三相异步电动机磁链观测器与参数辨识技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流传动已经占领变速传动领域的主导地位,各种高性能的交流电机变频调速系统也广泛应用于工农业生产。磁链估计和参数辨识是高性能变频调速传动的关键技术,已成为各国学者研究的热点。交流三相异步电动机是多变量、非线性和强耦合的高阶系统,基于空间矢量分析的交流电机复数模型具有物理概念清晰、形式简洁的特点,论文系统总结了基于空间矢量分析的交流电机复数模型。提出了以Luenberger状态观测器理论为基础的定、转子磁链观测器的一般形式,并通过反馈矩阵的选择,可以使得磁链观测模型不出现某些特定的参数,从而使得磁链观测不受某些参数变化的影响,提高磁链观测的鲁棒性。证明了各种常见磁链模型都只是Luenberger观测器的特例。
     提出了基于模型参考方法的磁链自适应观测与参数辨识方法,不但可以准确观测电动机的磁链,当满足充分激励的条件时还可以同时辨识电动机的所有四个参数,即使不满足充分激励的条件,当部分参数已知时也可辨识其余参数。分别研究了在定子坐标系下和转子坐标系下基于模型参考方法的磁链观测和参数辨识,推导了参数的自适应律,从理论上证明了一定条件下的磁链和参数的收敛性,基于Matlab/Simulink进行了仿真,并对实际电动机的采样数据进行了实验,仿真和实验结果表明这种方法正确而有效。
     遗传算法是一种成熟的具有极高鲁棒性和广泛适用性的全局优化方法。由于遗传算法具有不受问题性质的限制,在解决电机参数辨识方面的较大潜力。本文提出利用电动机的启动过程进行基于遗传算法的参数辨识。结果表明,在定子坐标系下辨识时,定子电阻和总漏感的辨识精度较高,转子时间常数和定子电感的辨识精度较低;而在转子坐标系下辨识时,漏感、转子时间常数和定子电感的辨识精度较高,定子电阻的辨识精度却有明显下降。如果将两种坐标系下的辨识结合起来,以在定子坐标系下辨识得到的定子电阻为已知参数,再在转子坐标系下进行其它参数辨识,全部参数辨识精度大大提高。
     对按转子磁场定向的矢量控制系统来说,由于参数变化影响系统运行性能的程度最大的是转子时间常数的变化。本文提出一种新的异步电动机转子时间常数的在线校准方法,这种方法在励磁电流中间歇地叠加窄的负脉冲信号,根据此叠
The AC drives have played a dominant place in the field of variable speed drives and various high-performance variable frequency AC drives are widely applied in industrial and agricultural production. Flux estimation and parameters identification are the critical technologies in high-performance AC drives, and have turned to be the hotspot of research. AC three-phase induction motors are strongly coupling high-order systems of multiple variables and nonlinearity. This paper summarized the complex number models of AC motors based on space vector analysis, which have the features of clear physical concepts and concise forms. In this paper, it proposed the universal form of flux observer of stator and rotor based on Luenberger state-observer theory, and it improved the robustness of flux observer by the selection of feedback matrix, which makes certain parameters not appear in models of flux observer so that it are not influenced by the parameters. It is verified that the common flux models are just the special cases of Luenberger flux observer.One kind of model reference approach for adaptive flux estimation and parameter identification are presented, which can not only observe the stator or rotor flux accurately, but also identify all the four parameters rapidly in the case of persistent excitation. When some parameters are known, the rest of the parameters could also be identified even though the excitation is not persistent. The paper has studied this approach in stator and rotor reference frame respectively, deducted the adaptive laws of parameters and theoretically proved the astringency of flux and parameters in certain conditions. Simulation by Matlab/Simulink and then experiments with sampled data from an induction motors have been done, and the results of simulation and experiments show that the method are accurate and effective.Genetic algorithm is a kind of well-rounded global optimization method that owns the features of strong robustness and broad applicability. As the genetic algorithm is not limited by character of the problems, it has deep potential in dealing with parameters identification of motors. This paper proposed the parameters identification based on genetic algorithm using data of induction motors during starting process. It is showed that in the stator reference frame, the stator resistance and whole leaking inductance have relatively high identification accuracy while the
    rotor time constant and stator inductance have low identification accuracy, and in rotor reference frame, the leaking inductance, rotor time constant and stator inductance have high identification accuracy, but the identification accuracy of stator resistance has obvious decrease. If the identification in two reference frames are combined together, the stator resistance is identified in stator reference frame in advance, and then other parameters are gained in rotor reference frame;the identification accuracy of all the parameters will be improved a lot.With regard to the rotor-field-orientated vector control system, the change of rotor time constant has the greatest influence on the running performance of system compared to other parameters. So in this paper, it proposed another new method for adjusting the time constant of induction motors online, which intermittently overlap narrow negative pulse signal into the flux reference current, and then find out whether vector control was rotor-flux-oriented accurately according to the change of torque caused by overlapped pulse, and hereby adjust the time constant correspondingly. The simulation results showed this method could track the variance of rotor time constant very well.
引文
[1] 陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,1998.
    [2] 许大中.交流电机调速理论[M].杭州:浙江大学出版社,1991.
    [3] 吴守箴,臧英杰,熊小林.电气传动的脉宽调制控制技术[M].北京:机械工业出版社,2003.
    [4] Blaschke F. The principle of field orientation applied to the new trans vector closed-loop control system for rotating field machines[J]. Siemens Review, 1972, 39: : 217-220.
    [5] Depenbrock M. Direkte selbstregelung (DSR) fuhrhochdy-namische Drehfeldantriebe mit Stromrichterspeisung[J]. ETZArchiv, 1985, Bd, 7(7): 211-218.
    [6] 张春朋,林飞,宋文超,等.基于直接反馈线性化的异步电动机非线性控制[J].中国电机工程学报,2003,23(2):99-102.
    [7] 宋文超,林飞,张春朋.基于定子磁链模型的异步电动机反馈线性化控制[J].电工技术学报,2003,18(4):85-88.
    [8] Sugimoto H, Tamai S. Secondary resistance identification of an induction motor--Applied model reference adaptive system and its characteristics[J]. IEEE Transactions on Industry Applications, 1987, 23(2): 296-303.
    [9] Marino R, Peresada S, Tomei P. Global Adaptive Output Feedback Control of Induction Motors with Uncertain Rotor Resistance[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 967-983.
    [10] Park T G., Lee K S. SMC-based adaptive input-output linearising control of induction motors [J]. IEE Proceedings-Control Theory and Applications, 1998, 145(1): 55-62.
    [11] Won C Y, Kim D H, Bose B K. An induction motor servo system with improved sliding mode control [C]. Proceedings IECON' 92: 60-66.
    [12] Fujimoto Y, Kawamura A. Robust servo-system based on two-degree of freedom control with sliding mode[J]. IEEE Transactions on Industrial Electronics, 1995, 42(3): 272-280.
    [13] 胡汉金,王志良,刘明.智能控制在电机调速系统中的应用[J].电气自动化,1996,18(1):60-62.
    [14] 陈伯时,冯晓刚,王晓东,等.电气传动系统的智能控制[J].电气传动,1997,27(1):3-8.
    [15] 李艳,邵日祥,邵世煌.模糊控制在电气传动中的运用现状及前景[J].电气传动,1997,27(2):3-9.
    [16] Sousa G C D, Bose B K, Kim K S. Fuzzy logic based on-line tuning of slip gain for an indirect vector controlled induction motor drive[C]. Proceedings of the IECON'93 International Conference on Industrial Electronics, Control, and Instrumentation, 1993: 1003-1008.
    [17] Won C Y, Kim D H, Kim S C, et al. New fuzzy-sliding mode controller for position controller for position control of induction motor[C]. APEC '93. Conference Proceedings, 1993: 115-121.
    [18] 刘妹琴.神经网络控制的交流位置伺服系统[J].电气传动自动化,1998,20(2):28-30.
    [19] 王晓东,陈伯时.单神经元自适应控制传动系统的鲁棒性研究[C].EACS'98:256-260.
    [20] 汪镭,周国兴,吴启迪.基于人工神经网络在线参数跟踪的自适应交流传动系统[J].自动化学报,1997,23(4):543-546.
    [21] Wang Lei, Xiao Yun-shi, Wu Qi-di, Zhou Guo-xing. Neural ]network based parameters identification and adaptive speed control of ac drive system [C]. Proceedings of the IEEE International Conference on Industrial Technology 1996:118-121.
    [22] Kung Y S, Liaw C M, Ouyang M S. Adaptive speed control for induction motor drives using neural networks[J]. IEEE Transactions on Industrial Electronics, 1995, 42(1): 25-32.
    [23] Orlowska-Kowalska T, Kowalski C T. Neural network application for flux and speed estimation in the sensorless induction motor drive[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 1997(3): 1253-1258.
    [24] Toh A K P, Nowicki E P, Ashrafzadeh F. Flux estimator for field oriented control of an induction motor using an artificial neural network[C]. Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994(1): 585-592.
    [25] Fodor D, Ionescu F, Floricau D, et al. Neural networks applied for induction motor speed sensorless estimation [J]. IEEE International Symoposiumon Industrial Electronics, 1995(1): 181-186.
    [26] Kuo-Kai Shyu, Hsin-Jang Shieh, Sheng-Shang Fu. Model reference adaptive speed control for induction motor drive using neural networks[J]. IEEE Transactions on Industrial Electronics 1998, 45 (1): 180-182.
    [27] 曾岳南,陈伯时.异步电动机无速度传感器的矢量控制[J].电气传动自动化,2000,22(4):3-6.
    [28] 陈杰,李永东.异步电机控制策略及无速度传感器系统综述[C].EACS'98,29-40.
    [29] Elloumi M, Ben-Brahim L, Al-Hamadi M A. Survey of speed sensorless controls for IM drives[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998(2): 1018-1023.
    [30] Ohtani T, Takada N, Tanaka K. Vector control of induction motor without shaft encoder[J]. IEEE transactions on Industry Applications, 1992, 28 (1): 157-164.
    [31] Tsuji M, Shuo Chen, Izumi K, Ohta T, et al. A speed sensorless induction motor vector control system using q-axis flux with parameter identification[C]. Proceedings of the 23rd International Conference on Industrial Electronics, Control and Instrumentation, 1997(2): 960-965.
    [32] Schauder C. Adaptive speed identification for vector control of induction motors without rotational transducers[J]. IEEE Transactions on Industry Applications, 1992, 28(5): 1054-1061.
    [33] Peng Fang-Zheng, Fukao T, Lai Jih-Sheng. Low-speed performance of robust speed identification using instantaneous reactive power for tacholess vector control of induction motors[D]. Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994(1): 509-514.
    [34] 李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [35] Lin Faa-Jeng, Su Ho-Ming. A high performance induction motor drive with on-line rotor time-constant estimation[J]. IEEE Transactions on Energy Conversion. 1997, 12(4): 297-303.
    [36] Zai Li-Cheng, DeMarco C L, Lipo T A. An extended Kalman filter approach to rotor time constant measurement in PWM induction motor drives[J]. IEEE Transactions on Industry Applications, 1992, 28(1): 96-104.
    [37] Chrzan P J, Kurzynski P. A rotor time constant evaluation for vector-controlled induction motor drives[J]. IEEE Transactions on Industrial Electronics, 1992, 39(5): 463-465.
    [38] Ba-razzouk A, Cheriti A, Rajagopalan V. Real time implementation of a rotor time-constant online estimation scheme[C]. Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, 1999(2): 927-932.
    [39] Tso S K, Tang K H, Zhang H. Real-time estimation of induction-motor rotor time constant based on discretised rotor-frame model[C]. The 22nd Annual IEEE Power Electronics Specialists Conference Record, 1991: 586-590.
    [40] Vukosavic S N, Stojic M R. On-line tuning of the rotor time constant for vector-controlled induction motor in position control applications[J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 130-138.
    [41] Hu Jun, Wu Bin. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Transactions on Power Electronics. 1998, 13(5): 969-977.
    [42] 余功军,钟彦儒,杨耕.无速度传感器矢量控制系统中的电机参数辨识[J].电气传动,1999,29(1):7-10.
    [43] 郑婵瑶.无速度传感器矢量控制系统及参数辨识[D].合肥工业大学硕士学位论文,2001年3月.
    [44] 许镇琳,何启莲,李国民,等.异步机矢量控制系统的电机参数自设定[J].电工技术学报,1995(1):44-47.
    [45] 张伟.无速度传感器异步电机矢量控制系统控制方法的研究[D].浙江大学博士学位论文,2001.
    [46] Cirrincione M, Pucci M, Cirrincione G, Capolino G A. A new experimental application of least-squares techniques for the estimation of the induction motor parameters[J]. IEEE Transactions onlndustryApplications, 2003, 39(5): 1247-1256.
    [47] Cirrincione M, Pucci M. Experimental verification of a technique for the real-time identification of induction motors based on the recursive least-squares[C]. 2002 7th International Workshop on Advanced Motion Control, 2002:326-334
    [48] Marino P, Mungiguerra V, Russo F, Vasca F. Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter[C]. 1996 27th Annual IEEE Power Electronics Specialists Conference Record, 1996 (2): 1235-1241.
    [49] Alonge F, D'Ippolito F, La Barbera S, Raimondi F M. Parameter identification of a mathematical model of induction motors via least squares techniques[C]. Proceedings of the 1998 IEEE International Conference on Control Applications, 1998 (1): 491-496.
    [50] Bertoluzzo M, Buja G S, Menis R. Inverter voltage drop-free recursive least-squares parameter identification of a PWM inverter-fed induction motor at standstill[C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 1997(2): 649-654.
    [51] Marino P, Mungiguerra V, Russo F, et al. Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter[C]. 27th Annual IEEE Power Electronics Specialists Conference Record, 1996 (2): 1235-1241.
    [52] Filho E B S, Lima A M N, Jacobina C B. Parameter estimation for induction machines via non-linear least squares method[C]. Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, 1991(1): 639-643.
    [53] Jaramillo R, Alvarez R, Urdenas V, et al. Identification of induction motor parameter using an extended Kalman filter[C]. 1st International Conference on Electrical and Electronics Engineering, 2004: :584-588.
    [54] Loukil I, Gossa M, Chaari A, et al. Induction machine parameters and state estimation using Kalman filter approach[C]. 8th Mediterranean Electrotechnical Conference, 1996(1): 265-268.
    [55] Dell'Aquila A, Papa S, Salvatore L, et al. A delayed state Kalman filter for on-line estimation of induction motor parameters and rotor flux space vector position[C]. 8th Mediterranean Electrotechnical Conference, 1996(1): 269-273.
    [56] Kataoka T, Toda S, Sato Y. On-line estimation of induction motor parameters by extended Kalman filter[C]. Fifth European Conference on Power Electronics and Applications, 1993(4): 325-329.
    [57] Iwasaki T, Kataoka T. Application of an extended Kalman filter to parameter identification of an induction motor[C]. Conference Record of the 1989 IEEE Industry Applications Society Annual Meeting, 1989(1): 248-253.
    [58] Pena R S, Asher G M. Parameter sensitivity studies for induction motor parameter identification using extended Kalman filters[C]. Fifth European Conference on Power Electronics and Applications, 1993(4): 306-311.
    [59] Loron L, Laliberte G. Application of the extended Kalman filter to parameters estimation of induction motors[C]. Fifth European Conference on Power Electronics and Applications, 1993(5): 85-90.
    [60] Pires R Z, Pereira L F A, Magnus M C, et al. Adaptive control of nonlinear systems applied to the three-phase induction motor with unknown mechanical parameters[C]. 30th Annual Conference of IEEE Industrial Electronics Society, 2004(2): 1105-1110.
    [61] Sun Xiaohui, Han Zengjin. Model reference adaptive identification of induction motor parameters[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation, 2000(5): 3082-3086.
    [62] Blasco-Gimenez R, Asher G M, Sumner M, et al. Dynamic performance limitations for MRAS based sensorless induction motor drives—Part 2: Online parameter tuning and dynamic performance studies[J]. IEE Proceedings of Electric Power Applications, 1996, 143(2): 123-134.
    [63] Tan Zhuohui, Li Yongdong, Ji Zhiyan. Speed sensorless DTC and parameter estimation of induction motor based on a full-order MRAS method[C]. The Third International Power Electronics and Motion Control Conference Proceedings, 2000(3): 1202-1206.
    [64]Buja G S, Menis R, Valla M I. MRAS identification of the induction motor parameters in PWM inverter drives at standstill[C]. Proceedings of the 1995 IEEE 21st International Conference on Industrial Electronics, Control, and Instrumentation, 1995(2): 1041-1047.
    [65] Ide K, Bai Zhiguo, Yang Zijiang, et al. Torque control of induction machine by vector approximation with parameter adaptation based on MRAS[C]. 20th International Conference on Industrial Electronics, Control and Instrumentation, 1994 (1): 281 -286.
    [66] Dongjin Bae, Dowan Kim, Hyun-kyo Jung, et al. Determination of induction motor
     parameters by using neural network based on FEM results[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1924-1927.
    [67] Campbell J, Sumner M. Practical sensorless induction motor drive employing an artificial neural network for online parameter adaptation[J]. IEE Proceedings- Electric Power Applications, 2002, 149(4): 255-260.
    [68] Filippetti F, Uncini A, Piazza C, et al. Neural network architectures for fault diagnosis and parameter recognition in induction machines[C]. 8th Mediterranean Electrotechnical Conference, 1996(1): 289-293.
    [69] Fodor D, Griva G, Profumo F. Compensation of parameters variations in induction motor drives using a neural network[C]. 26th Annual IEEE Power Electronics Specialists Conference Record, 1995(2): 1307-1311.
    [70] 晋兆琼.基于遗传算法的感应电动机参数辨识的应用研究[D].天津大学硕士学位论文,2001.
    [71] 刘文峰.遗传算法在感应电动机稳态模型参数识别中的应用[D].广东工业大学硕士学位论文,2002.
    [72] 黄开胜,童怀,郑泰胜,等.遗传算法在感应电动机动态模型参数识别中的应用[J].中国电机工程学报,2000,20(8):37-41.
    [73] Alonge F, D'Ippolito F, Ferrante G, et al. Parameter identification of induction motor model using genetic algorithms[J]. IEE Proceedings- Control Theory and Applications, 1998, 145(6):587-593.
    [74] Pillay P, Nolan R, Haque T. Application of genetic algorithms to motor parameter determination for transient torque calculations[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1273-1282.
    [75] Abdelhadi B, Benoudjit A, Nait-Said N. Application of Genetic Algorithm With a Novel Adaptive Scheme for the Identification of Induction Machine Parameters[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 284-291.
    [76] Zhou Xiaoyao, Cheng Haozhong. The induction motor parameter estimation through an adaptive genetic algorithm[C]. 39th International Universities Power Engineering Conference, 2004(1): 494-498.
    [77] Weatherford H H, Brice C W. Estimation of induction motor parameters by a genetic algorithm[C]. Record of the 2003 Annual Pulp and Paper Industry Technical Conference, 2003:21-28.
    [78] Huang K S, Kent W, Wu Q H, et al. Parameter identification of an induction machine using genetic algorithms[C]. Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design, 1999: 510-515.
    [79] Bajrektarevic Edina. Parameter identification of induction motor using a genetic algorithm[D]. Master Dissertation of West Virginia University, America, 2002.
    [81] Vas P. Sensorless vector and direct torque control[M]. London, U. K: Oxford University Press, 1998.
    [82] 陈坚.交流电机数学模型及调速系统[M].北京:国防工业出版社,1989.
    [83] 马志云.电机瞬态分析[M].北京:中国电力出版社,1998.
    [84] 郑大钟.线性系统理论[M].北京:清华大学出版社,1990.
    [85] 夏超英.交直流传动系统的自适应控制[M].北京:机械工业出版社,1999.
    [86] 冯晓刚,陈伯时,夏承光.感应电动机转子磁链的间接观测方法[J].电工技术学报,1997,12(1):15-18.
    [87] Laudau I D. Adaptive control—the Model Reference Approach[M]. New York: Marcel Dekker Inc, 1979.
    中译本:自适应控制——模型参考方法.吴百凡译.北京:国防工业出版社,1985.
    [88] 吴广玉,范钦义,姜复兴,等.系统辨识与自适应控制(上、下册)[M].哈尔滨:哈尔滨工业大学出版社,1987.
    [89] 韩曾晋.自适应控制[M].北京:清华大学出版社,1995.
    [90] 李清泉.自适应控制系统理论、设计与应用[M].北京:科学出版社,1990.
    [91] 王秀峰,孙永华,祝和云.适应控制系统——理论、设计与应用[M].北京:化学工业出版社,1990.
    [92] 薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [93] 张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2004.
    [94] Narendra K, Valavanti L. Stable adaptive controller design-Direct control[J]. IEEE Transactions on Automatic Control. 1978, 23(4): 570-583.
    [95] Narendra K, LIN Yuan-Hao, Valavanti L. Stable adaptive controller design, part Ⅱ: Proof of stability[J]. IEEE Transactions on Automatic Control. 1980, 25(3): 440-448.
    [96] 夏超英.多综合点误差模型及其稳定性充分条件的一个猜想[J].自动化学报.2002,28(2):183-191.
    XIA Chao-Ying. Multi-adding-point error model and conjecture about the sufficient conditionof its stability[J]. Acta Automatica Sinica. 2002, 28(2): 183-191.
    [97] 孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,南宁:广西科学技术出版社,1997.
    [98] 杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001.
    [99] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [100] 杨智民,王旭.遗传算法在自动控制领域中的应用综述[J].信息与控制.2000,29(4):329-339.
    [101] 王秀峰.实数编码的遗传算法及其在逆变器馈电交流电机动中的应用[J].自动化学报.1998,24(2):250-253.
    [102] 陈国良,王煦法,庄镇泉,等.遗传算法及其引用[M].北京:人民有点出版社,1999.
    [103] Baker J E. Reducing bias and inefficiency in the selection algorithm[C]. Proceedings of 2nd International Conference on Genetic Algorithm, 1987: 14-21.
    [104] Srinivas M, Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(4): 656-667.
    [105] 吴志远,邵惠鹤,吴新余.一种新的自适应遗传算法及其在多峰值函数优化中的应用[J].控制理论与应用.1999,16(1):127-129.
    [106] Syswerda C. Uniform crossover in genetic algorithm[C]. Proceedings of 3rd International Conference on Genetic Algorithm, 1989: 2-9.
    [107] 金海,黄进.一种新的异步电机转子时间常数在线校准方法[J].电机与控制应用,2005,32(9):18-22.
    [108] 金海,黄进.基于模型参考方法的感应电机磁链的自适应观测及参数辨识[J].电工技术学报,2006,21(1):65-69.
    [109] 金海,黄进,杨家强.感应电机转子磁链自适应观测及参数辨识[J].浙江大学学报(工学版),2006,40(2):339-343,351.