交流伺服系统控制策略及现场总线接口技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术、稀土永磁材料、微电子技术和控制理论的发展,永磁同步伺服驱动系统在工业国防等领域得到广泛应用。然而受技术水平等因素的影响,高档永磁同步伺服驱动系统市场仍受国外垄断。为打破这种垄断局面,使我国经济发展不受制于人,对高档伺服驱动系统的研究刻不容缓。本文在国家973项目和国家自然科学基金项目的支持下,在前人研究的基础上对交流永磁同步伺服驱动控制策略进一步深入研究。立足解决永磁同步电机的高精度、高速度、高响应、高平稳性控制难题。另外,对伺服驱动系统现场总线接口技术也做了深入的研究,以实现伺服驱动系统网络化接口。具体研究内容如下:
     典型的位置伺服系统多采用电流(力矩)环、速度环和位置环组成的三环反馈控制系统,电流环是内环,电流控制性能直接影响了位置和速度控制性能。目前电流控制多采用基于电流反馈控制的矢量控制方案,这是一种近似的解耦控制方案,该方案存在dq轴耦合效应和力矩电流漂移现象等缺陷。为此,提出两种可行的补偿方法,这两种方法是依靠电机控制模型对dq轴电流给定电流信号进行预处理,从而实现dq轴电流的完全解耦控制,这些方法对力矩电流漂移现象也有良好的抑制作用。
     电动机超低速控制性能是关系电机位置控制精度的一个重要因素,受编码器分辨率限制,常规M/T测速法对超低速检测存在检测死区和检测延迟,这将影响电动机超低速运行的稳定性。为此,提出两种新方法来改善伺服控制系统的超低速检测性能,第一种方法是改进型M/T法,它可以有效减小普通M/T法测速死区对伺服系统性能的影响,第二种方法是基于恒捷度模型的瞬时速度计算法,它是假定每个速度采样周期内转子的捷度是恒定的,然后利用解析几何理论构造瞬时速度计算模型,该方法能够同时减小测速死区和测速延迟,为系统超低速控制性能提供前提。
     转矩波动是影响伺服驱动系统低速稳定性、高速平稳性和位置控制精度的一个重要因素。造成转矩波动的因素有很多,其中永磁体磁链波动是一个重要原因。通过对永磁体磁链波动特性和成因分析,设计了一种模型参考自适应辨识方法(MARS)对磁链波动进行辨识,并提出了磁链波动补偿策略,以减小磁链波动对电磁转矩的影响。实验表明,这些方法对提高电机高速运行时的位置控制精度有积极作用。
     永磁同步电动机较异步电动机具有功率密度大、转子发热量小、结构紧凑等优点。用永磁同步电动机做主轴传动正在成为一个新的研究方向。普通永磁同步电动机为了实现力矩随电流线性可控,一般将励磁电流设为零,这种控制策略将导致电机的最高转速不能超过额定转速,转矩输出能力也不能满足主轴电机的要求。为此,提出了一种最优路径弱磁控制策略,可以大大提高电动机的最高运行速度,同时保证在任何转速下转矩良好可控性。
     伺服驱动总线接口技术可以了解决高档数控系统通讯带宽瓶颈问题,使伺服驱动装置能够以更高的精度和更快的速度接受上位机指令运行。以太网技术以成熟的技术、较高的带宽成为总线型数控系统极具潜力的实现方案。通过对总线型数控系统实时性和同步性要求的分析,指出普通以太网CSMA/CD机制的在数控系统应用上的缺陷。为此,提出两种:基于工业以太网的数控系统的实现方案,一种是基于普通网络芯片的软实时方案,另一种是基于专用硬件结构的硬实时方案。针对伺服驱动装置对总线接口的特殊要求,提出电流环同步校正原理和三次样条拟合的位置细分技术原理。应用和实验证实了该项技术的可行性和有效性。
AC servo system is used widely with the development of power electronic technology, rare-earth permanent magnet, microelectronic technology and control theory. While foreign enterprises monopolize high-grade servo system maket for technology and other factors in china. The research on high-grade servo system brooks no delay to ensure that the economic development will not be restricted. The control strategies on AC servo system are studied in this thesis based on the predecessors's research, and the thesis is supplied by the national 973 projects and national natural science foundation. The issues such as high speed, high precision, high response and high stability control are discussed in this thesis. In addition, the field bus interface technonogy is also analyzed to realize servo system networking. The details are shown as follows.
     Typical servo involves three loop feedback controls, such as current-loop, speed-loop and position-loop. The current-loop is the inner loop, which effects on the speed performance of motors. The vector control scheme based on current feedback control is extensively applied. But this scheme can only approximate decoupling control. In fact, the effect of dq-axis current coupling and the phenomenon of torque current drifting are existed. So, two methods to solve these issues are proposed. With these methods, the current control precision can be improved.
     The ultra-low speed control performance of permanent magnet synchronous motor is the significant factor to position-precision control. The conventional M/T method affects the stability of motor, which is characterized by detection dead-time and delay for the resolution of encoder. Two new methods to improve the ultra-low speed control performance of ac servo system are described in this thesis. One is improved M/T method, which could minimize the influence of speed detection dead time and smooth the measurement. Another is instantaneous speed detection method based on constant jerk model, which assumes the rotor jerk is constant at the interval of sampling period. The instantaneous speed is calculated by analytic geometry. This method can minimize the speed detection dead time and detection delay, which is the premise of low-speed control.
     The torque fluctuate would affect the stability of low-speed control, the stability of high-speed control and precision of position control. Many factors are related to this fluctuate, one of them is the permanent magnet flux fluctuate. The model reference adaptive identification method (MARS) used to identify the permanent magnet flux is proposed, and the compensation methods is also put forward. The experiment confirmed that the method is useful to the position precision.
     There are many advantages for the permanent magnet synchronous motor (PMSM) than AC induction motor (ACIM) such as higher power density, lower heating on the rotor and compacter structure. So, PMSM are also suitable to use as spindle motor. To realize that the torque could linear control by Iq, The conventional method is set excitation-current (Id) to zero, which would result in the max speed can not exceed the rated speed, and the torque output can not meet the demand of spindle motor. An optimal route field-weakening control strategy is proposed, which could greatly increase the max speed of rotor. At the mean time it could also keep the torque controllability at any speed.
     The bus interface technology could solve the issue of communication band-wide limitation in CNC system. The servo could also get the faster and more accuracy command from superior unit with bus interface technology. Ethernet, with the virtue of mature technology and fast communication, become the trend of networking CNC system. The limitation of mechanism of CSMA/CD used in CNC system is confirmed, through analysis to the synchronism and the real-time property. Two realization scheme to establish networking CNC system are proposed, one is based on conventional Ethernet chip (called soft real-time scheme), another is based on expert hardware structure (called hard real-time scheme). In addition, the principle of current-loop-rectify and position subdivision base on cubic spline fitting are proposed. The feasibility and effectiveness are confirmed by application and experiment.
引文
[1]沈福金,加工中心的主要发展动向--第23届日本国际机床展(JIMTOF2006)评述,航空制造技术,2007,2,64-67.
    [2]陈吉红,李斌,朱志红,彭芳瑜,叶伯生,由汉诺威EMO2005看数控系统的发展趋势及思考,世界制造技术与装备市场,2006,1,96-104.
    [3]陈荣,永磁同步电机伺服系统研究,博士学位论文,南京航空航天大学,2004.
    [4]郑小年,陈吉红,交流永磁伺服系统技术讲座《数控机床电气控制》绪论,伺服控制,2009,4,91-96.
    [5]许强,全数字交流伺服系统及其自适应控制的研究,博士学位论文,华中理工大学,1997.
    [6]陈吉红,朱志红,熊清平,发展我国伺服驱动产业的探讨,伺服控制,2007,2,12-15.
    [7]尚吉吉,永磁同步电动机磁场定向控制的研究,博士学位论文,浙江大学,2007.
    [8]吴茂刚,矢量控制永磁同步电动机交流伺服系统,博士学位论文,浙江大学,2006.
    [9]秦忆,周永鹏,邓忠华,程善美,李叶松,现代交流伺服系统,华中理工大学出版社,1995.
    [10]交流永磁同步电动机伺服系统简介,工程机械网, http://www.cmwin.com/CBPResource/StageHtmlPage/A261/A2612007101002433531.htm.
    [11]Richard W. Miller., Servomechanisms: devices and fundamentals, Reston, Va. : Reston Pub.Co., 1977.
    [12]刘胜,彭侠夫,叶瑰昀,现代伺服系统设计,哈尔滨工程大学出版社,2001.
    [13]Merritt, Herbert E. CAL, Hydraulic control systems, New York : Wiley, 1967.
    [14]Fawcett, J. R.,Hydraulie circuits and control systems., Surrey : Trade and technical press, 1979.
    [15]Bimal K.Bose, Modem power electronics and AC drives,Beijin: China Machine Press, 2003.
    [16]Anne Shumway-Cook, Marjorie H. Woollacott., Motor control: theory and practical applications, Philadelphia : Lippincott Williams & Wilkins, 2001.
    [17] Cheryl A. Coker., Motor learning and control for practitioners, Boston: McGraw-Hill, 2004.
    [18] 陈伯时,陈敏逊,交流调速系统(第2版),机械工业出版社,2005.
    [19] 叶云岳,直线电机原理与应用,机械工业出版社,2000.
    [20] 刘景林,马瑞卿,刘卫国,基于外转子式正弦波无槽无刷力矩电机的超低速高精度伺服系统,测控技术,2006,25(12),30-32.
    [21] 张珂,徐湘辉,佟俊,吴玉厚,电主轴直接转矩控制系统的设计与仿真研究,制造技术与机床,2007,8,31-35.
    [22] 李叶松,尹泉,姜向龙,交流永磁同步电机全数字伺服控制器设计,微电机,2003(6).vol.36.25-27.
    [23] 李叶松,宋宝,秦忆,全数字交流永磁同步电机伺服系统设计,电力电子技术,2002(6).vol.36.No.3.26-28.
    [24] 韩安太,黄海,DSP控制器原理及其在运动控制系统中的应用,清华大学出版社,2003.10.
    [25] Texas Instruments Incorporated, TMS320C28x DSP CPU and Instruction Set Reference Guide, Texas Instruments Incorporated, 2004.
    [26] Slobodan N. Vukosavi(?)., Digital control of electrical drives, New York : Springer, 2007.
    [27] Majumdar, G., Recent technologies and trends of power devices[J], 2007 International Workshop on Physics of Semiconductor Devices (IWPSD '07), 2007: 787-92.
    [28] Araki Toni, Integration of power devices-next tasks[C],.2005 European Conference on Power Electronics and Applications, v 2005:166-172.
    [29] Bimal K.Bose, Modern Power Electronics and AC Drives [M], China Machine Press, 2006.
    [30] JOHANNES HEIDENHAIN Gmbh, Brochure: Exposed linear Encoders[J], www.heidenhain.de.
    [31] Sazawa, M.; Yamada, T.; Ohishi, K.; Katsura, S.; Robust High Speed Positioning Servo System Considering Saturation of Current and Speed, Industrial Technology, 2006. ICIT 2006. IEEE International Conference on 15-17 Dec. 2006, p866-871.
    [32] Ohishi, K.; Yoshida, K.; Current sensor-less speed servo system of PM motor based on self-tuning current simulator, Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE InternationalVolume 3, 1-4 June 2003 p1895-1900 vol.3.
    [33] Shimada, A.; Kishiwada, Y; Arimura, M.; AC servo motor position sensorless control using mechanical springs, Advanced Motion Control, 2006. 9th IEEE International Workshop, p559-562.
    [34] 西门子(中国)有限公司,MASTERDRIVES控制系统,西门子(中国)有限公司工业业务领域工业自动化与驱动技术集团,http://www.ad.siemens.com.cn/products/mc/h_performance/motion_vector.asp.
    [35] 北京卓越世纪电气有限公司,安川伺服电机,北京卓越世纪电气有限公司,http://www.bjzysj.com/anc/anchuansifudianji.htm.
    [36] 周国荣,李致富,蒋复岱,基于DSP和CPLD的开放式机器人控制器,控制工程,2006,13(1),84-86.
    [37] 东莞市敏达测控技术有限公司,富士AC伺服系统,http://cn.made-in-china.com/china-products.
    [38] Kevin,丹纳赫推出新款SERVOSTAR 600系列数字伺服放大器,中国自动化网, http://www.ca800.com/news/html/2008-6-28/n86482.html.
    [39] 许强,盛建科,贾正春,交流伺服系统主电路参数的研究,伺服控制,2005,6,40-42.
    [40] 郭庆鼎 王成元 周美文等.直线交流伺服系统的精密控制技术.机械工业出版社,2000,12-16.
    [41] Zhang, Jian; Xu, Zhenlin; Wen, Xuhui, Study of a novel method of state-estimation and compensation for sensodess PMSM drive system, Diangong Jishu Xuebao, Transactions of China Electrotechnical Society, v 21, n 1, p 7-11+18, January 2006.
    [42] Dong, Yangbin; Jiang, Jinping; Wu, Maogang, State transformation based on robust quadric optimal control method for AC servo system, Diangong Jishu Xuebao, Transactions of China Electrotechnical Society, v 20, n 9, p 82-87, September 2005.
    [43] He, Guangdong; Jiang, J.P.; Shen, Jianxin; Lei, Jia, Fuzzy variable structure control scheme for AC servo drive system, IEEE International Electric Machines and Drives Conference Record, IEMDC, p MC3 3.1-3.3,1997.
    [44] Gao Qiang; Wang Wei; Ren Rongjie; Xu Dianguo,Design of IMC controller with anti-saturation for PMSM compressor system, 2008 IEEE Vehicle Power and Propulsion Conference (VPPC), p5 ,2008.
    [45] Xu Dong, Wang Tianmiao, Liu Jingmeng, Wei HongXing, "Precise current control of PMSM based on parameter identification", Dianli Zidonghua Shebei / Electric Power Automation Equipment, v 28, n 11,2008, p30-35.
    [46] Wu, Jia, Zhang, Dongsheng, Li, Yongdong, Fully digital implementation of PMSM servo based on a novel current control strategy, Proceedings of the Power Conversion Conference-Nagaoka, PCC, v 1, p133-138,1997.
    [47] Moon, Hyung-Tae; Kim, Hyun-Soo; Youn, Myung-Joong, A discrete-time predictive current control for PMSM, IEEE Transactions on Power Electronics, v 18, n 1 (Ⅱ), p 464-472, January 2003.
    [48] Chen, Rong; Deng, Zhi-Quan; Yan, Yang-Guang, Design of current control loop for permanent magnet synchronous servo system, Nanjing Hangkong Hangtian Daxue Xuebao, v 36, n 2, p 220-225, April 2004.
    [49] Wu, Fang; Wan, Shanming; Huang, Shenghua; Chen, Yongjun, Study on speed detection and control method of pmsm under ultra-low speed, Source: Proceedings of the Universities Power Engineering Conference, p 178-183,2007.
    [50] Gao, Yang; Yang, Ming; Yu, Yong; Xu, Dian-Guo, Disturbance observer based low speed control of PMSM servo system, Zhongguo Dianji Gongcheng Xuebao,v 25, n 22, p 125-129, November 16,2005.
    [51] Zhou, Fu; Yang, Jianguo; Li, Beizhi, A novel speed observer based on parameter-optimized MRAS for PMSMs, Proceedings of 2008 IEEE International Conference on Networking, ICNSC, p 1708-1713,2008.
    [52] Gao, Yang; Xu, Dianguo, Adaptive load torque observer using hyperstability for PMSM servo system, High Technology Letters, v 11, n 4, p 387-391,2005.
    [53] NIE Jian-hua, LI Sheng, LI Yang, The Study of Preview Feedforword Compensition in CNC Feeding Serve System, Modular Machine Tool & Automatic Manufacturing Technique, 2007(7).
    [54] Wenjing, Zhang, An adaptive sliding mode compensation for friction and force ripple in PMSM AC servo system, Proceedings of the 26th Chinese Control Conference, CCC 2007, p 71-75, 2007.
    [55] Liu, Mingji; Cai, Zhongqin; Cheng, Ximing; Ouyang, Minggao, Adaptive position serve control of permanent magnet synchronous motor, Proceedings of the American Control Conference, v 1, p 84-89, 2004.
    [56] El-Sousy, Fayez F. M., An intelligent model-following sliding-mode position controller for PMSM servo drives, Proceedings of the 2007 4th IEEE International Conference on Mechatronics, ICM 2007, 2007.
    [57] Cao Chengzhi, Wu Yingnan, Zhang Hui, A new direct torque control strategy with improved the system performance in the low speed region[C], Proceedings of SPIE-The International Society for Optical Engineering, v 6358 Ⅱ, Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation, p635-645,2006.
    [58] Mohamed, Yasser Abdel-Rady Ibrahim, Direct instantaneous torque control in direct drive permanent magnet synchronous motors - A new approach[J], IEEE Transactions on Energy Conversion, v 22, n 4, December, p829-838,2007.
    [59] Ren, Qingrong; Chen, Jihong; Tang, Xiaoqi; Zhang, Xiangli, Study and implementation of digital interface protocol based on ethernet for NC system, 2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008, p 1720-1724,2008.
    [60] 任清荣,基于以太网的数控系统数字接口技术研究,博士学位论文,华中科技大学,2008.
    [61] B. Whetten, S. Steinberg, D. Ferrari. The packet starvation effect in CSMA/CD LANs and a solution. Proceedings of 19th Conference on Local Computer Networks,2-5 Oct. 1994, Minneapolis, MN, USA, p206-217,1994.
    [62] Bielski, S., New hi-directional interface for position transducers, Elektronik Praxis, n 7, p 42-5, 14, 2004.
    [63] Seung-Ho Song and Seung-Ki Sul, "An Instantaneous Speed Observer for Low Speed Control of ac Machine",IEEE, p581-586,1998.
    [64] Yoichi Hori, "Robust and Adaptive Control a Servomotor using Low Precision Shaft Encoder", IEEE, p73-78,1993.
    [65] Yoichi Hori, "High Performance Control of Servomotor with Low Precision Shaft Encoder using Instantaneous Speed Observer and Adaptive Identification of Inertia Moment", IEEE,p7-12,1993.
    [66] Kenji Kubo, Masahiko Watanabe, Fusaaki Kozawa and Kyouchi Kawasaki, "Disturbance Toque Compensated Speed Observer for Digital Servo Drives", IEEE, p1182-1187,1990.
    [67] Kouetsu Fujita and Katsumasa Sado," Instantaneous Speed Detection with Parameter Identification for ac Servo Systems " ,IEEE Transactions On Industry Applications,vol.28,no.4,p864-872,July/August 1992.
    [68] Nam-Joon Kim,Dong-seok Hyun, "Very Low Speed Control of Industry Machine by Instantaneous Speed and Inertia Estimation", IEEE, p605-610,1994.
    [69] Shin-ichiro Sakai and Yoichi Hori," Ultra-low Speed Control of Servo motor using Low Resolution Rotary Encoder", IEEE,p615-620,1995.
    [70] Gaolin Wang ,Dianguo Xu,Yong Yua and MingYang, "Low Speed Control of permanent Magnet Synchronous Motor Based On Instantaneous Speed Estimation", Proceedings of the 6th world congress on Intelligent Control and Automation, p8033-8036,2006.
    [71] Seung-Ho Song and Seung-Ki Sul, "An Instantaneous Speed Observer for Low Speed Control of ac Machine" ,IEEE,p581-586,1998.
    [72] Kiyoshi Ohishi,Toshimasa,Miyazaki and Yoshihiro Nakamura, "Two-Degrees-of-Freedom Speed Controller Based on Doubly Coprime Factorization and Speed Observer" ,IEEE,p602-608,1995.
    [73] Xu Dianguo, Wang Hong, Shi Jingzhuo, "PMSM Servo System With Speed And Torque Observer",IEEE,p241-245,2003.
    [74] J.Corres, P.Gil, "Instantaneous Speed and Disturbance Torque Observer using Nonlinearity Cancellation of Shaft Encoder",IEEE,p540-545,2002.
    [75] Sheng-Ming Yang and Shuenn-Jenn Ke "Performance Evaluation of a velocity Observer for Accurate Velocity Estimation of Servo Motor Drives", 1998 Industry Application Society annual meeting, IEEE TRANSACTION ON INDUSTRY,2000.
    [76] 王军,王成元,郭庆鼎,辨识补偿技术在永磁直线同步电机伺服系统中的应用,沈阳工业大学学报,vol.21.No.1,1999.
    [77] 揭贵生,马伟明,考虑转子磁通谐波的永磁同步电机控制性能分析,铁道科学与工程学报,Vol.2,No.6,2005.
    [78] Wang Limei, Gao Yanping, "A novel strategy of direct torque control for PMSM drive reducing ripple in tongue and flux", Proceedings of IEEE International Electric Machines and Drives Conference, IEMDC 2007, v 1,p403-406,2007.
    [79] Sun Dan, He Yi-Kang, "Rotor flux observation based sensorless DTC PMSM", Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), v 40, n 7, p1276-1280,July, 2006.
    [80] Lin Weijie, "Study on direct torque control of permanent magnet synchronous motor based on observing stator flux linkage", IET Conference Publications, n 524, International Technology and Innovation Conference 2006, p1957-1962,2006.
    [81] R Krishnan, Praveen Vijayraghavan, "Fast Estimation and Compensation of Rotor Flux Linkage in Permanent Magnet Synchronous Machines", IEEE ISIE 1999, p661-666,1999.
    [82] Xiao Xi, Zhang Meng, Li Yongdong, Li Min, "On-line estimation of permanent magnet flux linkage ripple for PMSM based on a Kalman filter", IECON Proceedings (Industrial Electronics Conference), IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, p 1171-1175,2006.
    [83] Xiao Xi, Zhang Meng, Li Yong-Dong, "On-line estimation of permanent-magnet flux linkage ripple for PMSM", Proceedings of the Chinese Society of Electrical Engineering, v 27, n 24, Aug 25, p 43-47,2007.
    [84] Zhang Meng, Xiao Xi, Li Yong-Dong, "Speed and flux linkage observer for permanent magnet synchronous motor based on ekf", Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, v 27, n 36, Dec 25, p 36-40,2007.
    [85] I. D. Landau, M. Tomizuka & D. M. Auslander., Adaptive systems in control and signal processing 1983: proceedings of the IFAC workshop, San Franciso, USA, New York: Published for the International Federation of Automatic Control by Pergamon Press, 1984.
    [86] 许强,贾正春,许锦兴,作主轴传动的永磁同步电机弱磁控制系统,华中理工大学学报,vol.21,no.2,p31-36,1993.
    [87] 谭子瑜,游林儒,电主轴永磁同步电机的弱磁过程研究,微计算机信息,vol.22,no12,p141-143,2006.
    [88] MuhleggerW, Teppan W. Manfred Rentmeister, "Working condi2tions of a Permanent Excited Synchronous Motor in Flux - Weakening Mode[C]//Proceeding of ICEM, p1107-1110,1990.
    [89] Xu L, Ye L, Zhen L, et al. A New Design Concep t of Permanent Magnet Machine for Flux Weakening Operation, IEEE Trans. on Industry App lications, 31 (2), p373-378,1995.
    [90] 尹华杰,蒋豪贤,谢运祥等.一种永磁同步电动机弱磁新方案[J].微电机,32(2),p13-15,1999.
    [91] 李春艳,寇宝泉,程树康,永磁同步电动机弱磁扩速概况,微特电机,p58-60,2008.
    [92] M. F. Rahman, L. Zhong, K. W. Lim, "A Direct Controlled Interior Permanent Magnet Synchronous Motor Drive Incorporating Field Weakening", IEEE, 1997.
    [93] M Zordan, P Vas, M Rashed, S Bolognani, M Zigliotto, "Field-weakening in Vector Controlled And DTC PMSM Drive, Acomparative Analysis",IEEE, 2000.
    [94] Jans TM. "Flux-weakening Regime Operation of an Interior permanent-magnet synchronous Motor Dfive"[J],IEEE Trans Ind. Appl, 23(4),p681-689,1987.
    [95] Zeng Zhaohui, Zhou E, Liang CTW, "A New Flux Weakening Control Algorithm for Interior Pemanent Magnet Synchronous Motors", IEEE, p1183-1186, 1996.
    [96] 冷再兴,马志源,一种新的内置式永磁同步电机弱磁调速控制方法,微电机,vol.39,n6,p 11-16,2006.
    [97] Xie, Jing-Ming; Zhou, Zu-De; Chen, You-Ping; Chen, Bing, Time performance analysis of communication in CNC system based on field-bus, Computer Integrated Manufacturing Systems, CIMS, v 9, n 4, p 285-288, April 2003.
    [98] Liu Yanqiang; Huan Ji, Data communication protocol based on dual CAN bus for digital servo drive, Journal of Beijing University of Aeronautics and Astronautics, v 32, n 6, p 729-33, June 2006.
    [99] Jingmeng Liu; Tianmiao Wang; Youzhu Ling; Dong Xu, Bus protocol application in the network based AC servo system, 2007 Second IEEE Conference on Industrial Electronics and Applications, p 2679-85, 2007.
    [100] 廖效果等,数控技术,湖北科学技术出版社,2000.
    [101] Qingrong Ren, Jihong Chen, Xiaoqi Tang and Xiangli Zhang. Internet/Ethernet-Based Computer Numerical Control System. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, 2007.
    [102] X. L. Zhang, X. Q. Tang, J. H. Zhou, H. C. Zhou, T. Wu. "Hierarchical real-time network CNC system based on the transparent model of industrial Ethernet", International Journal of Advanced Manufacturing Technology, 34, pl 61-167, 2007.
    [103] Xiang-li Zhang, Xiao-qi Tang, Ji-hong Chen, "Time Synchronization of Hierarchical Real-time Networked CNC System Based on Ethernet/Internet", International Journal of Advanced Manufacturing, Technology.v 36, n 11-12, p 1145-1156, 2008.
    [104] Xiangli Zhang, Xiaoqi Tang, Jihong Chen, Field Device Communication Based on IEEE802.15.4, 2006 International Conference on communication, circuits and System Proceeding. IEEE press, p1269-1272,2006.
    [105] 阳宪惠,现场总线技术与应用[M],北京:清华大学出版社,1999.
    [106] Interests group SERCOS (IGS), SERCOS-Ⅲ - Innovation by Combining SERCOS interface~(TM) and Ethernet, 2004.
    [107] M Felser. Real-Time Ethernet-Industry Prospective. PROCEEDINGS OF THE IEEE 2005, Vol93, No.6, p1118-1129.
    [108] Qingrong Ren, Jihong Chen, Xiaoqi Tang and Xiangli Zhang. Study and Implementation of Digital Interface Protocol Based on Ethernet for NC System. 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 2008.
    [109] 陈吉红,我国数控系统技术发展现状及趋势,现代制造,22,p16,2007.
    [110] Xie Jingming; Zhou Zude; Chen Youping; Chen Bing, Research on the architecture of fieldbus-based open CNC system, Journal of Huazhong University of Science and Technology, v 30, n 4, p 1-3, April 2002.
    [111] Feldmann, K.; Solvie, M.; Stockel, T., Decentralization of control tasks using intelligent field devices illustrated by the example of an NC-axis controller based on PROFIBUS-FMS, FieldComms Europe. The Industrial Networking Show and Conference, p 119-24, 1996.
    [112] IEC PAS 62410 Real-Time Ethernet SERCOS Ⅲ. First edition, 8,p26-30.2005.
    [113] 赖兴余,李伟光,叶邦彦,基于现场总线的开放式网络数控系统研究,组合机床与自动化加工技术,2004(3),p41-42.
    [114] Dirk Janssen, Holger B(u|¨)ttner. Ethernet takes on fieldbus technology at the device level. The Industrial Ethernet Book, May 2004.
    [115] Real-Time Ethernet: Vnet/IP: Proposal for a Publicly Available Specification for Real-Time Ethernet, Doe. IEC 65C/352/NP, 2004.
    [116] Real-Time Ethernet: TCnet (Time-Critical Control Network): Proposal for a Publicly Available Specification for Real-Time Ethernet, Doc. IEC 65C/353/NP.2004.
    [117] Real-Time Ethernet: EPA (Ethernet for Plant Automation): Proposal for a Publicly Available Specification for Real-Time Ethernet, Doc. IEC 65C/357/NP, 2004.
    [118] Christian Schwab Looking behind the automation protocols. The Industrial Ethernet Book, November 2004.
    [119] EPSG, (2005). Ethernet Powerlink-Technology.
    [120] J. Feld.. "PROFINET-scalable factory communication forall applications". Proc.2004 IEEE Int. Workshop Factory Communication Systems, pages: 33-38.
    [121] D. Jansen and H. Buttner, "Real-time ethernet the EtherCAT solution, "Comput. Control Eng. J., vol. 15, no. 1 : 16-21, Feb.-Mar. 2004.
    [122] Real-Time Ethernet: Ethernet Control Automation Technology (ETHERCAT): Proposal for a Publicly Available Specification for Real-Time Ethernet, Doc. IEC 65C/355/NP, 2004.
    [123] K C Lee and S Lee. Integrated network of PROFIBUS-DP and IEEE 802.11 wireless LAN with hard real-time requirement. Proc. IEEE 2001 Int. Symp. Industrial Electronics, vol. 3: 1484-1489.
    [124] Andrew S.Tanenbaum,熊桂喜,王小虎译,计算机网络,北京:清华大学出版社,1998.
    [125] HEIDENHAIN, Bidirectional Synchronous-serial Interface for Position Encoders(EnDat interfaceVersion 2.2), D297403-02-C-02, 2005.