1985,24(4):501~503.
    [172] Hrdina J. Parallelization of Computation of Derivatives in Thin-film Systems [J].J. Modern Optics,1990,37(6):1087~1094.
    [173] Hrdina J. Fast Computation of Second-order Derivatives of Reflectance,Transmittance and Corresponding Phase Shifts in Thin Film Systems [J]. J.Modern Optics,1994,41(1):129~136.
    [174] Dobrowolski J A, Kemp R A. Refinement of Optical Multilayer Systems withDifferent Optimization Procedures [J]. Applied Optics,1990,29(19):2876~2893.
    [175] Li Li, Dobrowolski J A. Computation Speeds of Different Optical Thin-filmSynthesis Methods [J]. Applied Optics,1992,31(19):3790~3799.
    [176] Boudet T, Chaton P. Thin Film Design Using Simulated Annealing and the Studyof Filter Robustness [C]//Proceedings of SPIE,1996,2776:27~38.
    [177] Martin S, Rivory J, Schoenauer M. Synthesis of Optical Multilayer Systems UsingGenetic Algorithms [J]. Applied Optics,1995,34(13):2247~2254.
    [178] Hobson M P, Baldwin J E. Markov-chain Monte Carlo Approach to the Design ofMultilayer Thin-film Optical Coatings [J]. Applied Optics,2004,43(13):2651~2660.
    [179] Thomson J K, Wickramasinghe H K, Ash E A. A Fabry-Perot Acoustic SurfaceVibration Detector—Application to Acoustic Holography [J]. J. Phys. D: AppliedPhysics,1973,6:677~687.
    [180] Bucaro J A, Dardy H D, Carome E F. Optical Fiber Acoustic Sensor [J]. AppliedOptics,1977,16:1761~1762.
    [181] Butter C D, Hocker G B. Fiber Optics Strain Gauge [J]. Applied Optics,1978,17:2867~2869.
    [182] Hocker G B. Fiber-optic Sensing of Pressure and Temperature [J]. Applied Optics,1979,18:1445~1448.
    [183] Phillips R L. Proposed Fiber-optic Acoustical Probe [J]. Optics Letters,1980,5:318~320.
    [184] Monchalin J P. Optical Detection of Ultrasound at a Distance Using a ConfocalFabry-Parot Interferometer [J]. Applied Physics Letters,1985,47:14~16.
    [185] Monchalin J P. Detection at a Distance of Laser-generated Ultrasound Using aConfocal Fabry-Parot Interferometer [J]. Can. J. Phys.,1986,64:1320~1323.
    [186] Monchalin J P. Optical Detection of Ultrasound [J]. IEEE Trans. Ultrason.Ferroelect. Freq. Contr.,1986,33:485~499.
    [187] Monchalin J P, Heon R. Broadband Optical Detection of Ultrasound by OpticalSideband Stripping with a Confocal Fabry-Perot [J]. Applied Physics Letters,1989,55:1612~1614.
    [188] Staudenraus J, Eisenmenger W. Fiber-optic Probe Hydrophone for Ultrasonic andShock-wave Measurements in Water [J]. Ultrasonics,1993,31:267~273.
    [189] Hamilton J D, Donnell M O. Optical Arrays for High Frequency UltrasoundImaging [C]//Proc. IEEE Ultrason. Symp.,1996, pp1419~1422.
    [190] Hamilton J D, Brooks C J, Vossler G L, Donnell M O. High FrequencyUltrasound Imaging Using an Active Optical Detector [J]. IEEE Trans. Ultrason.Ferroelect. Freq. Contrl.,1998,45:719~727.
    [191] Hamilton J D, Donnell M O. High Frequency Optoacoustic Arrays Using EtalonDetection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Contrl.,2000,47:160~169.
    [192] Koch C. Coated Fiber-optic Hydrophone for Ultrasonic Measurement [J].Ultrasonics,1996,34:687~689.
    [193] Koch C, Ludwig G, Molkenstruck W. Calibration of an Interferometric Fiber TipSensor for Ultrasound Detection [J]. Ultrasonics,1997,35:297~303.
    [194] Koch C, Ludwig G, Molkenstruck W. Calibration of a Fiber Tip Sensor up to50MHz and the Application to Shock Wave Measurement [J]. Ultrasonics,1998,36:721~725.
    [195] Koch C. Measurement of Ultrasonic Pressure by Heterodyne Interferometry witha Fiber Tip Sensor[J]. Applied Optics,1999,38:2812~2819.
    [196] Koch C, Molkenstruck W. Primary Calibration of Hydrophones with ExtendedFrequency Range1to70MHz Using Optical Interferometry [J]. IEEE Trans.Ultrason. Ferroelect. Freq. Contr.,1999,46:1303~1314.
    [197] Wilkens V, Koch C. Fiber-optic Multilayer Hydrophone for UltrasonicMeasurement [J]. Ultrasonics,1999,37:45~49.
    [198] Wilkens V, Koch C, Molkenstruck W. Frequency Response of a Fiber-opticDielectric Multilayer Hydrophone [C]//Proc. IEEE Ultrason. Symp.,2000,pp1113~1116.
    [199] Weise W, Wilkens V, Koch C. Frequency Response of Fiber-optic MultilayerHydrophones: Experimental Investigation and Finite Element Simulation [J].IEEE Trans. Ultrason. Ferroelect. Freq. Contrl.,2002,49:937~946.
    [200] Beard P C, Mills T N. Extrinsic Optical Fibre Ultrasound Sensor Using a ThinPolymer Film as a Low Finesse Fabry-Perot Interferometer [J]. Applied Optics,1996,35:663~675.
    [201] Beard P C, Mills T N. Miniature Optical Fibre Ultrasonic Hydrophone Using aFabry Perot Polymer Film Interferometer [J]. Electronics Letters,1997,33:801~803.
    [202] Beard P C, Hurrell A M, Elzen E, Mills T N. Comparison of a MiniatureUltrasonic Optical Fibre Hydrophone with PVDF Hydrophone Technology
    [C]//Proc. IEEE Ultrason. Symp.,1998, pp1881~1884.
    [203] Beard P C, Perennes F, Mills T N. Transduction Mechanism of a Fabry-PerotPolymer Film Sensing Concept for Wideband Ultrasonic Detection [J]. IEEETrans. Ultrason. Ferroelect. Freq. Contr.,1999,46:1575~1582.
    [204] Beard P C, Hurrell A M, Mills T N. Characterization of a Polymer Film OpticalFiber Hydrophone for Use in the Range of1to20MHz: a Comparison withPVDF Needle and Membrane Hydrophones [J]. IEEE Trans. Ultrason. Ferroelect.Freq. Contr.,2000,47:256~264.
    [205] Beard P C. Two-dimensional Ultrasound Receive Array Using an Angle-tunedFabry-Perot Polymer Film Sensor for Transducer Field Characterization andTransmission Ultrasound Imaging [J]. IEEE Trans. Ultrason. Ferroelect. Freq.Contr.,2005,52:1002~1012.
    [206] Wilkens V, Koch C. Optical Multilayer Detection Array for Fast Ultrasonic FieldMapping [J]. Optics Letters,1999,24:1026~1028.
    [207] Wilkens V. Characterization of an Optical Multilayer Hydrophone for Use asBroadband Ultrasound Reference Receiver—Comparison with PVDF MembraneHydrophones [C]//Proc. IEEE Ultrason. Symp.,2002, pp773~776.
    [208] Wilkens V. Characterization of an Optical Multilayer Hydrophone with ConstantFrequency Response in the Range from1to75MHz[J]. J. Acoust. Soc. Am.,2003,113:1431~1438.
    [209] Wilkens V, Molkenstruck W. Amplitude and Phase Calibration of Hydrophonesup to70MHz Using Broadband Pulse Excitation and an Optical ReferenceHydrophone [J]. J. Acoust. Soc. Am.,2004,115:2892~2903.
    [210] Wilkens V, Molkenstruck W. Broadband PVDF Membrane Hydrophone forComparisons of Hydrophone Calibration Methods up to140MHz [J]. IEEE Trans.Ultrason. Ferroelect. Freq. Contr.,2007,54:1784~1791.
    [211] Lewin P A, Mu C, Umchid S, Daryoush A, El-Sherif M. Acoustic-optic PointReceiver Hydrophone Probe for Operation up to100MHz [J]. Ultrasonics,2005,43:815~821.
    [212] Umchid S, Gopinath R, Srinivasan K, et al. Development of CalibrationTechniques for Ultrasonic Hydrophone Probes in the Frequency Range from1to100MHz [J]. Ultrasonics,2009,49:306~311.
    [213] Nakamura Y, Otani T. Study of Surface Elastic Wave Induced on BackingMaterial and Diffracted Field of a Piezoelectric Polymer Film Hydrophone [J]. J.Acoust. Soc. Am.,1993,94:1191~1199.
    [214] Lum P, Greenstein M, Grossman C, Szabo T L. High-frequency MembraneHydrophone [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Contr.,1996,43:536~543.
    [215] Dobrowolski J A. Comparison of the Fourier Transform and Flip-flop Thin-filmSynthesis Method [J]. Applied Optics,1986,25(12):1966~1972.
    [216] Poitras D, Dobrowolski J A, Cassidy T, Midwinter C, McElroy C T. Black LayerCoatings for the Photolithographic Manufacture of Diffraction Gratings [J].Applied Optics,2002,41(16):3306~3311.
    [217] Poitras D, Dobrowolski J A, Cassidy T, Moisa S. Ion-beam Etching for PreciseManufacture of Optical Coatings [J]. Applied Optics,2003,42(19):4037~4044.
    [218] Sullivan B T, Dobrowolski J A. Deposition Error Compensation for OpticalMultilayer Coatings.1.Theoretical Description [J]. Applied Optics,1992,31(19):3821~3835.
    [219] Sullivan B T, Clarke G A, Akiyama T, et al. High-rate Automated DepositionSystem for the Manufacture of Complex Multilayer Coatings [J]. Applied Optics,2000,39(1):157~167.
    [220] Tikhonravov A V, Trubetskov M K. On-line Characterization and Reoptimizationof Optical Coatings [C]//Proceedings of SPIE,2004,5250:406~413.
    [221] Tikhonravov A V. Virtual deposition plant [C]//Proceedings of SPIE,2005,5870:0D1~0D13.
    [222] Dobrowolski J A, Dalacu D, Li L, Ma P, Poitras D, Verly P G.50Years ofOptical Interference Coatings at the National Research Council of Canada [J].OPN,2007, June, pp25~30.
    [223] Dobrowolski J A. Versatile Computer Program for Absorbing Optical Thin FilmSystems [J]. Applied Optics,1981,20(1):74~81.
    [224] Dobrowolski J A, Ho F C, Belkind A, et al. Merit Functions for More EffectiveThin Film Calculations [J]. Applied Optics,1989,28(14):2824~2831.
    [225] Zorc H. Optimum Multilayer Design Selection in Relation to Production Errors[J]. Vacuum,1987,37(1/2):101~102.
    [226] Greiner H. Robust Optical Coating Design with Evolutionary Strategies [J].Applied Optics,1996,35(28):5477~5483.
    [227] Baumester P. Evaluation of the Solutions for Two Design Problems Presented atthe1998Optical Interface Coatings Conference [J]. Applied Optics,2000,39(13):2230~2234.
    [228] Thelen A, Tilsch M, Tikhonravov A V, et al. Topical Meeting on OpticalInterference Coatings (OIC’2001): Design Contest Results [J]. Applied Optics,2002,41(16):3022~3038.
    [229] Verly P G. Design of a Robust Thin-film Interference Filter for Erbium-dopedFiber Amplifier Gain Equalization [J]. Applied Optics,2002,41(16):3092~3096.
    [230] Tikhonravov A V, Trubetskov M K, Amotchkina T V, et al. Application ofAdvanced Optimization Concepts to the Design of High Quality Optical Coating
    [C]//Proceedings of SPIE,2003,4829:1061~1062.
    [231] Trubetskov M K, Tikhonravov A V. Robust Synthesis of Multilayer Coatings
    [C]//in Optical Interference Coatings,2010OSA Technical Digest Series, paperTuA4-1~3
    [232] Kruschwitz J. Software Tools Speed Optical Thin-film Design [J]. Laser FocusWorld,2003, June, pp158~159.
    [233] Thoeni W P. Deposition of Optical Coatings: Process and Automation [J]. ThinSolid Films,1982,88:385-397.
    [234] Tikhonravov A V, Trubetskov M K, Amotchkina T V. ComputationalManufacturing Experiments for Choosing Optimal Design and MonitoringStrategy [C]//in Optical Interference Coatings,2010OSA Technical Digest Series,paper TuA5-1~3.
    [235] Dobrowolski J A, Waldorf A. High-performance Thin Film Polarizer for the UVand Visible Spectral Regions [J]. Applied Optics,1981,20(1):111-116.
    [236] Li L, Dobrowolski J A. High-performance Thin-film Polarizing Beam SplitterOperating at Angles Greater than the Critical Angle [J]. Applied Optics,2000,39(16):2754-2771.
    [237]龙兴武,肖光宗,张斌.一种新型的高精度激光加速度计[J].光学学报,2010,30(11):3227-3232.
    [238]肖光宗,龙兴武,张斌,卢广锋,赵洪常. Y型腔正交偏振激光器的模竞争和光强调谐特性[J].中国激光,2011,38(3):0302016-1~6.
    [239] Yang Kaiyong, Long Xingwu, Huang Yun, Wu Suyong. Design and Fabricationof Ultra-high Precision Thin-film Polarizing Beam Splitter [J]. OpticsCommunications,2011,284(19):4650~4653.
    [240] Zheng Y F, Kikuchi K. Analytical Method of Determination Optical Constants ofa Weekly Absorbing Thin Film [J]. Applied Optics,1997,36(25):6325-6328.
    [241]谷晋骐,郑永星.DDI法测量薄膜的光学常数[J].中国激光,1996,23(10):915~919.
    [242] Swanepoel R. Determination of the Thickness and Optical Constants ofAmorphous Silicon [J]. J. Phys. E,1983,16:1214~1222.
    [243]王胭脂,张伟丽,范正修等.SiO2薄膜折射率的准确拟合分析[J].中国激光,2008,35(5):760~763.
    [244]顾培夫,陈海星,艾曼灵等.TiO2膜消光系数的确定及制备参量的影响[J].光学学报,2005,25(7):1005~1008.
    [245]何玉平,吴桂芳,李爱侠等.不同厚度溅射Ag膜的微结构及光学常数研究[J].光学学报,2002,22(6):678~682.
    [246]季一勤,刘华松,张艳敏.光学薄膜常数的测试与分析[J].红外与激光工程,2006,35(5):513~518.
    [247]梁丽萍,郝建英,秦梅等.基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数[J].物理学报,2008,57(12):7906~7911.
    [248]廖国进,骆红,闫绍峰等.基于透射光谱确定溅射Al2O3薄膜的光学常数[J].物理学报,2011,60(3):034201-1~7.
    [249]郭春,林大伟,张云洞等.光度法确定LaF3薄膜光学常数[J].光学学报,2011,31(7):0731001-1~7.
    [250] Dobrowoski J A, Ho F C, Waldorf A. Determination of Optical Constants of ThinFilm Coating Materials Based on Inverse Synthesis [J]. Applied Optics,1983,22:3191~3200.
    [251] D.P. Arndt, R.M.A. Azzam, J.M. Bennett et al. Multiple determination of theoptical constants of thin-film coating materials[J]. Applied Optics,1984,23:3571~3596.
    [252] Djurisic A B, Elazar J M, RaticA D. Simulated-annealing-based GeneticAlgorithm for Modeling the Optical Constants of Solids [J]. Applied Optics,1997,36(28):7097~7103.
    [253] Parramon J S, Borrull J F, Bosch S, et al. Use of Information on the Manufactureof Samples for the Optical Characterization of Multilayers through a GlobalOptimization [J]. Applied Optics,2003,42(7):1325~1328.
    [254]沈伟东,刘旭,叶辉等.确定薄膜厚度和光学常数的一种新方法[J].光学学报,2004,24(7):885~889.
    [255]孙喜莲,洪瑞金,齐红基等.磁控溅射不同厚度银膜的微结构及其光学常数[J].物理学报,2006,55(9):4923~4927.
    [256]金伟华,金春水,张立超等.基于混合优化算法测定铝薄膜光学常数[J].光学精密工程,2008,16(9):1582~1588.
    [257] Chen W P, Chen J M. Use of Surface Plasma Waves for Determination of theThickness and Optical Constants of Thin Metallic Films [J]. J. Opt. Soc. Am.,1981,71:189~191.
    [258] Abeles F. Methods for Determining Optical Parameters of Thin Films [C]//Progress in Optics ed by E. Wolf,1963, pp251~288.
    [259] Ulrich R, Torge K. Measurements of Thin Film Parameter with a Prism Coupler[J]. Applied Optics,1973,12:2901~2908.
    [260] Cardin J, Leduc D. Determination of Refractive Index, Thickness, and the OpticalLosses of Thin Films from Prism-film Coupling Measurements [J]. AppliedOptics,2008,47(7):894~900.
    [261]吴启宏,唐晋发.透明薄膜光常数的椭圆偏振测量[J].浙江大学学报,1980,4:89~98.
    [262]吴启宏.吸收薄膜光学常数的偏振测量[J].浙江大学学报,1981,4:111~118.
    [263]冯洪安,余玉贞,黄炳忠.椭圆光谱对复折射率薄膜的研究ITO膜光学常数的色散和生长规律[J].物理学报,1986,35(3):319~328.
    [264] Lariviere G P, Frigerio J M, Rivory J, et al. Estimate of the Degree ofInhomogeneity of the Refractive Index of Dielectric Films from SpectroscopicEllipsometry [J]. Applied Optics,1992,31:6056~6061.
    [265] Chindaudom P, Vedam K. Characterization of Inhomogeneous TransparentSubstrates by Spectroscopic Ellipsometry: Refractive Indices n(λ) of SomeFluoride-coating Materials [J]. Applied Optics,1994,33:2664~2671.
    [266]徐均琪,冯小利.多层薄膜光学常数的椭偏法研究[J].光电工程,2009,36(2):29~33.
    [267]王晓栋,沈军,王生钊等.椭偏光谱研究溶胶—凝胶TiO2薄膜的光学常数[J].物理学报,2009,58(11):8027~8032.
    [268]张继涛,李岩,罗志勇.一种可溯源的光学椭偏仪标定方法[J].物理学报,2010,59(1):186~191.
    [269]周毅,吴国松,代伟等.椭偏与光度联用精确测定吸收薄膜的光学常数与厚度[J].物理学报,2010,59(4):2356~2363.
    [270] Borgogno J P, Bousquet P, Flory F, et al. Inhomogeneity in Films: Limitation ofthe Accuracy of Optical Monitoring of Thin Films [J]. Applied Optics,1981,20:90~94.
    [271] Borgogno J P, Bousquet P, Pelletier E. Automatic Determination of OpticalConstants of Inhomogeneous Thin Films [J]. Applied Optics,1982,21:4020~4029.
    [272] Borgogno J P, Flory F, Roche P, et al. Refractive Index and Inhomogeneity ofThin Films [J]. Applied Optics,1984,23:3567~3570.
    [273] Pozo J M, Diaz L. Method for the Determination of Optical Constants of ThinFilms: Dependence on Experimental Uncertainties [J]. Applied Optics,1992,31(22):4474~4481.
    [274] Konstantinov I, Babeva T, Kitova S. Analysis of Errors in the Thin-film OpticalParameters Derived from Spectrophotometric Measurements at Normal LightIncidence [J]. Applied Optics,1998,37(19):4260~4267.
    [275]吴素勇,龙兴武,黄云,杨开勇.减小由光谱测量数据误差造成的薄膜光学参数反演不确定度的方法[J].中国激光,2009,36(8):2171~2177.
    [276]吴素勇,龙兴武.基于遗传算法的减反膜的优化设计[J].应用光学,2008,29(4):542~547.
    [277] Wu Suyong, Long Xingwu, Huang Yun, Yang Kaiyong. Fast RealizationAlgorithms of Sensitivity Control Concept in the Active Design of MultilayerOptical Coatings [J].强激光与粒子束,2011,23(6):1471~1478.
    [278]黄云,吴素勇,杨开勇.基于灵敏度控制的光学薄膜膜系主动设计方法[J].光学学报,2011,31(4):0431002-1~5.
    [279]吴素勇,龙兴武,杨开勇,黄云.光学多层薄膜反向工程中局部优化算法的性能分析[J].光学学报,2011,31(6):0631001-1~8.
    [280] J. A. Woollam Co., Inc. Guide to Using WVASE32Software for SpectroscopicEllipsometry Data Acquisition and Analysis [OL]. http://www.jawoollam.com,512pages.
    [281] Zuev I V, Tikhonravov A V. The Uniqueness of the Determination of theParameters of a Stratified Medium from the Energy Reflectance [J]. Russ. Comput.Maths Math. Phys.1993,33:387~395.
    [282] Popov K V, Tikhonravov A V. New Classes of the Uniqueness of theDetermination of the Parameters of a Stratified Medium from the EnergyReflectance [J]. Russ. Comput. Maths Math. Phys.1996,36:162~172.
    [283] Konstantin V P, Tikhonravov A V. The Inverse Problem in Optics of StratifiedMedia with Discontinuous Parameters [J]. Inverse Problems,1997,13:801~814.
    [284] Tikhonravov A V. Design and Reverse Engineering of Optical Coatings [C]//inOptical Interference Coatings,1998OSA Technical Digest Series, pp300~301.
    [285] Clark C. Optical Coating Process Simulation and Reverse Engineering [C]//inProceedings of Annual Technical Conference-Society of Vacuum Coaters,1999,pp237~242.
    [286] Sahoo N K. Multilayer Inverse Synthesis Techniques for the Analysis ofMixed-mode Inhomogeneities in Composite and Co-deposited Dielectric Coatings[J]. Vacuum,2001,60:411~417.
    [287] Janicki V, Zorc H. Determination of Refractive Index Profile of ZrO2onAmorphous and Pre-evaporated Substrates by Reverse Engineering [C]//Proceedings of SPIE,2004,5250:546~553.
    [288] Tikhonravov A V, Trubetskov M K, Amotchkina T V, et al. ReliableDetermination of Wavelength Dependence of Thin Film Refractive Index [C]//Proceedings of SPIE,2003,5188:331~342.
    [289] Tikhonravov A V, Trubetskov M K, DeBell G. On the Accuracy of Optical ThinFilm Parameter Determination Based on Spectrophotometric Data [C]//Proceedings of SPIE,2003,5188:190~199.
    [290] Koppelmann G, Krebs K. Die Optischen Eigenschaften Dielektrischer Schichtenmit Kleinen Homogenitatsstorungen [J]. Z. Phys.1961,164:539~556.
    [291] Carniglia C K. Ellipsometric Calculations for Nonabsorbing Thin Films withLinear Refractive-index Gradients [J]. J. Opt. Soc. Am. A,1990,7:848–856.
    [292] Lariviere G P, Frigerio J M, Rivory J, Abeles F. Estimate of the Degree ofInhomogeneity of the Refractive Index of Dielectric Films from SpectroscopicEllipsometry [J]. Applied Optics,1992,31:6056–6061.
    [293] Kruschwitz J, Stevenson I,, Source G. Reverse Engineering as an Approach toStatistical Process Analysis [C]//in Proceedings of48th Annual TechnicalConference-Society of Vacuum Coaters,2005, pp350~353.
    [294] Wilbrandt S, Stenzel O, G bler D, Kaiser N. Re-engineering of InhomogeneousCoatings Based on In-situ Optical Broadband Monitoring Data [C]//Proceedingsof SPIE,2005,5963:59630F-1~12.
    [295] Wilbrandt S, Stenzel O, Kaiser N. Experimental Determination of the RefractiveIndex Profile of Rugate Filters Based on in situ Measurements of TransmissionSpectra [J]. J. Phys. D: Appl. Phys.,2007,40:1435~1441.
    [296] Yao XiLin, Xiong ChangXin, Yang ChangCheng, Tong NanChun. Applicationsof Reverse Engineering in the Fabrication of Optical Coatings with HighPerformance [C]//Proceedings of SPIE,2006,6034:60341I-1~10.
    [297] Andrade R, Birgin E G, Chambouleyron I, Martínez J M, Ventura S D. Estimationof the Thickness and the Optical Parameters of Several Stacked Thin Films UsingOptimization [J]. Applied Optics,2008,47(28):5208~5220.
    [298] Amotchkina T V, Janicki V, Parramon J S, Tikhonravov A V, Trubetskov M K,Zorc H. General Approach to Reliable Characterization of Thin Metal Films [J].Applied Optics,2011,50(33):1453–1464.
    [299] Amotchkina T V, Trubetskov M K, Tikhonravov A V, Janicki V, Parramon J S,Zorc H. Comparison of Two Techniques for Reliable Characterization of ThinMetal–dielectric Films [J]. Applied Optics,2011,50(33):6189~6197.
    [300] Baumeister P. Design of Multilayer Filters by Successive Approximations [J]. J.Opt. Soc. Am.,1958,48(12):955~958.
    [301] Aguilera J A, Aguilera J, Baumeister P, et al. Antireflection Coatings forGermanium IR optics: a Comparison of Numerical Design Methods [J]. AppliedOptics,1988,27(14):2832-2840.
    [302] Carniglia C K, Jensen D G. Single-layer Model for Surface Roughness [J].Applied Optics,2005,44(16):6877-6884.
    [303] PerkinElmer precisely Inc. UV-VIS Spectroscopy Lambda650/805/950HardwareGuide [OL]. http://www.perkinelmer.com,72pages.
    [304] PerkinElmer precisely Inc. UV-VIS Spectroscopy UV WinLab Software Guide
    [OL]. http://www. perkinelmer.com,1002pages.
    [305]上海有色光学玻璃厂.有色光学玻璃和特种玻璃产品目录[M].上海,1995, pp9~39.
    [306] Yang Kaiyong, Long Xingwu, Huang Yun, Wu Suyong. Design Fabrication ofUltra-high Precision Thin-film Polarizing Beam Splitter [J]. OpticsCommunications,2011,284(19):4650~4653.
    [307] Clark C, Macleod H A. Errors and tolerances in optical coatings [C]//Proceedingsof40th Annual Technical Conference of Society of Vacuum Coaters,1997, pp1038~1047.