混凝土结构裂缝控制的安全度设置水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构的裂缝控制是关系到混凝土结构能否满足耐久性与适用性要求的重要研究课题之一,但目前各国混凝土结构设计规范的裂缝控制标准和设计方法仍未及达成共识,裂缝控制标准与混凝土结构耐久性关系的研究还不够完善。本文主要从荷载作用下的裂缝宽度计算值的保证率以及基于耐久性的裂缝控制标准的模糊可靠度分析入手,对普通钢筋混凝土构件的裂缝控制标准以及钢衬钢筋混凝土压力管道外包混凝土结构轴向裂缝的控制标准的安全度设置水平进行了较为深入的研究,相关研究成果可供国内混凝土结构设计规范今后修订时借鉴和参考。主要研究成果如下。
     (1)提出了不同荷载组合下裂缝宽度计算值的等效保证率的概念。以频遇组合或准永久组合下的裂缝宽度计算值与标准组合下调整短期裂缝宽度扩大系数后的裂缝宽度计算值相等效为原则,提出了不同荷载组合下裂缝宽度计算值的等效保证率的概念。利用等效保证率的概念,可以定量比较不同荷载组合下裂缝宽度计算值的安全度设置水平。针对当前正常使用极限状态的可靠度研究尚不够充分的条件下,本文所提出的不同荷载组合下裂缝宽度计算值的等效保证率指标作为一种合理的尝试,避开了较为繁琐的可靠指标计算,为裂缝控制的安全度设置水平提供了定量分析手段,为定量分析普通钢筋混凝土构件裂缝控制标准的安全度设置水平开辟了一条新途径。
     (2)建立了计算单根构件裂缝宽度最大值的随机模型。利用短期裂缝宽度计算值的保证率与短期裂缝宽度扩大系数的关系,将短期裂缝宽度扩大系数视为随机变量,建立了计算单根构件裂缝宽度最大值的随机模型。
     (3)建立了裂缝引起构件耐久性损伤的综合隶属函数模型。基于裂缝对混凝土结构耐久性损伤影响的研究成果,以裂缝宽度最大值与保护层厚度之比以及裂缝宽度平均值与保护层厚度之比作为控制指标,建立了裂缝引起构件耐久性损伤的综合隶属函数模型。
     (4)建立了裂缝控制标准与混凝土结构耐久性之间的定量关系。根据已建立的裂缝引起构件耐久性损伤的综合隶属函数模型,利用Monte-Carlo法对GB50010-2010规范钢筋混凝土构件裂缝控制标准基于耐久性的可靠指标进行了计算分析,建立了裂缝控制标准与混凝土结构耐久性之间的定量关系。
     (5)利用不同荷载组合下裂缝宽度计算值的等效保证率的概念和GB50010-2010规范钢筋混凝土构件裂缝控制标准基于耐久性的可靠度分析结果,对我国现行规范的裂缝控制标准提出了以下修订建议,可供我国现行规范今后修编时借鉴和参考:
     1)宜采用荷载频遇组合计算计算钢筋混凝土构件的裂缝宽度,短期裂缝宽度计算值保证率仍宜保持为95%左右。
     2)当保护层厚度c<80mm时,裂缝宽度限值[Wmax]可取为保护层厚度c的线性函数,即取[Wmax]=kc。对于潮湿大气环境,可取k=0.005;对于氯离子侵蚀环境,可取k=-0.0035。当保护层厚度c>80mm时,对于潮湿大气环境[Wmax]可取为0.40mm;对于氯离子侵蚀环境[Wmax]可取为0.30mm。
     (6)利用本文所提出的等效保证率概念,对我过现行电力行业标准DL/T5141-2001《水电站应力钢管设计规范》钢衬钢筋混凝土压力管道外包混凝土结构轴向裂缝宽度计算公式的安全度设置水平进行了分析比较,进而从保证裂缝宽度计算公式具有一定的计算精度和符合一定的安全度设置水平的要求出发,对我国现行电力行业标准DL/T5141-2001关于钢衬钢筋混凝土压力管道外包混凝土结构轴向裂缝的控制标准提出了以下修订建议,可供我国现行电力行业标准DL/T5141-2001今后修编时借鉴和参考:
     1)宜采用荷载标准组合计算钢衬钢筋混凝土压力管道外包混凝土结构的轴向裂缝宽度,同时提出了两套计算钢衬钢筋混凝土压力管道外包混凝土结构轴向裂缝宽度的建议公式,相应的裂缝宽度计算值的保证率约在85%-90%之间。
     2)关于最大裂缝宽度的限值,采用本文建议公式一时,最大裂缝宽度限值可取为0.3mm;采用本文建议公式二时,最大裂缝宽度限值可取为0.35mm。
Concrete crack control is one of the most important issues which have great influences on structural durability and availability. However, at present the crack control criteria and design method at home and abroad have not reached an agreement, and the research about the relationship between crack control criteria and structural durability has not been perfect. With the use of guarantee rate of crack width calculation formula and the fuzzy reliability index of crack control criteria based on durability, this paper makes a deep research on the safety level of crack control criteria of reinforced concrete members as well as the axial crack conctol criteria of the steel lined reinforced concrete penstocks. The research results can be providing reference for the researchers making safety level study of crack control criteria, as well as providing guide for the revision of domestic concrete structure design specification. The main research results of this paper are as follows:
     (1) One new conception named as equivalent grarantee rate of crack width calculation results under different load combinations is put forward. The equivalent grarantee rate can be gotten based on the principle that the crack width calculation result under frequent combination or quasi-permanent combination should be equal to the one under norminal combination after lowering the short-term crack width expansion coefficient. The equivalent grarantee rate can be used to reflect the safety level of crack width calculation results under different load combinations. Based on the crack width calculation formula in GB50010-2010, the equivalent grarantee rate of crack width computation results under frequent combination and quasi-permanent combination are calculated and analysized, which provides a new method to make quantitative analysis of the safety level of crack control criteria for reinforced concrete members in GB50010-2010.
     (2) By taking the short-term crack width expansion coefficient as random variable whose statistical characteristic can be gotten by the relationship between short-term crack width and short-term crack width expansion coefficient, one new stochastic model for calculating maximum crack width in single member is set up.
     (3) Based on the research results about the damage effects on concrete structural durability induced by cracking, by taking the ratio of maximum crack width and concrete cover as well as the ratio of average crack width and concrete cover as the state variables, one new membership function model between crack width and concrete durability damage is set up.
     (4) Based on the new stochastic model for calculating maximum crack width in a single member and the membership function model between crack width and concrete durability damage provided in this paper, the reliability indexes of crack control criteria in GB50010-2010for reinforced concrete members are calculated by Monte-Carlo method, and then the quantitative relationship between crack control criteria and concrete structural durability is set up.
     (5) In accordance with the equivalent grarantee rate as well as the reliability indexes of crack control criteria for reinforced concrete members based on durability in GB50010-2010, some revision suggestions for crack control criteria are provided as follows, which can be taken for reference for the current specification revision in future:
     1) The crack width should be computed by frequent combination, and the short-term crack width calculation guarantee rate should be kept as95%.
     2) When the concrete cover c is lower than80mm, the crack width limit [Wmax] should be taken as the linear function of concrete cover c, that is [Wmax]=kc, for humid air environment k=0.005, and for chloride environment,k=0.0035. When the concrete cover c is above80mm, the crack width limit [Wmax] should be taken as definite value, for humid air environment,[Wmax]=0.4mm, and for chloride environment,[Wmax]=0.3mm.
     (6) By making use of the equivalent grarantee rate, the safety level of different crack width computation formulas for steel lined reinforced concrete penstocks are analysised and compared. Then from the perspective of satisfying the computation accuracy and safety level demand, some suggestions are provided for axial crack control criteria revision of steel lined reinforced concrete penstocks in DL/T5141-2001:
     1) The crack width should be computed by characteristic combination, and two types of crack width computation formulas for steel lined reinforced concrete penstocks are presented, with the corresponding calculation guarantee rate being from85%to90%.
     2) When using the first computation formula suggested in this paper to calculate crack width, the corresponding crack width limit should be taken as0.3mm. When using the second computation formula suggested in this paper to calculate crack width, the corresponding crack width limit should be taken as0.35mm.
引文
[1]金伟良,赵羽习.混凝土结构耐久性[M].科学出版社,2002.
    [2]张誉,蒋利学,张伟平,等.混凝土结构耐久性概论[M].上海科学技术出版社,2003.
    [3]王铁梦.钢筋混凝土结构的裂缝控制[J].混凝土,2000,(5):3-6.
    [4]Park S, Kwon S, Jung S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials,2012,29:183-192.
    [5]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州:浙江大学,2007.
    [6]金伟良,吕清芳,潘仁泉.东南沿海公路桥梁耐久性现状[J].江苏大学学报(自然科学版),2007,28(3):225-254.
    [7]陆春华.钢筋混凝土受弯构件开裂性能及耐久性能研究[D].杭州:浙江大学,2011.
    [8]徐克利.混凝土构件的荷载裂缝控制问题探讨[A].见:中国土木工程学会混凝土及预应力混凝土分会.中国预应力技术五十年--暨第九届后张预应力学术交流会论文集[C].北京:2006,221-226.
    [9]李春秋,陈肇元.荷载作用下混凝土构件裂缝控制的若干问题[J].建筑结构,2007,37(1):114-119.
    [10]傅金筑.水电站坝后背管结构及外包混凝土裂缝研究[A].见:中国水电顾问集团贵阳勘测设计研究院.第6届全国水电站压力管道学术论文集[C].北京:中国水利水电出版社,2007,94-99.
    [11]李扬,侯建国.钢衬钢筋混凝土管外包混凝土裂缝宽度计算公式安全度水平研究[J].武汉理工大学学报,2012,34(7):88-93.
    [12]王康平,伏义淑,邱卫民.钢衬钢筋混凝土压力管道裂缝计算公式研究[J].武汉水利电力大学(宜昌)学报,2000,12(4):278-282.
    [13]GB 50010-2010.《混凝土结构设计规范》[S].北京:中国建筑工业出版社,2010.
    [14]DL/T 5057-2009.《水工混凝土结构设计规范》[S].北京:中国电力出版社,2009.
    [15]SL 191-2008.《水工混凝土结构设计规范》[S].北京:中国水利水电出版社,2009.
    [16]JTS 151-2011.《水运工程混凝土结构设计规范》[S].北京:人民交通出版社,2011.
    [17]ACI 318-11 and ACI 318R-11. Building code requirements for structural concrete and commentary[S]. ACI Committee Institute, Farmington Hills, Mich,2011.
    [18]EN1992-1-1:2004. Eurocode 2:Design of concrete structures, Part 1-1:General rules and rules for building[S]. British Standards Institution, London,2004.
    [19]BS 8110-97. Structure use of concrete Part 1:Code of practice for design and construction[J]. British Standards Institution, London,1997.
    [20](?)-780-83《水工建筑物钢衬钢筋混凝土结构设计参考资料》.见:前苏联钢衬钢筋混凝土压力管道设计与施工编辑委员会编译.《前苏联钢衬钢筋混凝土压力管道设计与施工》[M].北京:中国水利水电出版社,2002.
    [21]魏巍巍,胡家顺,贡金鑫.中美欧混凝土结构设计[M].中国建筑工业处版社2007.
    [22]Gergely P, Lutz L A. Maximum crack width in reinforced concrete flexural members:Causes, mechanisms, and control of cracking in concrete[M]. ACI special publication SP-20, American Concrete Institute, Farmington Hills, MI,1968.
    [23]Makhlouf H M, Malhas F A. The effect of thick concrete cover on the maximum flexural crack width under service load[J]. ACI structural journal,1996,93(3):257-265.
    [24]Frosch R J. Another look at cracking and crack control in reinforced concrete[J]. ACI Structural Journal,1999,96(3):437-442.
    [25]ACI 318-99 and ACI 318R-99. Building code requirements for structural concrete and commentary[S]. ACI Committee Institute, Farmington Hills, Mich,1999.
    [26]陈飞,赵勇,周建民.美国规范ACI318的裂缝控制方法评析[J].建筑科学,2009,25(7):102-105.
    [27]ACI 318-02and ACI 318R-02. Building code requirements for structural concrete and commentary[S]. ACI Committee Institute, Farmington Hills, Mich,2002.
    [28]严正林.欧洲混凝土规范构件设计及其与中国规范的比较研究[D].北京:中国建筑科学研究院,2010.
    [29]李扬,侯建国.国内外混凝土构件裂缝控制安全度设置水平的比较[J].建筑结构,2011,41(2):124-127.
    [30]白生翔.预应力混凝土构件计算方法的若干改进建议[A].见:中国土木工程学会.第十届全国混凝土及预应力混凝土学术交流会论文集[C].北京:《中国学术期刊(光盘版)》电子杂志社,2005,243-249.
    [31]王清湘,赵顺波.大保护层钢筋混凝土受弯构件裂缝控制的试验研究[J].大连理工大学学报,1993,33(5):566-575.
    [32]吴胜兴.混凝土裂缝开展宽度计算的有限单元法[J].计算力学学报,1997,14(1):69-76.
    [33]田双珠,丁嵬,王元战.基于ANSYS的钢筋混凝土构件裂缝宽度计算方法[J].水道港口,2008,29(5):351-357.
    [34]赵顺波,管俊峰,张学朋,等.钢筋混凝土梁裂缝分型试验研究及统计分析[J].工程力学,2008,25(12):141-146,152.
    [35]管俊峰,赵顺波,黄承逵.钢筋混凝土梁裂缝分布受配筋影响的试验研究[J].武汉理工大学 学报,2009,31(11):56-60.
    [36]赵顺波,管俊峰,张学朋,等.截面高度对钢筋混凝土梁裂缝分布影响的试验研究[J].水利学报,2009,40(1):88-93,100.
    [37]管俊峰,赵顺波,黄承逵.钢筋混凝土梁裂缝分布受保护层厚度影响试验研究[J].大连理工大学学报,2010,50(5):723-728.
    [38]管俊峰,赵顺波,李晓克,等.钢筋混凝土梁裂缝宽度试验与计算方法[J].中国公路学报,2011,24(5):74-81,88.
    [39]金伟良,陆春华,王海龙,等.500级高强钢筋混凝土梁裂缝宽度试验及计算方法探讨[J].土木工程学报,2011,44(3):16-23.
    [40]周建民,王眺,陈飞,等.高强钢筋混凝土梁裂缝宽度的试验研究和分析[J].同济大学学报(自然科学版),2011,39(10):1420-1429,1499.
    [41]李艳艳,崔武文,戎贤.高强钢筋混凝土梁裂缝控制试验研究[J].混凝土,2011,(5):132-135.
    [42]赵勇,王晓锋,程志军,等.高强钢筋混凝土梁短期裂缝计算方法评析[J].建筑结构学报,2011,32(1):50-57.
    [43]周建民,王眺,赵勇,等.高强钢筋混凝土受弯构件裂缝宽度计算方法的研究[J].土木工程学报,2010,43(9):69-76.
    [44]傅剑平,王晓锋,朱爱萍,等.配置500MPa钢筋混凝土梁长期荷载裂缝宽度试验研究[J].建筑结构学报,2011,32(1):43-49.
    [45]李志华,苏小卒,赵勇,等.荷载作用下钢筋混凝土梁的裂缝控制规范比较[J].武汉理工大学学报,2010,32(13):67-71.
    [46]李志华,赵勇,尚世仲.钢筋混凝土受弯构件裂缝宽度计算方法的比较[J].四川建筑科学研究,2007,33(2):11-14.
    [47]李晓克,管俊峰,赵顺波,等.现行规范钢筋混凝土梁裂缝宽度验算公式对比[J].人民黄河,2009,31(10):114-116.
    [48]李扬,侯建国.无粘结预应力混凝土受弯构件裂缝宽度计算的一种简便方法[J].武汉大学学报(工学版),2010,43(6):743-746.
    [49]Chowdhury S H, Loo Y. A new formula for prediction of crack widths in reinforced and partially prestressed concrete beams[J]. Advances in structural Engineering,2001,4(2):101-110.
    [50]Frosch R J. Modeling and control of side face beam cracking[J]. ACI Structural Journal,2002, 99(3):376-385.
    [51]Colotti V, Spadea G. An analytical model for crack control in reinforced concrete elements under combined forces[J]. Cement and Concrete Composites,2005,27(4):503-514.
    [52]Oh B H, Kim S H. Advanced crack width analysis of reinforced concrete beams under repeated loads[J]. Journal of structural engineering,2007,133(3):411-420.
    [53]Dawood N, Marzouk H. An analytical model for crack spacing of thick reinforced concrete plates[J]. Engineering Structures,2010,32(2):472-482.
    [54]Pawlak W, Kaminski M. Cracking of reinforced concrete beams under torsion-theory and experimental research[J]. Archives of Civil and Mechanical Engineering,2012,12(3):368-375.
    [55]Elshafey A A, Dawood N, Marzouk H, et al. Predicting of Crack Spacing for Concrete by Using Neural Networks[J]. Engineering Failure Analysis,2013,(31):344-359.
    [56]潘立.关于混凝土结构裂缝问题的思考[J].工业建筑,2000,30(5):62-65.
    [57]GB/T 50283-1999.《公路工程结构可靠度设计统一标准》[S].北京:l中国计划出版社,1999.
    [58]焦美菊,孙利民.基于最大裂缝宽度的钢筋混凝土桥梁可靠度分析[J].工程力学,2010,27(增刊):245-249.
    [59]赵羽习,金伟良.正常使用极限状态下混凝土结构构件可靠度的分析方法[J].浙江大学学报(工学版),2002,36(6):674-679.
    [60]史志华,胡德,陈基本发,等.钢筋混凝土结构构件正常使用极限状态可靠度的研究[J].建筑科学,2000,16(6):4-11.
    [61]陈晓强,伋雨林.混凝土受弯构件挠度与裂缝计算公式的可靠度分析[J].华中科技大学学报(城市科学版),2004,(2):84-87.
    [62]唐铁羽.钢筋混凝土构件裂缝控制可靠度的模糊概率分析[J].大连工学院学报,1986,25(2):61-64.
    [63]赵国藩,李云贵.混凝土结构正常使用极限状态可靠度模糊概率分析[J].大连理工大学学报,1990,30(2):177-184.
    [64]JTG D62-2004.《公路钢筋混凝土及预应力混凝土桥涵设计规范》[S].北京:人民交通出版社,2004.
    [65]孙晓燕,黄承逵.既有钢筋混凝土桥梁正常使用极限状态可靠度分析[J].湖南大学学报:自然科学版,2006,33(4):21-25.
    [66]张谨.钢筋混凝土轴心受拉构件裂缝宽度统计概率计算及可靠度分析[J].混凝土,1992,(2):56-63.
    [67]曹双寅.裂缝对结构耐久性损伤程度评估方法的探讨[J].工业建筑,1992,22(1):8-12.
    [68]屈文俊.车惠民.裂缝对混凝土桥梁耐久性影响的评估[J].铁道学报,1997,19(4):90-98.
    [69]伍振志,杨林德,时蓓玲,等.裂缝对隧道管片结构耐久性影响及其模糊评价[J].地下空间与工程学报,2007,3(2):224-228.
    [70]Li Z, Chau C K, Zhou X. Accelerated assessment and fuzzy evaluation of concrete durability[J]. Journal of materials in civil engineering,2005,17(3):257-263.
    [71]Arya C, Ofori-Darko F K. Influence of crack frequency on reinforcement corrosion in concrete[J]. Cement and Concrete Research,1996,26(3):345-353.
    [72]李扬,侯建国.混凝土构件裂缝控制模糊可靠度计算方法[J].武汉理工大学学报,2012,34(3):80-85.
    [73]DL/T 5141-2001.《水电站压力钢管设计规范》[S].北京:中国电力出版社,2002.
    [74]DL/T 5057-1996.《水工钢筋混凝土结构设计规范》[S].北京:中国电力出版社,1996.
    [75]董哲仁,董福品.钢衬钢筋混凝土压力管道混凝土裂缝宽度数学模型[J].水力发电,1996,(5):39-42.
    [76]王康平,伏义淑,田斌.大坝背管裂缝宽度计算公式的改进[J].三峡大学学报(自然科学版),2001,32(5):396-401.
    [77]龚国芝,张伟,伍鹤皋,等.钢衬钢筋混凝土压力管道外包混凝土的裂缝控制研究[J].岩土力学,2007,28(1):51-56.
    [78]何化南,黄承逵.钢衬钢纤维自应力混凝土压力管道裂缝宽度的计算[J].水利学报,2008,39(8):988-993.
    [79]国茂华,侯建国,张长青.坝后背管外包混凝土裂缝间距计算分析[J].人民黄河,2009,31(11):105-107.
    [80]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
    [81]Broms B B. Stress distribution in reinforced concrete members with tension cracks[J]. ACI Journal Proceedings,1965,62(9):1095-1103.
    [82]Broms B B. Crack width and crack spacing in reinforced concrete members[J]. ACI Journal Proceedings,1965,62(10):1237-1255.
    [83]陆春华.钢筋混凝土受弯构件开裂性能及耐久性能研究[D].杭州:浙江大学,2011.
    [84]赵作周,叶列平.混凝土结构(第二版)[M].北京:清华大学出版社有限公司,2005.
    [85]沈在康.混凝土结构设计新规范应用讲评[M].北京:中国建筑工业出版社,1993.
    [86]蓝宗建,丁大钧.钢筋混凝土受弯构件裂缝宽度的计算[J].南京工学院学报,1985,,(2):64-72.
    [87]戴航,丁大钧,监宗建.混凝土保护层厚度对轴心受拉构件裂缝间距及裂缝宽度影响的试验研究[J].工业建筑,1990,(1):27-32.
    [88]傅金筑.水电站坝后背管结构及外包混凝土裂缝研究[M].北京:中国水利水电出版社,2007.
    [89]蒋德稳,李果,袁迎曙.混凝土横向裂缝对钢筋腐蚀速度影响的试验研究[J].四川建筑科学研究,2005,31(4):55-58.
    [90]Mohammed T U, Otsuki N, Hisada M, et al. Effect of Crack Width and Bar Types on Corrosionof Steel in Concrete[J]. Journal of Materials in Civil Engineering,2001,13(3):194-201.
    [91]Aldea C, Shah S P, Karr A. Effect of cracking on water and chloride permeability of concrete[J]. Journal of Materials in Civil Engineering,1999,11(3):181-187.
    [92]Djerbi A, Bonnet S, Khelidj A, et al. Influence of traversing crack on chloride diffusion into concrete[J]. Cement and Concrete Research,2008,38(6):877-883.
    [93]Park S, Kwon S, Jung S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials,2012,(29):183-192.
    [94]Arya C, Ofori-Darko F K. Influence of crack frequency on reinforcement corrosion in concrete[J]. Cement and Concrete Research,1996,26(3):345-353.
    [95]Win P P, Watanabe M, Machida A. Penetration profile of chloride ion in cracked reinforced concrete[J]. Cement and concrete research,2004,34(7):1073-1079.
    [96]Shao-feng Z, Chun-hua L, Rong-gui L. Experimental Determination Of Chloride Penetration In Cracked Concrete Beams[J]. Procedia Engineering,2011,(24):380-384.
    [97]陆春华,金伟良,延永东.氯盐干湿环境下受弯横向裂缝对钢筋混凝土耐久性影响[J].海洋工程,2012,30(1):131-136.
    [98]Kwon S J, Na U J, Park S S, et al. Service life prediction of concrete wharves with early-aged crack:Probabilistic approach for chloride diffusion[J]. Structural Safety,2009,31(1):75-83.
    [99]Gerard B, Breysse D, Ammouche A, et al. Cracking and permeability of concrete under tension[J]. Materials and Structures,1996,29(3):141-151.
    [100]Wang K, Jansen D C, Shah S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research,1997,27(3):381-393.
    [101]Picandet V, Khelidj A, Bellegou H. Crack effects on gas and water permeability of concretes[J]. Cement and Concrete Research,2009,39(6):537-547.
    [102]郑久建,卢文良.用引入模糊示性函数的蒙特卡洛方法计算结构的失效概率[J].北方交通大学学报,1998,22(1):7-11.
    [103]杨纶标,高英仪,版社,等.模糊数学原理及应用(第三版)[M].广州:华南理工大学出版社,2001.
    [104]姚泽良,李宝平,周雪峰.结构可靠度分析的一次二阶矩方法与二次二阶方法[J].西北水力发电,2005,21(3):20-23.
    [105]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007.
    [106]金伟良.工程荷载组合理论与应用[M].北京:机械工业出版社,2006.
    [107]GB 50009-2012.《建筑结构荷载规范》[S].北京:中国建筑工业出版社,2012.
    [108]李刚,侯建国.中美混凝土结构设计规范可靠度设置水平的比较[J].四川建筑科学研究,2003,29(2):11-13.
    [109]赵国藩.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.
    [110]ACI 224R-01. Control of Cracking in Concrete Structures[S]. American Concrete Institute, Farmington Hills, Mich.,2001.
    [111]Beeby A W. The prediction of crack widths in hardened concrete[J]. The structural engineer,1979, 57(1):9-17.
    [112]白生翔.混凝土构件裂缝控制的可靠度分析模式[J].建筑科学,1997,(6):3-12.
    [113]Mohammed T U, Otsuki N, Hamada H. Corrosion of steel bars in cracked concrete under marine environment[J]. Journal of materials in civil engineering,2003,15(5):460-469.
    [114]JSCE-Concrete Committee. Standard specification for concrete structures[S].2002.
    [115]GB/T 50476-2008.《混凝上结构耐久性设计规范》[S].北京:中国建筑工业出版社,2008.
    [116]高小建,巴恒静.混凝土结构耐久性与裂缝控制中值得探讨的几个问题[J].混凝土,2001,(11):12-13.
    [117]李扬,侯建国.基于耐久性要求的混凝土构件裂缝控制标准的修订建议[A].见:全国第十二届混凝土结构基本理论及工程应用学术会议论文集[C].杭州:浙江大学出版社,2012,333-340.
    [118]GB 50153-2008.《工程结构可靠性设计统一标准》[S].北京:中国建筑工业出版社,
    [119]邸小坛,周燕.混凝土结构的耐久性设计方法[J].建筑科学,1997,(1):16-20.
    [120]陈肇元.混凝士结构的耐久性设计方法[J].建筑技术,2003,34(5):328-333.
    [121]ISO2394:1998. General principles on reliability for structures[S].1998.
    [122]EN 1990:2002. Eurocode-Basis of structural design[S].2002.
    [123]乔伊夫著,赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社,2011.
    [124]Vidal T, Castel A, Francois R. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment[J]. Cement and Concrete Research,2007, 37(11):1551-1561.
    [125]吕清芳,金伟良.碳化作用下基于可靠度的混凝土结构耐久性设计方法研究[J].工业建筑,2008,38(12):84-87.
    [126]SL 281-2003.《水电站压力钢管设计规范》[S].北京:中国水利水电出版社,2003.
    [127]SL/T 191-96.《水工混凝土结构设计规范》[S].北京:水利水电出版社,1997.
    [128]蒋锁红,傅金筑.背管外包混凝土裂缝研究报告[R].阳安:国家电力公司西北勘测设计研究院,2000.
    [129]JTJ 220-82.《港口工程技术规范,混凝土和钢筋混凝土设计部分)》(试行)[S].北京:人民交通出版社,1982.
    [130]王康平,伏义淑,邱卫民.钢衬钢筋混凝土压力管道裂缝计算公式研究[J].武汉水利电力大学(宜昌)学报,2000,22(4):278-282.
    [131]何化南,秦杰,黄承逵.大比尺马蹄形钢衬钢筋混凝土压力管道试验研究[J].水利与建筑工程学报,2009,7(1):4-9.
    [132]Frosch R J. Modeling and control of side face beam cracking[J]. ACI Structural Journal,2002, 99(3):376-385.
    [133]DeStefano R, Evans J, Tadros M. Flexural Crack Control in Concrete Bridge Structures[R]. Orlando:3rd International Symposium on High Performance Concrete,2003.
    [134]管俊峰.钢筋混凝土结构仿真模型试验理论与应用研究[D].大连:大连理工大学,2010.
    [135]蒋锁红,夏忠,谢小平.水电站坝后背管工程技术[M].北京:科学出版社,2007.
    [136]蒋锁红,傅金筑.李家峡钢衬钢筋混凝土管裂缝处环向钢筋应力测试[A].见:中国水电顾问集团贵阳勘测设计研究院.《中国水电站压力竹道第6届全国水电压力管道学术论文集》[C].北京:中国水利水电出版社,2006,56-61.
    [137]陈际唐.三峡水电站压力管道混凝土裂缝现状及初步分析[A].见:中国水电顾问集团华东勘测设计研究院.《中国水电站压力管道第7届全国水电站压力管道学术论文集》[C].北京:中古电力出版社,2010,244-247.