煤焦与水蒸气及CO_2共气化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭气化是煤炭洁净转化利用的关键技术和龙头技术,实际的煤气化技术一般以水蒸气配比一定量的空气或氧气作气化剂。在气化剂中加入一定量的CO_2替代部分水蒸气作气化剂,生产出的浓度较高CO或者具有不同组成的煤气,可满足不同的煤气用途的需要;同时,可减少水蒸气的消耗量,也即减少污水的处理量,有着非常重要的现实意义。为此,煤炭科学研究总院青年创新基金项目(2006QN38)被批准立项,重点研究CO_2替代部分水蒸气作气化剂的气化特性。
     本文结合该项目选取了三种不同变质程度的原煤——宝一褐煤、神东烟煤及王坡无烟煤制得的煤焦为研究对象。对三种原煤及其焦样进行了基础的煤质分析,对三种焦样还进行了比表面及孔径分布测试。在此基础上运用热分析技术,较系统且多角度地研究了三种煤焦在常压、1173~1323K,四种不同水蒸气及CO_2配比下的气化反应特性。用混合反应模型求取了气化反应动力参数,分析了动力学参数间的补偿效应,探讨了煤焦与水蒸气及CO_2共气化过程中的交互作用,最后进行了单一煤焦(褐煤焦)的常压管式炉实验,分析了所得煤气的煤气组成及煤气产率。
     根据常压热天平实验数据,分别计算了三种煤焦的固定碳转化率、反应性指数及平均比气化速率,结果表明:
     (1)三种煤焦的反应活性由高到低的顺序为神东煤焦>宝一煤焦>王坡煤焦,这与前人的研究结论——煤焦的反应性一般随煤化程度的提高而降低不相符合,分析原因认为可能是由于煤中矿物质的含量不同,所起的催化作用不同引起的。
     (2)随着反应温度升高,在同一反应时间下,所有实验气化剂配比条件下,三种煤焦的固定碳转化率都呈现出增加的趋势;而且,随温度升高,煤焦达到最大转化率的时间缩短。
     (3)随气化剂中水蒸气含量的增加、CO_2含量的减少,反应进行相同时间时,除个别实验外,所有实验条件下,三种煤焦碳转化率均呈现出增加的趋势,纯水蒸气气化的碳转化率均高于纯CO_2气化时的碳转化率。
     (4)同一气化剂配比下,三种煤焦的反应性指数、平均比气化速率均随温度的升高而增大;除个别实验外,同一气化温度下三种煤焦的反应性指数、平均比气化速率,均随气化剂中水蒸气含量的增加、CO_2含量的减少而增大。
     (5)混合模型对实验数据的线性拟合度高,得到的有关动力学参数n,k,Ea,lnk_0表明:三种煤焦的总反应级数介于0.7197~1.7846之间:三种煤焦与纯水蒸气反应的活化能介于134.8~187.5kJ/mol之间,与60%水蒸气+40%CO_2反应的活化能介于119.4~180.8kJ/mol之间,与30%水蒸气+70%CO_2反应的活化能介于136.9~199.7kJ/mol之间,与纯CO_2反应的活化能介于126.6~230.9kJ/mol之间。三种煤焦的活化能越高,对应的指前因子也越大,两者之间存在动力学补偿效应,其分析可由过渡态理论予以解释。
     (6)两种配比的水蒸气及CO_2混合气体作气化剂时,宝一煤焦只在气化剂配比60%H_2O+40%CO_2、气化温度1323K时对气化速率产生了明显的交互促进作用,其它实验条件下对气化速率的交互作用不明显;神东煤焦及王坡煤焦在所有实验条件下对气化速率均产生了明显的交互促进作用。
     通过对宝一褐煤焦1273K,常压管式炉实验所得煤气的气体组成分析,得到以下结论:
     (1)在煤焦与水蒸气及CO_2共气化过程中,水蒸气及CO_2均参与了反应。
     (2)在反应进行相同的时间时,随气化剂中水蒸气含量的降低,CO_2含量的增加,混合煤气中H_2的含量减少,CO的含量大致呈递增趋势,CO_2含量大致呈递增趋势,CH_4大致呈递减的趋势。
     (3)随着水蒸气含量的降低,CO_2含量的增加,反应进行相同时间,所得混合煤气中H_2/CO的值逐渐降低,H_2+CO_2的含量逐渐减少。
     (4)宝一煤焦与水蒸气及CO_2在管式炉共气化实验中对煤气产率产生了交互促进作用,提高了煤气产率;宝一煤焦与纯水蒸气气化的煤气产率高于与纯CO_2气化的煤气产率,而且宝一煤焦与纯CO_2气化的煤气产率也不低。
Coal gasification is the key and main technology of clean coal transformation and utilization technology. Generally, coal gasification technology practically use steam together with a certain ratio of air or oxygen as gasifying agent. If a certain amount of CO_2 was added in the gasifying agent to replace a part of steam, then higher-concentration CO gas or gas with different composition will be produced, which can meet needs of different gas utilization. At the same time, steam consumption can be reduced, that is, the treated volume of sewage can be reduced, so this technology has very important practical significance. Therefore, a project fund of youth innovation (2006QN38) supported by China Coal Research Institute has been approved, which priority research on the gasification characteristic of CO_2 substitute part of steam as gasifying agent.
     Three coal char samples made from three different rank of raw coals—Baoyi lignite, Shendong bituminite and Wangpo anthracite, were selected as study objects in this paper combined with the project. Besides basic coal quality analysis of raw coal and coal chars, specific surface area and pore diameter distribution test of coal chars also have been done. On this basis, coal char reactivity at normal pressure, with temperature 1173~1323K and four different mixture ratio of steam and CO_2 were studied systematically by using thermal analysis technology. Mixture reaction model was used to calculate kinetic parameters. Compensation effect between kinetic parameters was analyzed and synergistic effect of co-gasification of coal char with steam and CO_2 were researched in this paper. At last, tube type furnace experiments for one kind coal char (Baoyi coal char) have been done on normal pressure; coal gas composition and gas productivity were analyzed.
     Based on thermobalance experiment date carbon conversion, reactivity exponent (R) and mean specific rate were calculated, the result show that:
     (1) The reactivity of three kind of coal chars from high to low are: Shendong coal char>Baoyi coal char>Wangpo coal char. This result did not agree with the conclusion of predecessors, which is the reactivity of coal char currently reduce along with the increase of coal rank; this may be caused by different content of minerals and then different catalysis in raw coal.
     (2) The carbon conversion of three coal chars, at the same reaction time with all experiment mixture ratio of gasifying agent all increased, along with the increase of temperature, and the time needed to reach the lagest carbon conversion were shorten.
     (3) Except one or two experiment, the carbon conversion of three coal chars, at the same reaction time under all experiment conditions all increased, along with the increase of steam content and the decrease of CO_2 content in gasifying agent. The reaction rates of char-steam were lager than that of char-CO_2 at all conditions.
     (4) The reaction exponent and the mean specific reaction rate with the same mixture ratio of gasifying agent all increased along with the increase of temperature. Except one or two experiment, the reaction exponent and the mean specific reaction rate of three coal chars at the same temperature all increased along with the increase of steam content and the decrease of CO_2 content in gasifying agent.
     (5) Mixture reaction model were used to deal with experimental data, and the kinetic parameters n, k, Ea, lnk_0 were gained. The total reaction order of three coal chars were 0.7197~1.7846; the activity energy of three coal chars with 100% steam were 134.8~187.5kJ/mol, with 60% steam and 40% CO_2 were 119.4~180.8 kJ/mol, with 30% steam and 70% CO_2 were 136.9~199.7kJ/mol , with 100%CO_2 werel26.6~230.9kJ/mol. The higger the activity the lager the pre-exponential, kinetic compensation effect were observed between them, which can be explained by transition state theory.
     (6) When the mixture gas of steam and CO_2 were used as gasifying agent, synergistic effect on gasification reaction rate was observed for Baoyi coal char gasification with 60% steam and 40% CO_2 at 1323K, no synergistic effect on gasification reaction rate were found for other conditions. Obvious synergistic effects on gasification reaction rate were found for Shendong coal char and Wangpo coal char on all experimental conditions.
     Based on the coal gas composition of Baoyi coal char gasificatin in a tube type furnace at 1273K and normal pressure, the follwing result were gained:
     (1) Both steam and CO_2 participated in the co-gasification process of coal char with steam and CO_2.
     (2) Along with the increase of steam content and the decrease of CO_2 content in gasifying agent, at the same reaction time, the content of H_2 in the mixed gas decreased, the content of CO approximately increased, the content of CO_2 approximately increased and the content of CH_4 approximately decresed.
     (3) At the same reaction time, the value of H_2/CO reduced and the content of H_2+ CO_2 in the mixed gase decreased, along with the decrease of steam content and the increase of CO_2 content in gasifying agent.
     (4) Synergistic effects on gas productivity were observed during Baoyi coal char gasification with the mixture gas of steam and CO_2 in tube type furnace, and gas productivity is increased. The gas productivity of Baoyi coal char gasification with 100% H_2O is higher than with 100% CO_2, moreover the gas productivity of Baoyi coal char gasification with 100% CO_2 is not low.
引文
[1]BP Statistical Review of World Energy.BP Group,June2004
    [2]World Energy Outlook.IEA,2002
    [3]中华人民共和国国家统计局.2007中国统计年鉴[M].北京:中国统计出版社,2007,(26):261.
    [4]史立山.中国能源现状分析和可再生能源发展规划.资源与发展,2005,1:18-21
    [5]于涌年,孙淑君,李延龙.展望21世纪中国洁净煤技术[J].洁净煤技术1999,5(2):5-8.
    [6]徐振刚.多联产是煤化工的发展方向[J].洁净煤技术,2002,8(2):5-7.
    [7]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统--资源/能源/环境整体优化与可持续发展[J].中国工程科学,2000,2(8):59-68.
    [8]李政,倪维斗,潘克西.以煤气化为核心的多联产及其在我国未来能源中的战略意义[J].发电设备,2004,(3):117-129.
    [9]戢绪国,张翠清,徐春霞,等.CO2(或部分替代水蒸气)作气化剂的应用与技术研究[J].洁净煤技术,2007,13(2):52-54.
    [10]邓渊.煤炭加压气化[J].北京:中国建筑工业出版社,1981:93-94.
    [11]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报,2002,30(5):3 85-391.
    [12]张慧.整体煤气化联合循环(IGCC)装置的进展[J].热能动力工程,2000,15(总90):585-586.
    [13]麻林巍,倪维斗,李政,等.以煤气化为核心的甲醇、电的多联产系统分析(上)[J].动力工程,2004,24(3):451-456.
    [14]徐振刚,吴春来.煤气化制氢技术[J].低温与特气,2000,18(6):28-31.
    [15]张占涛,王黎,孙雪莲.第三代煤气化技术研究开发进展[J].煤化工,2005,118(3):21-24.
    [16]成玉琪,杜铭华,余洁,吴市新,等.中国洁净煤技术发展评述洁净煤技术[J].1999,5(1):5-12.
    [17]范晓雷.神府煤热解及气化动力学研究[D].华东理工大学硕士学位论文,2006:2-3.
    [18]沙兴中,杨南星.煤的气化与应用[M].华东理工大学出版社,1995:3.
    [19]陈家仁.煤炭气化的理论与实践[M].煤炭工业出版社,2007:21.
    [20]Jacob A.Moulijn and Freek Kapteijn.Towards a united theory of reactions of carbon with oxygen -containing molecules[J].Carbon,1995,33:1155-1165.
    [21]Lahaye,J.,&Ehrburger,P.(Ed.).Fundamental issues in control of carbon gasification reactivity,Vol.192.NATO ASI series,Serie E:Applied Science,Dordrecht:Kluwer Academic Publishers,1991.
    [22]邬纫云.煤炭气化[M].徐州:中国矿业大学出版社,1989:33.
    [23]陈甘棠.化学反应工程[M].化学工业出版社,2004:149-150.
    [24]邬纫云.煤炭气化[M].徐州:中国矿业大学出版社,1989:38-48.
    [25]肖新颜,李淑芬,柳作良,等.煤焦水蒸气加压气化反应活性的研究[J].煤化工,1998,4:53-56.
    [26]Gui-su Liu,A.G.Tate,G.W.Bryant,T.F.Wall.Mathematical Modeling of Coal Char Reactivity with CO2 at High Pressures and Temperatures[J].Fuel,2000,79:1145-1154.
    [27]文芳.热重法研究煤焦H_2O气化反应动力学[J].煤炭学报,2004,29(3):350-353.
    [28]向银花,王洋,张建民,等.加压下中国典型煤二氧化碳气化反应的热重研究[J].燃料化学学 报,2002,30(5):398-402.
    [29]Gui-Su Liu,Stephen Niksa.Coal conversion submodels for design applications at elevated pressures.Part Ⅱ.Char gasification[J].Energy and Combustion Science,2004,30:679-717.
    [30]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.290.
    [31]王鹏,文芳,步学朋,等.煤焦与CO_2及水蒸气气化反应的研究[J].煤气与热力,2005,25(3):1-6.
    [32]Radovic L.R.,Walker P.L.,Jenkins R.G..Importance of carbon active sites in the gasifica- tion of coal chars[J].Fuel.1983,62(7):849-856.
    [33]Van Heek,Karl Heinrich.,Muhlen,Hein-Juergen.,Juentgen,Harald.Progress in the kinetics of coal and char gasification[J].Chem Eng Technol,1987,10(6):411-419.
    [34]Takarada T.et al.CO2-reactivity of coal chars[J].Fuel.1985:64:1438.
    [35]忻仕河.煤岩显微组分与CO_2的气化反应特性研究[D].北京:煤炭科学研究总院北京煤化工研究分院,2004.
    [36]忻仕河,徐振刚.大同煤不同显微组分富集物焦与CO_2反应性研究[J].煤炭转化,2004,27(4):13-16.
    [37]徐振刚,忻仕河.显微组分气化特性研究进展[J].煤炭转化,2003,26(3):11-15.
    [38]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.291.
    [39]Franciszek C.et al.Fuel Processing Technology.1991,29:57.
    [40]丁华.煤及其显微组分热解气化反应特性研究[D].北京:煤炭科学研究总院北京煤化工研究分院,2006.
    [41]程秀秀,黄瀛华,任德庆.煤焦的孔结构及其与气化的关系[J].燃料化学学报,1987,15(3):261-167.
    [42]Hurt R H,Sarofim A F,Longwell J P.The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J].Fuel,1991,70(9):1079-1082.
    [43]T.W.Kwon,S.D.Kim,and D.P.C.Fang.Fuel,1988,67:530
    [44]K.H.Van Heek,H.Jutgen.Inst.Fuel,1973,46:249-258.
    [45]范晓雷.神府煤热解及气化动力学研究[D].华东理工大学硕士学位论文,2006:2-3.
    [46]Anil Goyal,Robert F.Zabransky,Amir Rehhmat.Gasification Kinetics of Western Kentucky Bituminous Coal Char[J].Ind.Eng.Chem.Res.1989,28(12):1767-1778.
    [47]Antero Moilanen,Heina-jurgen Muhlen.Characterzation of gasification reactivity of peat char in pressurized conditions[J].Fuel,1996,75:1279-1285.
    [48]Shufen L.,Ruizheng S..Kinetic studies of a lignite char pressurized gasification with CO2、H2 and steam[J].Fuel,1994,73(3):413-416.
    [49]Moulijn J.A.,Kapeijn F..Towards a unified theory of reactions of carbon with oxygen-c ontaining molecules[J].Carbon,1995,33(8):1155-1185.
    [50]Jacob A.Moulijn and Freek Kapteijn.Towards a united theory of reactions of carbon with oxygen -containing molecules.Carbon,1995,33:1155-1165.
    [51]Ralf Kopsel,Henryk Zabawski,catalysis effects of Ash components in low rank coal gasification.l.Gasification with carbon dioxide,Fuel,1990,69:275-281.
    [52]Ralf Kopsel,Henryk Zabawski,catalysis effects of Ash components in low rank coal gasification.2.Gasification with steam,Fuel,1990,69:282-288.
    [53]Sakawa M,SakuraiY,Hara Y.Influence of coal characteristics on CO_2 gasification[J].Fuel,1982,61(8):717-720.
    [54]向银花,王样,张建民,等.煤气化动力学模型研究[J].燃料化学学报,2002,30(1):21-26.
    [55]Adanez J,Dediego R F.Reactivity of liginite chars with CO2:influence of the mineral matter[J].Ind.Chem.Eng,1993,33(4):656-662.
    [56]D.P.Ye,J.B.Agnew,D.K.Zhang.Gasification of a south Australian low-rank coal with carbon dioxide and steam:kinetics and reactivity studies[J].Fuel,1998,77(11):1209-1219.
    [57]Miura K,Aimi M,Naito J,et al.Steam gasification of carbon-effect of several metals on the rate of gasification and the rates of CO and CO_2 formation[J].Fuel,1986,65(3):407-411.
    [58]Martin Schnial,Jose Lulz,Fontes Monteiro,et al.Kinetics of coal gasification[J].Ind Eng Chem Process Des Dev,1982,21(2):256-266.
    [59]Levenspiel O.Chemical Reactions Engineering[M].New Delhi:Wiley Eastern,1974,368-371.
    [60]Levenspiel O,Ohme H,Suzuki T.Energy and Fuels,1995,9,45.
    [61]D.P.Ye,J.B.Agnew,D.K.Zhang.Gasification of a south Australian low-rank coal with carbon dioxide and steam:kinetics and reactivity studies[J].Fuel,1998,77(11):1209-1219.
    [62]kwon T W,et al.Reaction kinetics of char gasification[J].Fuel,1988,67(4):530-535.
    [63]Adanez J,Diego L.Mineral mater effects on the reactivity of chars during gasification[J].Fuel Proc.Tech.,1990,24:298-304.
    [64]Li S.F.,Yan X.X..Gasification reactivity of three Chinese coal chars with steam at elevated pressure[J].Fuel,1993,72:1351.
    [65]kwon T W,et al.Reaction kinetics of char gasification[J].Fuel,1988,67(4):530-535.
    [66]Li S.F.,Yan X.X..Gasification reactivity of three Chinese coal chars with steam at elevated pressure[J].Fuel,1993,72:1351.
    [67]D.H.Ahm,B.M.Gibbs,K.H.Ko,J.J.Kim.Gasification kinetics of an Indonesian sub-bituminous coal-char with CO_2 at elevated pressure[J].Fuel,2001,80:1651-1658.
    [68]于遵宏,龚欣,沈才大,等1.加压下煤催化气化动力学研究[J].燃料化学学报,1990,18(4):324-329.
    [69]房倚天.流化床气化炉稀相段飞灰气化动力学的研究[D].太原:中国科学院山西煤炭化学研究所.1994.
    [70]J.L.Johnson.in Am.Chem.Soc.Adv.,Chem.,Ser.,1974(131):P145-178.
    [71]刘旭光,李文,李保庆.恒温条件下DEAM模型新型理论分析及其应用[J].燃料化学学报,2002,30(3):214-216.
    [72]周静.煤气化过程及反应动力学研究[D].华东理工大学博士学位论文,2003.
    [73]杨小风,周静,龚欣等.煤焦水蒸气气化特性及动力学研究[J].煤炭转化,2003,26(4):46-50.
    [74]张林仙,黄戒介,房倚天,等.中国典型无烟煤焦水蒸气气化活性及动力学研究[J].燃料科学与技术,2005,11(3):202-207.
    [75]Jong Minlee,Yong Jeonkim,Woon Jaelee and Sang Donekim.Coal-gasification kinetics derived from pyrolysis in a fluidized-bed reactor[J].Energy,1998,23(6):475-488
    [76]章永浩,石振球,董锦泉.煤焦水蒸气气化反应动力学[J].上海建材学院学报,1991,4(1):75-82.
    [77]李淑芬,肖新颜,柳作良.三种煤焦水蒸气加压气化活性的研究[J].煤化工,1990,(2):10-17.
    [78]周静,周志杰,龚欣等.煤焦二氧化碳气化动力学研究(Ⅰ)等温热重法[J].煤炭转化,2002,25(4):66-69.
    [79]崔洪,徐秀峰,顾永达.煤焦CO_2气化的热重分析研究(Ⅰ)等温热重研究[J].煤炭转化,1996,19(2):75-79.
    [80]周静,龚欣,于遵宏.煤焦二氧化碳气化动力学研究(Ⅱ)非等温热重法[J].煤炭转化,2003,26(1):78-81.
    [81]崔洪,徐秀峰,顾永达.煤焦CO_2气化的热重分析研究(Ⅱ)程序升温热重研究[J].煤炭转化,1996,19(3):82-85.
    [82]KORA K,IDA S.Gasification reactivities of metallurgical cokes with carbon dioxide,steam and their mixture[J].Fuel,1980,59(1):59-63.
    [83]王同华,林器.褐煤快速热解半焦的孔结构特性[J].燃料化学学报,1987,15(1):73-78.
    [84]DUTTA S,WEN C Y,BELT R J.Reactivity of coal and char:1 In carbon dioxide atmosphere[J].Ind Eng Chem Process Des Dev,1977,16(1):20-30.
    [85]张林仙,黄戒介,房倚天,等.中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J].燃料化学学报,2006,34(3):265-269.
    [86]陈波.不同煤种的高温气化反应性研究[D].华东理工大学硕士学位论文,2003.
    [87]黄元.二氧化碳富氧气化的设想[J].中氮肥,1998,(5):62-64.
    [88]马斌,刘建生,李大尚.CO生产新工艺和新炉犁在济南石化二厂的应用[J].煤化工,1998,84(3):17-19.
    [89]赵登凌,彭波,梁杰华.CO_2及O_2气化焦炭制备高纯CO成食工业化新技术的开发与应用[J].煤化工,2002,98(1):29-32.
    [90]张祥德,霍建牛,杜进祥.放空CO_2气体返回造气炉工艺的探讨[J].天津化工,2003,17(5):41-44.
    [91]龚欣,郭晓镭,代正华,等.气流床粉煤加压气化制备合成气新技术[J].煤化工,2005,121(6):5-8.
    [92]陈家仁.加压气流床煤气化工艺的发展现状及存在问题[J].煤化工,2006,(6):1-7.
    [93]黄律先.木材热解工艺学[M].北京:中国林业出版社,1995:80
    [94]Kourichi Miura,Kenji Hashimotot et al.Factors affecting the reactivity of coal char during gasification and indices representing reactivity[J].Fuel,1989,68:1461-1475.
    [95]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:289.
    [96]黄瀛华.煤化学及工艺学实验[M].上海:华东化工学院出版社,1988.
    [97]黄瀛华,范丽萍,曹建勤,等.煤及煤焦微观结构特征与气化反应性[J].燃料化学学报,1992,20(3):71-77.
    [98]章永浩,董锦泉,石振球,等.煤焦与水蒸气及二氧化碳的气化反应动力学[J].高效化学工程学报,5(4):313-319.
    [99]陈甘棠.化学反应工程[M].化学工业出版社,2004:13-14.
    [100]向银花,王洋,张建民,等.部分气化焦的水蒸气气化动力学[J].化工学报,2003,54(3):368-373.
    [101]向银花,李海滨,黄戒介,等.气氛对神木煤部分气化煤焦再气化动力学参数的影响[J].燃料化学学报,2004,32(2):151-154.
    [102]Galway A K,Brown M E.Compensation parameters in heterogeneous catalysis[J].J Catal,1979,60(2):335-338.
    [103]Hashimoto K,Miura K,Watanabe T.Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment[J].AIChE J,1982,28(5):737-746.
    [104]谈世韶,李春虎,郭汉贤,等.碱改性γ-Al_2O_3催化剂上羰基硫的低温水解反应Ⅰ.催化剂活性及补偿效应[J].催化学报,1993,14(3):191-197.
    [105]徐秀峰,崔洪,顾永达,等.煤焦制备条件对其气化反应性的影响[J].燃料化学学报,1996,24(5):404-410.
    [106]Sosnovski H H.The catalytic activity of silver crystals of various orientations after bombardment with positive ions[J].Phys Chem Solids,1959,10(4):304-310.
    [107]Krug R R.Detection of the compensation effect(θ rule)[J].Ind Eng Chem Fundam,1980,19(1):50-59.
    [108]Curtis W M,Conner J R.A general explanation for the compensation effect:The relationship between Δ S and activation energy[J].J Catal,1982,78(1):238-246.
    [109]肖衍繁,李文斌.物理化学[M].天津:大津大学出版社,1997:393-399.
    [110]向银花,王洋,张建民,等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报,2002,30(2)108-112.