数控机床进给系统惯量识别及控制器参数校准研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床以自动化程度高、柔性好、加工精度高等优点在现代制造业特别是复杂零件加工中得到广泛应用,并得到迅速的发展和普及。数控机床的加工精度是衡量数控机床工作性能的重要指标,体现着机械制造业的制造能力和发展水平,也是整个国家科技和工业水平的重要标志之一。而数控机床的加工精度在很大程度上取决于其伺服进给系统的精度。永磁同步电动机(PMSM)以其体积小、效率高、可靠性好以及对环境的适应性强等诸多优点,在各种高性能的数控机床伺服进给系统中得到了广泛应用。
     永磁同步电动机伺服进给系统受机械参数变化影响较大,若不及时对其控制器进行调整,会使控制系统性能变坏,甚至不稳定等一系列问题。这里的机械参数主要是指系统的转动惯量(包括电机转子转动惯量和负载的转动惯量)和负载转矩两部分。
     本文采用计算机仿真的方式对永磁同步电动机伺服进给系统进行了研究。首先,介绍了永磁同步电动机的数学模型和永磁同步电动机的矢量控制原理,确立了i_d=0的转子磁场定向的电流、速度双闭环的矢量控制方案。接着,按照工程上通常采用的方法把系统的电流环校正成典型Ⅰ型系统,根据部分模型匹配法设计了系统的速度控制器。然后,采用离散的模型参考自适应辨识算法和带有遗忘因子的递推最小二乘法两种方法在线辨识了系统的惯量,用辨识得到的惯量对系统的速度控制器进行在线校正研究,仿真结果表明该伺服系统在本身的参数变化较大时,仍然具有良好的动静态性能。负载转矩的变化对系统性能的影响也非常明显,需要在线进行动态补偿。但负载转矩同转动惯量一样,也是一个很难直接测量的非电物理量,需进行在线辨识。本文根据采用具有遗忘因子的递推最小二乘法辨识得到的负载转矩,对系统的电流进行了前馈补偿,有效地提高了伺服进给系统的抗干扰性能,增强了系统鲁棒性。最后对全文进行了总结。
Since numerical control machine has good performance in degree of automation, flexibility and high precision, it has been applied widely and further developed in modern manufacturing, especially, in complex part machining. The machining precision of numerical control machine is important performance index of numerical control machine, represents manufacture ability and developing level of manufacturing and is also one of most important symbol of all nation science and technology and industrialization level. The precision numerical control machine mostly depends on the precision of the servo feeding system. Permanent magnet synchronous motor (PMSM) has been widely used in high performance numerical control machine servo feeding system for its advantages, such as compactness, high efficiency, reliability and suitability to environment.
     The performance of PMSM servo feeding system is highly influenced by uncertainties of unpredictable variation of mechanical parameters and external load disturbances. In order to enhance the system static and dynamic performances. it is necessary to identify the mechanical parameters and auto-tune the speed controller.
     The thesis studies PMSM servo feeding system based on computer simulation. First, the mathematical model of PMSM and basic theory of vector control are introduced, the vector control scheme (i_d=0) based on rotor field orientation and current and speed double loops control scheme for PMSM servo system are made certain. Second, current controller and speed controller are designed respectively based on the method of engineering design and the method of part model matching. Then, the inertia of system is identified respectively based on model reference self adapting identification and recursive least square method with oblivious gene. And the scheme for auto-tuning the speed controller based on the identified inertia is presented as well. The simulation results prove that the PMSM servo system has good dynamic and static performance when the inertia varies. The load torque is also difficult to be measured directly, so it needed to be online identified. This dissertation adopt a compensate control algorithm, which could dynamically compensate load torque variation. The simulation results show that, this compensatory control strategy can improve the anti-disturbance and enhance robustness of serve feeding system. A summery of whole thesis is given in the end.
引文
[1]林交鸿.机床数控技术及其应用.北京:机械工业出版社,1996.
    [2]V.EJRIDENA and RM.FERREIRA. Mapping the Effects of Positioning Errors on the Volumetric Accuracy of Five-axis CNC Machine Tools. International Journal of Machine Tools & Manufacture,1993(3): 156~161.
    [3]廖效果,朱启遒.数字控制机床.武汉:华中理工大学出版社,1991.
    [4]郭庆鼎,王成元.交流伺服系统.北京:机械工业出版社,1994.
    [5]冯琪玲.综述数控机床对进给伺服驱动系统的要求.中国科技信息,2005,23:24—24.
    [6]张燕宾.SPWM变频调速应用技术.机械工业出版社,1997.
    [7]J. Hu, M. D. Leviner, D. M. Dawson, Vedagarbha. An adaptive tracking controller for multiple-phase permanent-magnet machines. INT.J.Control, 1996, 64(6): 997-1022.
    [8]孙宣标,郭庆鼎.基于推力观测器的直线交流伺服系统滑模变结构控制.电工技术学报,1998,13(2):1-5.
    [9]董炀斌,蒋静坪,吴茂刚.基于状态变换的交流伺服系统鲁棒二次最优控制方法.电工技术学报,2005,20(9):82—87.
    [10]赵希梅.郭庆鼎.永磁直线同步电动机的变增益零相位H,鲁棒跟踪控制.中国电机工程学报,2005,25(20):132-136.
    [11]曹永岩,孙优贤.不确定性滞斤系统时滞相关鲁棒控制.自动化学报,1999,25(2):25—27.
    [12]郭庆鼎,孙艳娜.基于内模原理的直线永磁同步伺服电机H,控制.控制理论与应用,2000,17(4):509-512.
    [13]Chun K T, Zhang S W. Servo position control of motors using fuzzy neural network. Electric Power Components and System, 2001(29): 229-246.
    [14]M. Nasir Uddin, Abido M A, Azizur Rahman. Development and implementation of hybrid intelligent controller for interior permanent-magnet synchronous motor drives. IEEE Transacions on Industrial Applications, 2004, 40.(1): 68~76.
    [15]王耀南.模糊控制专家系统神经网络控制.湖南:湖南大学出版社,1996.
    [16]王成元,周美文.郭庆鼎.矢量控制交流伺服驱动电动机.北京:机械工业出版社,2002.
    [17]陈坚.交流电机数学模型及调速系统.北京:国防工业出版社,1989.
    [18]马小亮.大功率变频调速及矢量控制技术.北京:机械工业出版社,1999.
    [19]Kim J M. Speed control of interior permanent magnet synchronous motor drive for the flux-weakening operation. IEEE Trans. Ind. Application, 1997, 33: 43-48.
    [20]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [21]刘辉.交流伺服系统及参数辨识算法研究:(硕士学位论文).南京:南京航空航天大学.2005.
    [22]陈荣,邓智泉,严仰光.永磁同步伺服系统电流环的设计.南京航空航天大学学报,2004,36(4):220-225.
    [23]秦忆.现代交流伺服系统.武汉:华中理工大学出版社,1995.
    [24]陈伯时.电力拖动自动控制系统(第二版).北京:机械工业出版社,2000.
    [25]胡寿松.自动控制原理(第四版).北京:科学出版社,2001.
    [26]李国勇.智能控制及其MATLAB实现.北京:电子工业出版社,2005.
    [27]张志涌.精通MATLAB6.5版.北京:北京航空航大大学出版社,2003.
    [28]程卫国,冯峰.姚东等.MATLAB5.3应用指南.北京:人民邮电出版社,1999.
    [29]下沫然.MATLAB6.0与科学计算.北京:电子工业出版社,2001.
    [30]侯媛形,汪梅,王立琦等.系统辨识及其MATLAB仿真.北京:科学出版社.2004.
    [31]Ciro Attaianese, Alfonso Damiano, Gianluca Gatto, et al. Induction motor drive parameters identification. IEEE Transactions on Power Electronics, 1998, 13(6): 112-117.
    [32]Tomonobu Senjyu, Kaname Kinjo, Naomitsu Urasski, et al. Parameter measurement for PMSM using adaptive identification. IEEE Transactions on Power Electronics, 2002, 11(5): 711-716.
    [33]Yujie Guo, Lipei Huang, Yang Qiu, et al. Inertia identification and auto-tuning of induction motor using MRAC. IEEE Transactions on Power Electronics, 2002, 13(4):47-54.
    [34]B.Nahid Mobarakeh, F.Meibody-Tabar, F.M.Sargos. On-line identification of PMSM electrical parameters based on decoupling control. IEEE Transactions on Power Electronics, 2001, 10: (512-515).
    [35]张万峰,阮立飞.叶梵生.基于模型参考自适应的异步电动机转动惯量的辨识.微特电机.1999.3:14-16.
    [36]Riccardo Marino, Sergei Peresada and Patrizio Tomei. On-line stator and resistance estimation for induction motors. IEEE Transactions on Control Systems Technology, 2000, 8(3): 979-983.
    [37]Toichi Hori. High performance control of servomotors with low precision shaft encoder using instantaneous speed observer and adaptive identification of inertia moment, IEEE Transactions on Power Electronics, 1993, 9 (2):578-582.
    [38]K.B. Lee, J.Y. Yoo, J.H. Song and I. Choy. Improvement of low speed operation of electric machine with an inertia identification using ROELO. IEE Proc. Electr. Power Appl., 2004, 151(1): 116-120.
    [39]高波,沈靖,王炎.永磁同步电机的参数及状态估计.哈尔滨工业大学学报,1997,29(1):30-32.
    [40]H.Hahn, K-D, Leirnbach, A.Piepenbriink. Inertia parameter identification of rigid bodies using a multi-axis test facility, IEEE Transactions on Power Electronics, 1994, 7(2): 564-570.
    [41]谢新民,丁锋.自适应控制系统.北京:清华大学出版社,2002.
    [42]Landau I D. Adaptive control. New York. Springer, 1998.
    [43]孙丽玲,许伯强,李和明.基于参数辨识技术的永磁同步电动机参数测定.华北电力大学学报,2002,29(4):26—29.
    [44]潘观海.杨俊华.同步电机参数的测量与辨识.华南理工大学学报(自然科学版),1996,24(1):23—28.
    [45]Hsia, T.C. On least squares algorithm for system parameter identification. IEEE Trans. on Automatic Control, 1996, 21: 104-108.
    [46]Carlo Cecati, Nicola Rptondale. On-line Identification of Electrical Parameters of the Induction Motor Using RLS Estimation. IEEE Transactions on Power Electronics, 1998, 25(2): 2263-2268.