半胱氨酰白三烯及CvsLT_1受体介导转化生长因子β1对星形胶质细胞的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脑缺血后的炎症反应在其病理生理发生过程中起了重要作用。脑缺血损伤发生后,促进外周和中枢神经系统的促炎症因子表达并分泌至细胞外,诱导脑内炎症变化,其结果之一是激活星形胶质细胞并逐渐形成胶质疤痕,研究炎症因子激活星形胶质细胞,有助于了解胶质疤痕形成机制和干预途径。脑缺血后脑内炎症因子包括转化生长因子β1(transforming growth factor β1, TGF-β1)以及半胱氨酰白三烯类(cysteinyl leukotrienes, CysLTs)。TGF-β1被广泛认为是一种与损伤相关的细胞因子,CysLTs是一类重要的炎症介质,两者在脑缺血、脑外伤等中枢神经系统损伤性疾病发病中均起重要作用。
     TGF-β1在正常脑组织中表达水平不高。脑缺血后,TGF-β1mRNA在脑组织中早期(缺血后6h)表达增加,缺血后2-4天达高峰,持续14-26天;缺血早期在全脑弥散表达,7-14天后主要表达于星形胶质细胞,与脑缺血后胶质疤痕的形成有关;体外实验表明,TGF-β1能够诱导星形胶质细胞增生肥大;促进星形胶质细胞迁移。
     CysLTs由5-脂氧合酶(5-lipoxygenase,5-LOX)催化花生四烯酸而形成,其作用通过半胱氨酰白三烯受体(cysteinyl leukotriene receptor, CysLT受体)起作用,该类受体主要包括CysLT1和CysLT2受体两种亚型。CysLT1受体在正常脑组织中表达水平不高。脑缺血后,缺血中心区CysLT1受体mRNA在缺血再灌注3、6、12h和7、14天表达上调;缺血周边区,再灌注后3天内CysLT1受体mRNA水平没有变化,7、14天明显增高,主要表达于增生的星形胶质细胞。药理学研究表明,CysLT1受体抑制剂pranlukast抑制小鼠局灶性脑缺血后诱导的胶质疤痕形成。
     在大鼠星形胶质细胞,轻度缺氧缺糖(oxygen-glucose deprivation, OGD)诱导CysLT1受体表达,并介导体外星形胶质细胞的增殖、激活;而CysLT2受体则介导中度OGD诱导的星形胶质细胞损伤。CysLT1受体介导星形胶质细胞激活的机制尚待阐明。由于星形胶质细胞激活受多种因素调节,CysLT1受体的效应可能与其他因素存在相互作用。
     在外周组织中,TGF-β1能上调支气管平滑肌细胞中CysLT1受体的表达,增强LTD4的促增殖作用;TGF-β1能上调胎儿肺成纤维细胞中CysLT1受体的表达;TGF-β1能增加树突状细胞中5-LOX和5-LOX激活蛋白(FLAP)的表达,增加白三烯的合成。而在中枢神经系统中,TGF-β1与CysLTs及其受体之间是否有相互调节的作用?如何调节?尚待阐明。尤其对星形胶质细胞激活,TGF-β1与CysLT1受体的相互作用,是本文拟阐明的问题。
     研究目的:
     本文拟观察半胱氨酰白三烯及CysLT1受体与TGF-β1在调节星形胶质细胞中的相互作用,进行以下几个方面的研究:
     1.首先,阐明CysLT1受体是否与TGF-β1相互作用。观察TGF-β1以及CysLT受体相关药物对细胞活性的影响,包括5-LOX抑制剂、CysLT1和CysLT2受体激动剂和拮抗剂。
     2.其次,进一步阐明TGF-β1与CysLT1受体之间的可能相互作用。重点观察TGF-β1与CysLT受体激动剂、拮抗剂及siRNA对星形胶质细胞激活的作用,包括对增殖和迁移作用的影响。
     3.然后,为了阐明TGF-β1与CysLT1受体之间的相互作用特点,从两个方面进行解析,一方面分析TGF-β1对CysLT1受体及其内源性激动剂CysLTs合成酶5-LOX的调节作用;另一方面,分析CysLT,受体激动剂对TGF-β1的调节作用。
     4.最后,为了阐明TGF-β1与CysLT1受体之间的相互作用的意义,在以往轻度OGD(1h)增强CysLT1受体表达及效应结果的基础上,观察轻度OGD是否增加TGF-β1释放。
     研究方-法:
     选用原代培养的大鼠大脑皮层星形胶质细胞作为细胞模型,细胞划痕方法检测细胞迁移;MTT还原试验法检测细胞活性;流式细胞术检测细胞的增殖;细胞免疫化学法检测细胞中5-LOX的核膜移位;ELISA法检测CysLTs释放;RT-PCR、 Western blot和细胞免疫荧光法检测细胞中5-LOX、CysLT1受体和CysLT2受体表达。以CysLT受体非选择性激动剂LTD4、CysLT2受体激动剂NMLTC4、TGF-β1信号抑制剂repsox,5-LOX抑制剂齐留通(zileuton), CysLT,受体选择性拮抗剂孟鲁司特(montelukast)知CysLT2受体选择性拮抗剂Bay cysLT2进行药理学干预处理,CysLT,受体siRNA进行基因干扰处理。
     在大鼠大脑皮层星形胶质细胞中,以OGD1h和4h诱导缺血性损伤。以MTT法、LDH法检测OGD/恢复(OGD/R)后星形胶质细胞的活性及损伤程度,并以ELISA法检测TGF-β1释放。
     研究结果:
     1. TGF-β1与CysLT受体对星形胶质细胞活性的影响
     原代培养的大鼠星形胶质细胞中,MTT还原试验法表明,TGF-β1和CysLT受体非选择性激动剂LTD4可增强细胞活性,并且,两者有相互增强;而CysLT2受体激动剂NMLTC4则无作用。TGF-β1的作用可被5-LOX抑制剂zileuton、CysLT1受体拮抗剂montelukast减弱,而CysLT2受体拮抗剂Bay cysLT2则无作用。这一结果初步表明TGF-β1与CysLT1受体的相互作用。
     2.TGF-β1与CysLT1受体对星形胶质细胞增殖和迁移功能的影响
     为了进一步阐明TGF-β1与CysLT1受体的相互作用,观察了TGF-β1与CysLT受体相关药物对星形胶质细胞增殖及迁移的作用。流式细胞术检测结果显示,不同浓度的TGF-β1与LTD4在24h内对星形胶质细胞的增殖均没有显著影响。细胞划痕法检测显示,TGF-β1能够促进星形胶质细胞的迁移活性(划痕愈合),并呈一定的时间剂量依赖性;低浓度LTD4(0.1-10nM)也能促进星形胶质细胞的迁移,两者合用具有协同作用。NMLTC4(0.01~100nM)对星形胶质细胞迁移没有影响。TGF-β1信号抑常剂repsox能够完全逆转TGF-β1的作用;5-LOX抑制剂齐留通(zileuton), CysLT1受体选择性拮抗剂孟鲁司特(montelukast)及CysLT1受体siRNA处理后均能减弱TGF-β1的作用;但CysLT2受体选择性拮抗剂BaycysLT2对TGF-β1的作用没有显著影响。这一结果表明,CysLT1受体及其内源性配体合成酶5-LOX介导TGF-β1促进星形胶质细胞激活(迁移增强)的作用。
     3. TGF-β1与5-LOX/CysLT,受体的相互调节作用
     为了阐明TGF-β1与CysLT1受体相互作用的特点,观察了两者间的相互调节。RT-PCR、Western blot和细胞免疫荧光法检测细胞显示,TGF-β1上调5-LOX和CysLT1受体表达,对CysLT2受体表达没有显著影响。细胞免疫化学法检测显示,TGF-β1作用于星形胶质细胞6h后发生5-LOX明显的移位,从细胞浆转移至细胞核膜上,24h后恢复。ELISA法检测显示,TGF-β1作用于星形胶质细胞1.5h后细胞培养基中的CysLTs含量显著增加,12h时达到高峰,维持到24h。另一方面,RT-PCR和ELISA法检测显示,不同浓度的LTD4或NMLTC4(1-100nM)作用于星形胶质细胞,对细胞中TGF-β1的表达和释放均没有显著影响。这一结果表明,TGF-β1与CysLT1受体相互作用的形式,是TGF-β1增加CysLT1受体内源性配体的产生,并增加CysLT1受体表达,从而增强CysLT1受体的效应;但是,CysLT1受体对TGF-β1没有明显影响。
     4.轻度OGD诱导TGF-β1释放
     以往报道,轻度OGD增强CysLT1受体表达并激活星形胶质细胞,在此验证了这一现象与TGF-β1之间的关系。结果显示,OGD1h恢复不同时间(48h和72h)后,细胞的活性依次增强,LDH释放没有显著变化;OGD1h后恢复12h,TGF-β1释放显著增高。但是,中度OGD(4h)损伤诱导星形胶质细胞损伤,而TGF-β1释放没有改变。这表明轻度缺血性损伤后星形胶质细胞激活与TGF-β1/CysLT1受体调节密切相关。
     结论:
     1.星形胶质细胞活性的药理学实验中,初步表明TGF-β1与CysLT1受体及5-LOX存在相互作用。
     2.对星形胶质细胞激活(增殖和迁移)的作用表明,CysLT1受体及其内源性配体合成酶5-LOX介导TGF-β1促进星形胶质细胞迁移增强的作用,但它们对细胞增殖无明显影响。
     3.相互作用特点的研究结果表明,TGF-β1与CysLT1受体相互作用的形式是TGF-β1增加CysLT1受体内源性配体的产生,并增加CysLT1受体表达,从而增强CysLT1受体的效应;但是,CysLT1受体对TGF-β1没有明显影响。
     4.轻度OGD(1h)可增加TGF-β1释放,表明轻度缺血性损伤后星形胶质细胞激活与TGF-β1/CysLT1受体调节密切相关。
Backgrounds
     Inflammation after cerebral ischemia plays an important role in the pathophysiological process. After ischemia, inflammatory responses are activated in the central nervous system, pro-inflammatory molecules are expressed and secreted, and intracerebral inflammation occurs. One of the consequences is activation of astrocytes that gradually form a glial scar. Study of activation of astrocytes by inflammatory factors will contribute to understanding of the mechanism of glial scar formation and the relevant interventions. The inflammatory factors induced by erebral ischemia include transforming growth factor beta1(TGF-β1) and cysteinyl leukotrienes (CysLTs). TGF-β1is widely considered as an injury-related cytokine or growth factor, and CysLTs are a kind of important inflammatory mediators. Both of them play important roles in ischemia and traumatic brain injury as well as in other central nervous system diseases.
     In normal brain tissue, TGF-β1expression level is low. After cerebral ischemia, TGF-β1mRNA expression in the brain is increased in early phase (6h after ischemia), which reaches peak levels in days2to4, continues for14-26days. In the early phase of ischemia, its expression is diffusive overall whole brain, and mainly expressed in astrocytes at7-14days. This is associated with glial scar formation after brain injury. The in vitro experiments indicate that TGF-β1is able to induce astrocyte hypertrophy and promote astrocyte migration.
     CysLTs are5-lipoxygenase (5-LOX) products generated from arachidonic acis, and their actions are mediated by cysteinyl leukotriene receptors (CysLT receptors), mainly including two subtypes, i.e. CysLT1and CysLT2receptors. CysLT1receptor expression level is low in normal brain tissue. In rats with focal cerebral ischemia, its expression is significantly up-regulated in the ischemic core at3,6,12h and7-14days after reperfusion. In the boundary zone, CysLT1receptor expression does not significantly change during3days, but significantly increases7-14days after reperfusion, which is primarily localized in proliferated astrocytes. Pharmacological study indicates that the CysLT1receptor antagonist pranlukast can inhibit glial scar formation after focal cerebral ischemia in mice.
     In the primary cultures of rat astrocytes, mild ischemic injury induced by1h of oxygen-glucose deprivation (OGD) enhances CysLT1receptor expression, which mediates astrocyte proliferation and activation. Whereas, CysLT2receptor mediates astrocyte injury induced by moderate OGD (4h). The mechanisms underlying CysLT1receptor-mediated astrocyte activation remains to be clarified. Because astrocyte activation is regulated by a variety of factors, it is possible that the effects of CysLT1receptor may result from interactions with other factors.
     In the peripheral tissues, TGF-β1up-regulates the expression of CysLT1receptor in bronchial smooth muscle cells, and enhanced the effect of LTD4on cell proliferation. TGF-β1also up-regulates CysLT1receptor expression in fetal lung fibroblasts. Furthermore, TGF-β1increases the expression of5-LOX and5-LOX activating protein (FLAP) as well as increases leukotriene synthesis in dendritic cells. In the central nervous system, whether and how TGF-β1interacts with CysLTs and its receptors in regulation of astrocyte activation remains to be elucidated. Especially, the interaction between TGF-β1and CysLT1receptor is the key point that will be investigated in this study.
     Aims
     In the present study, we aimed to investigate the interactions of TGF-β1with CysLTs and CysLT1receptor in regulation of astrocyte activation in following aspects.
     1. At first, to preliminarily reveal the possible interaction, we determined the effects of TGF-β1as well as the drugs related to CysLT receptors on astrocyte viability; these drugs include the5-LOX inhibitor zileuton, and the agonists and antagonist of CysLT1and CysLT2receptors.
     2. Next, to further clarify the interaction beween TGF-β1and CysLT1receptor, we determined astrocyte activation, including proliferation and migration, induced by TGF-β1as well as CysLT receptor agonists, antagonists and specific siRNA.
     3. Then, to explore the properties of the interaction beween TGF-β1and CysLT1receptor, we analyzed the following two aspects. On one hand, we analyzed the actions of TGF-β1on the activation of CysLT1receptor and5-LOX, the key synthetic enzyme of the endogenous ligands CysLTs. On the other hand, we analyzed the actions of CysLTi receptor agonist on TGF-β1production.
     4. Finally, to elucidate the implications of the interaction beween TGF-β1and CysLT1receptor, we assessed whether mild OGD induces TGF-β1release based on previously reported findings that mild OGD enhances the expression and effects of CysLT1receptor.
     Methods
     In primarily cultured of rat cortical astrocytes, cell scratching was performed as a model of cell migration; MTT reduction assay was done to detect cell viability; flow cytometry was to assess cell proliferation; immunohistochemistry was to detect5-LOX nuclear translocation; ELISA was to detect CysLTs release. RT-PCR, Western blotting analysis and cellular immunofluorescence assay were performed to detect the expression of5-LOX, CysLT1receptor and CysLT2receptor. The non-selective CysLT receptor agonist LTD4, the CysLT2receptor selective agonist NMLTC4, the TGF-β1signaling inhibitor repsox, the5-LOX inhibitor zileuton, the CysLT1receptor selective antagonist montelukast and the CysLT2receptor selective antagonist Bay cysLT2were used in pharmacological treatments; and CysLT1receptor siRNA was used for gene interference of CysLT1receptor.
     In primary cultures of rat cortical astrocytes, ischemic injury was induced by OGD for1or4h. MTT reduction assay and LDH release were used to detect the viability and damage of astrocytes after OGD/recovery (OGD/R). ELISA was assessed to analyze the release of TGF-β1.
     Results
     1. Effects of TGF-β1and CysLT receptors on astrocyte viability
     In the primary cultures of rat astrocytes, the results of MTT reduction assay showed that TGF-β1and the non-selective CysLT receptor agonist LTD4increased astrocyte viability, and they potentiated the effects each other. However, the CysLT2receptor agonist NMLTC4did not show any effect. Moreover, the effect of TGF-β1was attenuated by the5-LOX inhibitor zileuton and the CysLT1receptor antagonist montelukast, but not by the CysLT2receptor antagonist Bay cysLT2. These results suggested a possible interaction between TGF-β1and CysLT1receptor.
     2. Effects of TGF-β1and CysLT1receptor on proliferation and migration of astrocytes
     To further clarify the interaction between TGF-β1and CysLT1receptor in astrocyte activation, we assessed the effects of TGF-β1and the drugs related to CysLT1receptor on the proliferation and migration of astrocytes. Flow cytometric results showed that TGF-β1and LTD4at various concentrations did not affect astrocyte proliferation24h after exposure. Cell healing test showed that TGF-(31promoted astrocyte migration24h after scratching in a time and concentration-dependent manner. LTD4at lower concentrations (0.1-10nM) also promoted the migration, and potentiated the effect of TGF-β1on astrocyte migration. The TGF-(31signaling inhibitor repsox completely reversed the effect of TGF-β1. The5-LOX inhibitor zileuton and the CysLT1receptor antagonist montelukast as well as CysLT1receptor siRNA attenuated the effect of TGF-β1. However, the CysLT2receptor antagonist Bay cysLT2did not affect the effect of TGF-β1. These results indicated that the effect of TGF-β1on astrocyte activation (migration) can be mediated by activation of CysLT1receptor and5-LOX, the synthetic enzyme of endogenous CysLTs.
     3. The regulatory interactions between TGF-β1and5-LOX/CysLT1receptor
     To characterize the interactions between TGF-β1and CysLT1receptor, we analyzed the regulatory interactions between them. RT-PCR, Western blotting analysis and cell immunofluorescence showed that TGF-β1up-regulated the expression of5-LOX and CysLT1receptor, but not that of CysLT2receptor. Cell immunofluorescence showed that5-LOX translocation from the cytosol to the nuclear membrane6h after exposure to TGF-β1, and the translocation disappeared24h after the exposure. ELISA results showed that TGF-β1increased the content of CysLTs in the culture media from1.5h, reached a peak at12h, and maintained until24h after exposure. On the other hand, RT-PCR and ELISA results showed that LTD4and NMLTC4at1-100nM did not affect the expression and release of TGF-β1. These results suggested that the interactions between TGF-β1and CysLT1receptor might be characterized by that TGF-β1potentiates the production of endogenous ligands of CysLT1receptor and the expression of CysLT1receptor, but not by potentiation of TGF-β1by CysLT1receptor.
     4. Mild OGD induces TGF-β1release
     It has previously reported that mild OGD enhances CysLT1receptor expression and potentiates its effects. Here, we confirmed the relation of this phenomenon to TGF-β1. We found that following recovery for48and72h after1-h OGD, astrocyte viability was increased but LDH release did not change. At12h of recovery after1-h OGD, TGF-β1release was significantly increased. However, moderate OGD (4h) induced astrocyte injury, and did not affect TGF-β1release. Thses results suggested that astrocyte activation induced by mild ischemic injury might be associated with the regulation by TGF-β1/CysLT1receptor system.
     Conclusions:
     1. The pharmacological experiments of astrocyte viability preliminarily show the possible interactions of TGF-β1with CysLT1receptor and5-LOX activation.
     2. In the experiments of astrocyte activation (proliferation and migration), the effect of TGF-β1on astrocyte migration is mediated by activation of CysLT1receptor and5-LOX, a key synthetic enzyme of endogenous CysLTs. However, these agents do not affect astrocyte proliferation.
     3. The production of endogenous ligands due to5-LOX activation and the expression of CysLT1receptor are enhanced by TGF-β1, but TGF-β1is not regulated by CysLTi receptor. Namely, the interactions are characterized by potentiation of the signaling system of CysLT1receptor by TGF-β1, in other wards, the effect of TGF-β1is mediated by the CysLT1receptor signaling..
     4. Mild OGD induces TGF-β1release, suggesting that mild ischemic injury may enhance astrocyte activation through regualting TGF-β1/CysLT1receptor system.
引文
1. Ransom BR, Ransom CB:Astrocytes:multitalented stars of the central nervous system[J]. Methods Mol Biol 2012,814:3-7.
    2. Kreft M, Bak LK, Waagepetersen HS, Schousboe A:Aspects of Astrocyte Energy Metabolism, Amino Acid Neurotransmitter Homeostasis and Metabolic Compartmentation[J]. ASN Neuro 2012.
    3. Belanger M, Allaman I, Magistretti PJ:Brain energy metabolism:focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab 2011,14:724-738.
    4. Prebil M, Jensen J, Zorec R, Kreft M:Astrocytes and energy metabolism[J]. Arch Physiol Biochem 2011,117:64-69.
    5. Rusakov DA, Zheng K, Henneberger C:Astrocytes as regulators of synaptic function:a quest for the Ca2+master key[J]. Neuroscientist 2011,17:513-523.
    6. Barker AJ, Ullian EM:Astrocytes and synaptic plasticity[J]. Neuroscientist 2010,16:40-50.
    7. Koehler RC, Roman RJ, Harder DR:Astrocytes and the regulation of cerebral blood flow[J]. Trends Neurosci 2009,32:160-169.
    8. Koehler RC, Gebremedhin D, Harder DR:Role of astrocytes in cerebrovascular regulation[J]. J Appl Physiol 2006,100:307-317.
    9. Kaplan J, Dimlich RV, Biros MH, Hedges J:Mechanisms of ischemic cerebral injury[J]. Resuscitation 1987,15:149-169.
    10. Colangelo AM, Cirillo G, Lavitrano ML, Alberghina L, Papa M:Targeting reactive astrogliosis by novel biotechnological strategies[J]. Biotechnol Adv 2012,30:261-271.
    11. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V:Astroglial excitability and gliotransmission:An appraisal of Ca2+ as a signaling route[J]. ASN Neuro 2012.
    12. Jayakumar AR, Norenberg MD:The Na-K-Cl Co-transporter in astrocyte swelling[J]. Metab Brain Dis 2010,25:31-38.
    13. Allaman I, Belanger M, Magistretti PJ:Astrocyte-neuron metabolic relationships:for better and for worse[J]. Trends Neurosci 2011,34:76-87.
    14. Lee A, Pow DV:Astrocytes:Glutamate transport and alternate splicing of transporters[J]. Int J Biochem Cell Biol 2010,42:1901-1906.
    15. Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ:Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy[J]. Neurotherapeutics 2010,7:452-470.
    16. Malarkey EB, Parpura V:Mechanisms of glutamate release from astrocytes[J]. Neurochem Int 2008,52:142-154.
    17. Marquardt L, Ruf A, Mansmann U, Winter R, Buggle F, Kallenberg K, Grau AJ:Inflammatory response after acute ischemic stroke[J].J Neurol Sci 2005,236:65-71.
    18. Carmignoto G, Gomez-Gonzalo M:The contribution of astrocyte signalling to neurovascular coupling[J]. Brain Res Rev 2010,63:138-148.
    19. Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S:Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia[J]. Brain Res 2004,1021:20-31.
    20. Aloisi F, Borsellino G, Care A, Testa U, Gallo P, Russo G, Peschle C, Levi G:Cytokine regulation of astrocyte function:in-vitro studies using cells from the human brain[J]. Int J Dev Neurosci 1995,13:265-274.
    21. Yun SJ, Kim MO, Kim SO, Park J, Kwon YK, Kim IS, Lee EH:Induction of TGF-beta-inducible gene-h3 (betaig-h3) by TGF-betal in astrocytes:implications for astrocyte response to brain injury[J]. Brain Res Mol Brain Res 2002,107:57-64.
    22. Harvey BK, Hoffer BJ, Wang Y:Stroke and TGF-beta proteins:glial cell line-derived neurotrophic factor and bone morphogenetic protein[J]. Pharmacol Ther2005,105:113-125.
    23. Intiso D, Zarrelli MM, Lagioia G, Di Rienzo F, Checchia De Ambrosio C, Simone P, Tonali P, Cioffi Dagger RP:Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients[J]. Neurol Sci 2004,24:390-396.
    24. Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M:Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke[J]. Circulation 1996,94:939-945.
    25. del Zoppo GJ:The neurovascular unit, matrix proteases, and innate inflammation[J]. Ann N Y Acad Sci 2010,1207:46-49.
    26. Yu P, Wang H, Katagiri Y, Geller HM:An in vitro model of reactive astrogliosis and its effect on neuronal growth[J]. Methods Mol Biol 2012,814:327-340.
    27. Galtrey CM, Fawcett JW:The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system[J]. Brain Res Rev 2007,54:1-18.
    28. Fawcett JW, Asher RA:The glial scar and central nervous system repair[J]. Brain Res Bull 1999, 49:377-391.
    29. Sofroniew MV:Molecular dissection of reactive astrogliosis and glial scar formation[J]. Trends Neurosci 2009,32:638-647.
    30. Wanner IB, Deik A, Torres M, Rosendahl A, "Neary JT, Lemmon VP, Bixby JL:A new in vitro model of the glial scar inhibits axon growth[J]. Glia 2008,56:1691-1709.
    31. Sofroniew MV, Vinters HV:Astrocytes:biology and pathology[J]. Acta Neuropathol 2010, 119:7-35.
    32. Hamby ME, Sofroniew MV:Reactive astrocytes as therapeutic targets for CNS disorders[J]. Neurotherapeutics 2010,7:494-506.
    33. Barreto GE, Sun X, Xu L, Giffard RG:Astrocyte proliferation following stroke in the mouse depends on distance from the infarct[J]. PLoS One 2011,6:e27881.
    34. Kriz J:Inflammation in ischemic brain injury:timing is important[J]. Crit Rev Neurobiol 2006, 18:145-157.
    35. Candelario-Jalil E:Injury and repair mechanisms in ischemic stroke:considerations for the development of novel neurotherapeutics[J]. Curr Opin Investig Drugs 2009,10:644-654.
    36. Chapman KZ, Dale VQ, Denes A, Bennett G, Rothwell NJ, Allan SM, McColl BW:A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke[J]. J Cereb Blood Flow Metab 2009,29:1764-1768.
    37. Wang Q, Tang XN, Yenari MA:The inflammatory response in stroke[J]. J Neuroimmunol 2007, 184:53-68.
    38. Buffo A, Rolando C, Ceruti S:Astrocytes in the damaged brain:molecular and cellular insights into their reactive response and healing potential[J]. Biochem Pharmacol 2010,79:77-89.
    39. Xia W, Han J, Huang G, Ying W:Inflammation in ischaemic brain injury:current advances and future perspectives[J]. Clin Exp Pharmacol Physiol 2010,37:253-258.
    40. Zhao Y, Rempe DA:Targeting astrocytes for stroke therapy[J]. Neurotherapeutics 2010, 7:439-451.
    41. Kim JH, Min KJ, Seol W, Jou I, Joe EH:Astrocytes in injury states rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses[J]. J Neurochem 2010,115:1161-1171.
    42. De Simoni MG, Milia P, Barba M, De Luigi A, Parnetti L, Gallai V:The inflammatory response in cerebral ischemia:focus on cytokines in stroke patients[J]. Clin Exp Hypertens 2002, 24:535-542.
    43. Krupinski J, Kumar P, Kumar S, Kaluza J:Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans[J]. Stroke 1996,27:852-857.
    44. Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin SC, Chen Z: Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats[J]. Life Sci 2006,79:1645-1656.
    45. Freiberg JJ, Tybjaerg-Hansen A, Sillesen H, Jensen GB, Nordestgaard BG:Promotor polymorphisms in leukotriene C4 synthase and risk of ischemic cerebrovascular disease[J]. Arterioscler Thromb Vasc Biol 2008,28:990-996.
    46. Gomes FC, Sousa Vde O, Romao L:Emerging roles for TGF-betal in nervous system development[J]. Int J Dev Neurosci 2005,23:413-424.
    47. Schluesener HJ, Meyermann R:TGF-beta 1, beta 2, beta 1.2 and the bone morphogenetic protein BMP2:members of the transforming growth factor type beta supergene family with different morphogenetic effects on rat astrocyte cultures[J]. Autoimmunity 1991,9:77-81.
    48. Ikushima H, Miyazono K:TGF-beta signal transduction spreading to a wider field:a broad variety of mechanisms for context-dependent effects of TGF-beta[J]. Cell Tissue Res 2012, 347:37-49.
    49. Clark RI, Woodcock KJ, Geissmann F, Trouillet C, Dionne MS:Multiple TGF-beta superfamily signals modulate the adult Drosophila immune response[J]. Curr Biol 2011,21:1672-1677.
    50. Santibanez JF, Quintanilla M, Bernabeu C:TGF-beta/TGF-beta receptor system and its role in physiological and pathological conditions[J]. Clin Sci (Lond) 2011,121:233-251.
    51. Brand T, Schneider MD:The TGF beta superfamily in myocardium:ligands, receptors, transduction, and function[J]. J Mol Cell Cardiol 1995,27:5-18.
    52. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK:TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud[J]. Dev Biol 2004,266:285-298.
    53. Soderberg SS, Karlsson G, Karlsson S:Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling[J]. Ann N Y Acad Sci 2009,1176:55-69.
    54. Vivien D, Ali C:Transforming growth factor-beta signalling in brain disorders[J]. Cytokine Growth Factor Rev 2006,17:121-128.
    55. Wyss-Coray T, Borrow P, Brooker MJ, Mucke L:Astroglial overproduction of TGF-beta 1 enhances inflammatory central nervous system disease in transgenic mice[J]. J Neuroimmunol 1997,77:45-50.
    56. Pratt BM, McPherson JM:TGF-beta in the central nervous system:potential roles in ischemic injury and neurodegenerative diseases[J]. Cytokine Growth Factor Rev 1997,8:267-292.
    57. Williams C, Guan J, Miller O, Beilharz E, McNeill H, Sirimanne E, Gluckman P:The role of the growth factors IGF-1 and TGF beta 1 after hypoxic-ischemic brain injury[J]. Ann N Y Acad Sci 1995,765:306-307.
    58. Huang F, Chen YG:Regulation of TGF-beta Receptor Activity[J]. Cell Biosci 2012,2:9.
    59. Edgley AJ, Krum H, Kelly DJ:Targeting fibrosis for the treatment of heart failure:a role for transforming growth factor-beta[J]. Cardiovasc Ther 2012,30:e30-40.
    60. Battling Alzheimer's disease, step by small step. Transforming growth factor (tgf-beta) and low brain oxygen levels provide more clues to AD[J]. Duke Med Health News 2007,13:7.
    61. Lehrmann E, Kiefer R, Finsen B, Diemer NH, Zimmer J, Hartung HP:Cytokines in cerebral ischemia:expression of transforming growth factor beta-1 (TGF-beta 1) mRNA in the postischemic adult rat hippocampus[J]. Exp Neurol 1995,131:114-123.
    62. Wang Y, Moges H, Bharucha Y, Symes A:Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex[J]. Exp Neurol 2007, 203:168-184.
    63. Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K:Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage[J]. J Neurosci 2010,30:5843-5854.
    64. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM:Transforming growth factor-beta 1 induces matrix metalloproteinase-9 and cell migration in astrocytes:roles of ROS-dependent ERK- and JNK-NF-kappaB pathways[J]. J Neuroinflammation 2010,7:88.
    65. Stipursky J, Gomes FC:TGF-beta 1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development[J]. Glia 2007,55:1023-1033.
    66. Hammarstrom S, Orning L, Bernstrom K:Metabolism and excretion of cysteinyl-leukotrienes [J]. Adv Prostaglandin Thromboxane Leukot Res 1986,16:383-396.
    67. Brink C, Dahlen SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T:International Union of Pharmacology ⅩⅩⅩⅦ. Nomenclature for leukotriene and lipoxin receptors[J]. Pharmacol Rev 2003,55:195-227.
    68. Kanaoka Y, Boyce JA:Cysteinyl leukotrienes and their receptors:cellular distribution and function in immune and inflammatory responses[J]. J Immunol 2004,173:1503-1510.
    69. Back M:Functional characteristics of cysteinyl-leukotriene receptor subtypes[J]. Life Sci 2002, 71:611-622.
    70. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE:Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases:critical update and emerging trends [J]. Med Res Rev 2007,27:469-527.
    71. Evans JF:The cysteinyl leukotriene receptors[J]. Prostaglandins Leukot Essent Fatty Acids 2003, 69:117-122.
    72. Rovati GE, Capra V:Cysteinyl-leukotriene receptors and cellular signals[J]. Scientific World Journal 2007,7:1375-1392.
    73. Singh RK, Gupta S, Dastidar S, Ray A:Cysteinyl leukotrienes and their receptors:molecular and functional characteristics[J]. Pharmacology 2010,85:336-349.
    74. Daniele S, Lecca D, Trincavelli ML, Ciampi O, Abbracchio MP, Martini C:Regulation of PC 12 cell survival and differentiation by the new P2Y-like receptor GPR17[J]. Cell Signal 2010, 22:697-706.
    75. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, et al:The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair[J]. PLoS One 2008,3:e3579.
    76. Maekawa A, Balestrieri B, Austen KF, Kanaoka Y:GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4[J]. Proc Natl Acad Sci U S A 2009, 106:11685-11690.
    77. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, et al:The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor[J]. EMBO J 2006,25:4615-4627.
    78. Zhou Y, Fang SH, Ye YL, Chu LS, Zhang WP, Wang ML, Wei EQ:Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats[J]. Acta Pharmacol Sin 2006, 27:1103-1110.
    79. Zhang WP, Hu H, Zhang L, Ding W, Yao HT, Chen KD, Sheng WW, Chen Z, Wei EQ: Expression of cysteinyl leukotriene receptor 1 in human traumatic brain injury and brain tumors[J]. Neurosci Lett 2004,363:247-251.
    80. Hu H, Chen G, Zhang JM, Zhang WP, Zhang L, Ge QF, Yao HT, Ding W, Chen Z, Wei EQ: Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors[J]. Acta Pharmacol Sin 2005,26:685-690.
    81. Fang SH, Wei EQ, Zhou Y, Wang ML, Zhang WP, Yu GL, Chu LS, Chen Z:Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats[J]. Neuroscience 2006,140:969-979.
    82. Zhang YJ, Zhang L, Ye YL, Fang SH, Zhou Y, Zhang WP, Lu YB, Wei EQ:Cysteinyl leukotriene receptors CysLT1 and CysLT2 are upregulated in acute neuronal injury after focal cerebral ischemia in mice[J]. Acta Pharmacol Sin 2006,27:1553-1560.
    83. Zhao CZ, Zhao B, Zhang XY, Huang XQ, Shi WZ, Liu HL, Fang SH, Lu YB, Zhang WP, Tang FD, Wei EQ:Cysteinyl leukotriene receptor 2 is spatiotemporally involved in neuron injury, astrocytosis and microgliosis after focal cerebral ischemia in rats[J]. Neuroscience 2011, 189:1-11.
    84. Fang SH, Zhou Y, Chu LS, Zhang WP, Wang ML, Yu GL, Peng F, Wei EQ:Spatio-temporal expression of cysteinyl leukotriene receptor-2 mRNA in rat brain after focal cerebral ischemia [J]. Neurosci Lett 2007,412:78-83.
    85. Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP, Xia Q, Wei EQ: The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats[J].Neuroscience 2012,202:42-57.
    86. Huang XJ, Zhang WP, Li CT, Shi WZ, Fang SH, Lu YB, Chen Z, Wei EQ:Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation[J]. Glia 2008,56:27-37.
    87. Kaetsu Y, Yamamoto Y, Sugihara S, Matsuura T, Igawa G, Matsubara K, Igawa O, Shigemasa C, Hisatome I:Role of cysteinyl leukotrienes in the proliferation and the migration of murine vascular smooth muscle cells in vivo and in vitro[J]. Cardiovasc Res 2007,76:160-166.
    88. Yuan YM, Fang SH, Qian XD, Liu LY, Xu LH, Shi WZ, Zhang LH, Lu YB, Zhang WP, Wei EQ: Leukotriene D4 stimulates the migration but not proliferation of endothelial cells mediated by the cysteinyl leukotriene cyslt(1) receptor via the extracellular signal-regulated kinase pathway [J]. J Pharmacol Sci 2009,109:285-292.
    89. Paruchuri S, Broom O, Dib K, Sjolander A:The pro-inflammatory mediator leukotriene D4 induces phosphatidylinositol 3-kinase and Rac-dependent migration of intestinal epithelial cells [J]. J Biol Chem 2005,280:13538-13544.
    90. Ciccarelli R, D'Alimonte I, Santavenere C, D'Auro M, Ballerini P, Nargi E, Buccella S, Nicosia S, Folco G, Caciagli F, Di lorio P:Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway[J]. Eur J Neurosci 2004,20:1514-1524.
    91. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, Chu LS, Fang SH, Zhou Y, Chen Z, et al:Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice[J]. Brain Res 2005,1053:116-125.
    92. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M:CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4[J]. J Allergy Clin Immunol 2003,111:1032-1040.
    93. Asakura T, Ishii Y, Chibana K, Fukuda T:Leukotriene D4 stimulates collagen production from myofibroblasts transformed by TGF-beta[J]. J Allergy Clin Immunol 2004,114:310-315.
    94. Chibana K, lshii Y, Asakura T, Fukuda T:Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin[J]. J Immunol 2003,170:4290-4295.
    95. Paiva LA, Maya-Monteiro CM, Bandeira-Melo C, Silva PM, El-Cheikh MC, Teodoro AJ, Borojevic R, Perez SA, Bozza PT:Interplay of cysteinyl leukotrienes and TGF-beta in the activation of hepatic stellate cells from Schistosoma mansoni granulomas[J]. Biochim Biophys Acta 2010,1801:1341-1348.
    96. Jozefowski S, Biedron R, Bobek M, Marcinkiewicz J:Leukotrienes modulate cytokine release from dendritic cells[J]. Immunology 2005,116:418-428.
    97. Spanbroek R, Hildner M, Steinhilber D, Fusenig N, Yoneda K, Radmark O, Samuelsson B, Habenicht AJ:5-lipoxygenase expression in dendritic cells generated from CD34(+) hematopoietic progenitors and in lymphoid organs[J]. Blood 2000,96:3857-3865.
    98. Spanbroek R, Hildner M, Kohler A, Muller A, Zintl F, Kuhn H, Radmark O, Samuelsson B, Habenicht AJ:IL-4 determines eicosanoid formation in dendritic cells by down-regulation of 5-lipoxygenase and up-regulation of 15-lipoxygenase 1 expression[J]. Proc Natl Acad Sci U S A 2001,98:5152-5157.
    99. Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ:CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes[J]. Life Sci 2011,88:50-56.
    100. Miao H, Jin X, Perelson AS, Wu H:Evaluation of multitype mathematical models for CFSE-labeling experiment data[J]. Bull Math Biol 2012,74:300-326.
    101. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, Olson S, Gabrielli B, Osborne G, Vescovi A, Reynolds BA:Evidence for label-retaining tumour-initiating cells in human glioblastoma[J]. Brain 2011,134:1331-1343.
    102. Wei S, Gao X, Du J, Su J, Xu Z:Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics[J], PLoS One 2011,6:e28797.
    103. Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z:Minocycline protects PC 12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation [J]. Neuroreport 2004,15: 2181-2184.
    104. Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z:Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation[J]. Brain Res 2006,1085:57-67.
    105. Harrison CA, Al-Musawi SL, Walton KL:Prodomains regulate the synthesis, extracellular localisation and activity of TGF-beta superfamily ligands[J]. Growth Factors 2011,29:174-186.
    106. Yan D, Stocco R, Sawyer N, Nesheim ME, Abramovitz M, Funk CD:Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT) agonist, N-methyl-leukotriene C, in calcium reporter and beta arrestin assays[J]. Mol Pharmacol 2011, 79:270-278.
    107. Ge QF, Wei EQ, Zhang WP, Hu X, Huang XJ, Zhang L, Song Y, Ma ZQ, Chen Z, Luo JH: Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons[J]. J Neurochem 2006,97:992-1004.
    108. Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ, Zhang L, Chen Z, Wei EQ:Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells[J]. J Neurosci Res 2009, 87:991-1001.
    109. Werz O:5-lipoxygenase:cellular biology and molecular pharmacology[J]. Curr Drug Targets Inflamm Allergy 2002,1:23-44.
    110. Brungs M, Radmark O, Samuelsson B, Steinhilber D:On the induction of 5-lipoxygenase expression and activity in HL-60 cells:effects of vitamin D3, retinoic acid, DMSO and TGF beta[J]. Biochem Biophys Res Commun 1994,205:1572-1580.
    111. Harle D, Radmark O, Samuelsson B, Steinhilber D:Calcitriol and transforming growth factor-beta upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation[J]. Eur J Biochem 1998,254:275-281.
    112. Seuter S, Sorg BL, Steinhilber D:The coding sequence mediates induction of 5-lipoxygenase expression by Smads3/4[J]. Biochem Biophys Res Commun 2006,348:1403-1410.
    113. Steinhilber D, Radmark O, Samuelsson B:Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation[J]. Proc Natl Acad Sci U S A 1993, 90:5984-5988.
    114. Sheng WW, Li CT, Zhang WP, Yuan YM, Hu H, Fang SH, Zhang L, Wei EQ:Distinct roles of CysLT1 and CysLT2 receptors in oxygen glucose deprivation-induced PC12 cell death[J]. Biochem Biophys Res Commun 2006,346:19-25.
    115. Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, Li Y, Raisman G: Role of the lesion scar in the response to damage and repair of the central nervous system[J]. Cell Tissue Res 2012.
    116. Zhang L, Zhang WP, Chen KD, Qian XD, Fang SH, Wei EQ:Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury[J]. Life Sci 2007, 80:530-537.
    1. de Larco JE, Todaro GJ:Growth factors from murine sarcoma virus-transformed cells[J]. Proc Natl Acad Sci U S A 1978,75:4001-4005.
    2. Moses HL, Branum EL, Proper JA, Robinson RA:Transforming growth factor production by chemically transformed cells[J]. Cancer Res 1981,41:2842-2848.
    3. Finch CE, Laping NJ, Morgan TE, Nichols NR, Pasinetti GM:TGF-beta 1 is an organizer of responses to neurodegeneration[J]. J Cell Biochem 1993,53:314-322.
    4. Gomes FC, Sousa Vde O, Romao L:Emerging roles for TGF-beta 1 in nervous system development[J]. lnt J Dev Neurosci 2005,23:413-424.
    5. Jennings MT, Pietenpol JA:The role of transforming growth factor beta in glioma progression [J]. J Neurooncol 1998,36:123-140.
    6. Kulkarni AB, Ward JM, Yaswen L, Mackall CL, Bauer SR, Huh CG, Gress RE, Karlsson S: Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders[J]. Am J Pathol 1995,146:264-275.
    7. Lamszus K, Heese O, Westphal M:Angiogenesis-related growth factors in brain tumors[J]. Cancer Treat Res 2004,117:169-190.
    8. Wu MY, Hill CS:Tgf-beta superfamily signaling in embryonic development and homeostasis[J]. Dev Cell 2009,16:329-343.
    9. Cheng H, Huang SS, Lin SM, Lin MJ, Chu YC, Chih CL, Tsai MJ, Lin HC, Huang WC, Tsai SK: The neuroprotective effect of glial cell line-derived neurotrophic factor in fibrin glue against chronic focal cerebral ischemia in conscious rats[J]. Brain Res 2005,1033:28-33.
    10. Chou J, Harvey BK, Chang CF, Shen H, Morales M, Wang Y:Neuroregenerative effects of BMP7 after stroke in rats[J]. J Neurol Sci 2006,240:21-29.
    11. Fukushima T, Liu RY, Byrne JH:Transforming growth factor-beta2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons[J]. Hippocampus 2007,17:5-9.
    12. Guerra-Crespo M, Gleason D, Sistos A, Toosky T, Solaroglu 1, Zhang JH, Bryant PJ, Fallon JH: Transforming growth factor-alpha induces neurogenesis and behavioral improvement in a chronic stroke model[J]. Neuroscience 2009,160:470-483.
    13. Jeong SR, Kwon MJ, Lee HG, Joe EH, Lee JH, Kim SS, Suh-Kim H, Kim BG:Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury[J]. Exp Neurol 2012,233:312-322.
    14. Knoferle J, Ramljak S, Koch JC, Tonges L, Asif AR, Michel U, Wouters FS, Heermann S, Krieglstein K, Zerr I, et al:TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP[J]. Neurobiol Dis 2010,38:395-404.
    15. Barakat B, Itman C, Mendis S, Loveland KL:Activins and inhibins in mammalian testis development:New models, new insights[J]. Mol Cell Endocrinol 2012.
    16. Chen G, Deng C, Li YP:TGF-beta and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci 2012,8:272-288.
    17. Di X, Andrews DM, Tucker CJ, Yu L, Moore AB, Zheng X, Castro L, Hermon T, Xiao H, Dixon D:A high concentration of genistein down-regulates Activin A, Smad3 and other TGF-beta pathway genes in human uterine leiomyoma cells[J]. Exp Mol Med 2012.
    18. Ehrlich M, Gutman O, Knaus P, Henis YI:Oligomeric interactions of TGF-beta and BMP receptors[J]. FEBS Lett 2012.
    19. Gahr SA, Weber GM, Rexroad CE,3rd:Identification and expression of Smads associated with TGF-beta/activin/nodal signaling pathways in the rainbow trout (Oncorhynchus mykiss) [J]. Fish Physiol Biochem 2012.
    20. Horbelt D, Denkis A, Knaus P:A portrait of Transforming Growth Factor beta superfamily signalling:Background matters[J]. Int J Biochem Cell Biol 2012,44:469-474.
    21. Backman CM, Shan L, Zhang YJ, Hoffer BJ, Leonard S, Troncoso JC, Vonsatel P, Tomac AC: Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson's disease:a real-time PCR study[J]. Mol Cell Endocrinol 2006,252:160-166.
    22. Harvey BK, Hoffer BJ, Wang Y:Stroke and TGF-beta proteins:glial cell line-derived neurotrophic factor and bone morphogenetic protein[J]. Pharmacol Ther 2005,105:113-125.
    23. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F:GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons[J]. Science 1993,260:1130-1132.
    24. Deininger MH, Kremsner PG, Meyermann R, Schluesener HJ:Differential cellular accumulation of transforming growth factor-beta1,-beta2, and -beta3 in brains of patients who died with cerebral malaria[J]. J Infect Dis 2000,181:2111-2115.
    25. Schulz R, Vogel T, Dressel R, Krieglstein K:TGF-beta superfamily members, ActivinA and TGF-beta1, induce apoptosis in oligodendrocytes by different pathways[J]. Cell Tissue Res 2008, 334:327-338.
    26. Massague J:TGF-beta signal transduction[J]. Annu Rev Biochem 1998,67:753-791.
    27. Chen YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J:Determinants of specificity in TGF-beta signal transduction[J]. Genes Dev 1998,12:2144-2152.
    28. Harrison CA, Al-Musawi SL, Walton KL:Prodomains regulate the synthesis, extracellular localisation and activity of TGF-beta superfamily ligands[J]. Growth Factors 2011,29:174-186.
    29. ten Dijke P, Arthur HM:Extracellular control of TGFbeta signalling in vascular development and disease[J]. Nat Rev Mol Cell Biol 2007,8:857-869.
    30. Annes JP, Munger JS, Rifkin DB:Making sense of latent TGFbeta activation[J]. J Cell Sci 2003, 116:217-224.
    31. McLennan IS, Koishi K:The transforming growth factor-betas:multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells[J]. Int J Dev Biol 2002,46:559-567.
    32. Dennler S, Goumans MJ, ten Dijke P:Transforming growth factor beta signal transduction[J]. J Leukoc Biol 2002,71:731-740.
    33. Huang F, Chen YG:Regulation of TGF-beta Receptor Activity[J]. Cell Biosci 2012,2:9.
    34. Romano V, Raimondo D, Calvanese L, D'Auria G, Tramontano A, Falcigno L:Toward a better understanding of the interaction between TGF-beta family members and their ALK receptors[J]. J Mol Model 2012.
    35. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K:Two major Smad pathways in TGF-beta superfamily signalling[J]. Genes Cells 2002,7:1191-1204.
    36. Tsuchida K, Sawchenko PE, Nishikawa S, Vale WW:Molecular cloning of a novel type Ⅰ receptor serine/threonine kinase for the TGF beta superfamily from rat brain[J]. Mol Cell Neurosci 1996,7:467-478.
    37. Vecerova L, Strasky Z, Rathouska J, Slanarova M, Brcakova E, Micuda S, Nachtigal P: Activation of TGF-beta Receptors and Smad Proteins by Atorvastatin is Related to Reduced Atherogenesis in ApoE/LDLR Double Knockout Mice[J]. J Atheroscler Thromb 2012, 19:115-126.
    38. Zunwen L, Shizhen Z, Dewu L, Yungui M, Pu N:Effect of tetrandrine on the TGF-beta-induced smad signal transduction pathway in human hypertrophic scar fibroblasts in vitro[J]. Burns 2012, 38:404-413.
    39. Shi Y:Structural insights on Smad function in TGFbeta signaling[J]. Bioessays 2001, 23:223-232.
    40. Chalmers KA, Love S:Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons[J]. J Neuropathol Exp Neurol 2007,66:158-167.
    41. Kleiter I, Pedre X, Mueller AM, Poeschl P, Couillard-Despres S, Spruss T, Bogdahn U, Giegerich G, Steinbrecher A:Inhibition of Smad7, a negative regulator of TGF-beta signaling, suppresses autoimmune encephalomyelitis[J]. J Neuroimmunol 2007,187:61-73.
    42. Kleiter I, Song J, Lukas D, Hasan M, Neumann B, Croxford AL, Pedre X, Hovelmeyer N, Yogev N, Mildner A, et al:Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis[J]. Brain 2010,133:1067-1081.
    43. Lee EO, Kang JL, Chong YH:The amyloid-beta peptide suppresses transforming growth factor-beta 1-induced matrix metalloproteinase-2 production via Smad7 expression in human monocytic THP-1 cells[J]. J Biol Chem 2005,280:7845-7853.
    44. Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP:Crystal structure of a Smad MH1 domain bound to DNA:insights on DNA binding in TGF-beta signaling[J]. Cell 1998, 94:585-594.
    45. Chai J, Wu JW, Yan N, Massague J, Pavletich NP, Shi Y:Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding[J]. J Biol Chem 2003,278:20327-20331.
    46. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, et al: Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling[J]. Mol Cell 2001,8:1277-1289.
    47. Wu JW, Fairman R, Penry J, Shi Y:Formation of a stable heterodimer between Smad2 and Smad4[J]. J Biol Chem 2001,276:20688-20694.
    48. Shi Y, Massague J:Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell 2003,113:685-700.
    49. Attisano L, Wrana JL:Signal transduction by the TGF-beta superfamily[J]. Science 2002, 296:1646-1647.
    50. Kawabata M, Imamura T, Inoue H, Hanai J, Nishihara A, Hanyu A, Takase M, Ishidou Y, Udagawa Y, Oeda E, et al:Intracellular signaling of the TGF-beta superfamily by Smad proteins[J]. Ann N Y Acad Sci 1999,886:73-82.
    51. Kawabata M, Miyazono K:Signal transduction of the TGF-beta superfamily by Smad proteins[J]. J Biochem 1999,125:9-16.
    52. Aigner L, Bogdahn U:TGF-beta in neural stem cells and in tumors of the central nervous system[J]. Cell Tissue Res 2008,331:225-241.
    53. Gu AD, Wang Y, Lin L, Zhang SS, Wan YY:Requirements of transcription factor Smad-dependent and -independent TGF-beta signaling to control discrete T-cell functions[J]. Proc Natl Acad Sci U S A 2012,109:905-910.
    54. Gui T, Sun Y, Shimokado A, Muragaki Y:The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-beta-Induced Epithelial-Mesenchymal Transition[J]. J Signal Transduct 2012, 2012:289243.
    55. Suwanabol PA, Seedial SM, Zhang F, Shi X, Si Y, Liu B, Kent KC:TGF-beta and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol 2012.
    56. Mu Y, Gudey SK, Landstrom M:Non-Smad signaling pathways[J]. Cell Tissue Res 2012, 347:11-20.
    57. Liu Q, Zhang Y, Mao H, Chen W, Luo N, Zhou Q, Yu X:A Crosstalk between the Smad and JNK Signaling in the TGF-beta-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells[J]. PLoS One 2012,7:e32009.
    58. Bottner M, Krieglstein K, Unsicker K:The transforming growth factor-betas:structure, signaling, and roles in nervous system development and functions[J]. J Neurochem 2000,75:2227-2240.
    59. Flanders KC, Ren RF, Lippa CF:Transforming growth factor-betas in neurodegenerative disease. [J] Prog Neurobiol 1998,54:71-85.
    60. Macauley SL, Horsch AD, Oterdoom M, Zheng MH, Stewart GR:The effects of transforming growth factor-beta2 on dopaminergic graft survival[J].Cell Transplant 2004,13:245-252.
    61. Majd S, Smardencas A, Parish CL, Drago J:Development of an in vitro model to evaluate the regenerative capacity of adult brain-derived tyrosine hydroxylase-expressing dopaminergic neurons[J]. Neurochem Res 2011,36:967-977.
    62. Poulsen KT, Armanini MP, Klein RD, Hynes MA, Phillips HS, Rosenthal A:TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons[J]. Neuron 1994, 13:1245-1252.
    63. Roussa E, Farkas LM, Krieglstein K:TGF-beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8[J]. Neurobiol Dis 2004,16:300-310.
    64. Roussa E, von Bohlen und Halbach O, Krieglstein K:TGF-beta in dopamine neuron development, maintenance and neuroprotection[J].Adv Exp Med Biol 2009,651:81-90.
    65. Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, et al:Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease[J]. J Neuropathol Exp Neurol 2010,69:717-728.
    66. Kandasamy M, Reilmann R, Winkler J, Bogdahn U, Aigner L:Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche:A Therapeutic Target for Huntington's Disease[J]. Neurol Res Int 2011,2011:124256.
    67. Farkas LM, Dunker N, Roussa E, Unsicker K, Krieglstein K:Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo[J]. J Neurosci 2003,23:5178-5186.
    68. Roussa E, Krieglstein K:Induction and specification of midbrain dopaminergic cells:focus on SHH, FGF8, and TGF-beta[J]. Cell Tissue Res 2004,318:23-33.
    69. Bottner M, Unsicker K, Suter-Crazzolara C:Expression of TGF-beta type Ⅱ receptor mRNA in the CNS[J]. Neuroreport 1996,7:2903-2907.
    70. Vivien D, Bernaudin M, Buisson A, Divoux D, MacKenzie ET, Nouvelot A:Evidence of type Ⅰ and type Ⅱ transforming growth factor-beta receptors in central nervous tissues:changes induced by focal cerebral ischemia[J]. J Neurochem 1998,70:2296-2304.
    71. Ata KA, Lennmyr F, Funa K, Olsson Y, Terent A:Expression of transforming growth factor-beta1,2,3 isoforms and type Ⅰ and Ⅱ receptors in acute focal cerebral ischemia:an immunohistochemical study in rat after transient and permanent occlusion of middle cerebral artery[J]. Acta Neuropathol 1999,97:447-455.
    72. Sousa Vde O, Almeida JC, Eller CM, Gomes FC:Characterization of TGF-beta1 type Ⅱ receptor expression in cultured cortical astrocytes[J]. In Vitro Cell Dev Biol Anim 2006,42:171-175.
    73. Lin AH, Luo J, Mondshein LH, ten Dijke P, Vivien D, Contag CH, Wyss-Coray T:Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury[J]. J Immunol 2005,175:547-554.
    74. Lesne S, Blanchet S, Docagne F, Liot G, Plawinski L, MacKenzie ET, Auffray C, Buisson A, Pietu G, Vivien D:Transforming growth factor-beta1-modulated cerebral gene expression[J]. J Cereb Blood Flow Metab 2002,22:1114-1123.
    75. Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA:Effects of hypoxia on expression of transforming growth factor-beta1 and its receptors Ⅰ and Ⅱ in the amoeboid microglial cells and murine BV-2 cells[J]. Neuroscience 2008,156:662-672.
    76. Wang X, Yue TL, White RF, Barone FC, Feuerstein GZ:Transforming growth factor-beta 1 exhibits delayed gene expression following focal cerebral ischemia[J].Brain Res Bull 1995, 36:607-609.
    77. Yamashita K, Gerken U, Vogel P, Hossmann K, Wiessner C:Biphasic expression of TGF-beta1 mRNA in the rat brain following permanent occlusion of the middle cerebral artery[J]. Brain Res 1999,836:139-145.
    78. Hu Z, Fan J, Zeng L, Lu W, Tang X, Zhang J, Li T:Transient cerebral ischemia leads to TGF-beta2 expression in Golgi apparatus organelles[J]. Curr Neurovasc Res 2008,5:178-184.
    79. Martinez G, Di Giacomo C, Sorrenti V, Carnazza ML, Ragusa N, Barcellona ML, Vanella A: Fibroblast growth factor-2 and transforming growth factor-beta1 immunostaining in rat brain after cerebral postischemic reperfusion[J]. J Neurosci Res 2001,63:136-142.
    80. Kim JS, Yoon SS, Kim YH, Ryu JS:Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute strok[J]e. Stroke 1996,27:1553-1557.
    81. Li X, Miyajima M, Jiang C, Arai H:Expression of TGF-betas and TGF-beta type Ⅱ receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus[J]. Neurosci Lett 2007,413:141-144.
    82. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J:Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke[J]. Stroke 2000,31:1863-1870.
    83. Gross CE, Bednar MM, Howard DB, Sporn MB:Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model[J]. Stroke 1993,24:558-562.
    84. Prehn JH, Backhauss C, Krieglstein J:Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo[J]. J Cereb Blood Flow Metab 1993,13:521-525.
    85. Pang L, Ye W, Che XM, Roessler BJ, Betz AL, Yang GY:Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ssl expression[J]. Stroke 2001,32:544-552.
    86. Zhu Y, Ahlemeyer B, Bauerbach E, Krieglstein J:TGF-beta1 inhibits caspase-3 activation and neuronal apoptosis in rat hippocampal cultures[J]. Neurochem Int 2001,38:227-235.
    87. Prehn JH, Bindokas VP, Marcuccilli CJ, Krajewski S, Reed JC, Miller RJ:Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type beta confers wide-ranging protection on rat hippocampal neurons[J]. Proc Natl Acad Sci U S A 1994,91:12599-12603.
    88. Vivien D, Ali C:Transforming growth factor-beta signalling in brain disorders[J]. Cytokine Growth Factor Rev 2006,17:121-128.
    89. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L:Angiotensin Ⅱ sustains brain inflammation in mice via TGF-beta[J]. J Clin Invest 2010,120:2782-2794.
    90. Frautschy SA, Yang F, Calderon L, Cole GM:Rodent models of Alzheimer's disease:rat A beta infusion approaches to amyloid deposits[J]. Neurobiol Aging 1996,17:311-321.
    91. Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A:Dysfunction of TGF-betal signaling in Alzheimer's disease:perspectives for neuroprotection[J]. Cell Tissue Res 2012,347:291-301.
    92. Boche D, Cunningham C, Docagne F, Scott H, Perry VH:TGFbetal regulates the inflammatory response during chronic neurodegeneration[J]. Neurobiol Dis 2006,22:638-650.
    93. Bodmer S, Podlisny MB, Selkoe DJ, Heid I, Fontana A:Transforming growth factor-beta bound to soluble derivatives of the beta amyloid precursor protein of Alzheimer's disease[J]. Biochem Biophys Res Commun 1990,171:890-897.
    94. Cacquevel M, Lebeurrier N, Cheenne S, Vivien D:Cytokines in neuroinflammation and Alzheimer's disease[J]. Curr Drug Targets 2004,5:529-534.
    95. Gaertner RF, Wyss-Coray T, Von Euw D, Lesne S, Vivien D, Lacombe P:Reduced brain tissue perfusion in TGF-beta 1 transgenic mice showing Alzheimer's disease-like cerebrovascular abnormalities[J]. Neurobiol Dis 2005,19:38-46.
    96. Grammas P, Ovase R:Cerebrovascular transforming growth factor-beta contributes to inflammation in the Alzheimer's disease brain[J]. Am J Pathol 2002,160:1583-1587.
    97. Koronyo-Hamaoui M, Ko MK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G, Pham M, Bakhsheshian J, Rogeri P, Black KL, et al:Attenuation of AD-like neuropathology by harnessing peripheral immune cells:local elevation of IL-10 and MMP-9[J]. J Neurochem 2009, 111:1409-1424.
    98. Lifshitz V, Weiss R, Benromano T, Kfir E, Blumenfeld-Katzir T, Tempel-Brami C, Assaf Y, Xia W, Wyss-Coray T, Weiner HL, Frenkel D:Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model[J]. Neurobiol Aging 2012,33:432 e431-432 e413.
    99. Masliah E, Ho G, Wyss-Coray T:Functional role of TGF beta in Alzheimer's disease microvascular injury:lessons from transgenic mice[J]. Neurochem Int 2001,39:393-400.
    100. Tesseur I, Wyss-Coray T:A role for TGF-beta signaling in neurodegeneration:evidence from genetically engineered models[J]. Curr Alzheimer Res 2006,3:505-513.
    101. Flanders KC, Lippa CF, Smith TW, Pollen DA, Sporn MB:Altered expression of transforming growth factor-beta in Alzheimer's disease[J]. Neurology 1995,45:1561-1569.
    102. Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, Mohs R, Pasinetti GM: Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia[J]. Arch Neurol 2000,57:1153-1160.
    103. Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P:Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer's disease patients[J]. Neurol Sci 2006,27:33-39.
    104. Zetterberg H, Andreasen N, Blennow K:Increased cerebrospinal fluid levels of transforming growth factor-beta1 in Alzheimer's disease[J]. Neurosci Lett 2004,367:194-196.
    105. Caraci F, Bosco P, Signorelli M, Spada RS, Cosentino FI, Toscano G, Bonforte C, Muratore S, Prestianni G, Panerai S, et al:The CC genotype of transforming growth factor-beta1 increases the risk of late-onset Alzheimer's disease and is associated with AD-related depression[J]. Eur Neuropsychopharmacol 2012,22:281-289.
    106. Noguchi A, Nawa M, Aiso S, Okamoto K, Matsuoka M:Transforming growth factor beta2 level is elevated in neurons of Alzheimer's disease brains[J]. Int J Neurosci 2010,120:168-175.
    107. Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, et al:Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology[J]. J Clin Invest 2006,116:3060-3069.
    108. Chao CC, Hu S, Kravitz FH, Tsang M, Anderson WR, Peterson PK:Transforming growth factor-beta protects human neurons against beta-amyloid-induced injury[J]. Mol Chem Neuropathol 1994,23:159-178.
    109. Prehn JH, Bindokas VP, Jordan J, Galindo MF, Ghadge GD, Roos RP, Boise LH, Thompson CB, Krajewski S, Reed JC, Miller RJ:Protective·effect of transforming growth factor-beta 1 on beta-amyloid neurotoxicity in rat hippocampal neurons[J]. Mol Pharmacol 1996,49:319-328.
    110. Luo J, Lin AH, Masliah E, Wyss-Coray T:Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration [J]. Proc Natl Acad Sci U S A 2006, 103:18326-18331.
    111. Buckwalter MS, Yamane M, Coleman BS, Ormerod BK, Chin JT, Palmer T, Wyss-Coray T: Chronically increased transforming growth factor-beta1 strongly inhibits hippocampal neurogenesis in aged mice[J]. Am J Pathol 2006,169:154-164.
    112. Wyss-Coray T:Transforming growth factor-beta signaling pathway as a therapeutic target in neurodegeneration[J]. J Mol Neurosci 2004,24:149-153.
    113. Ge YW, Lahiri DK:Regulation of promoter activity of the APP gene by cytokines and growth factors:implications in Alzheimer's disease[J]. Ann N Y Acad Sci 2002,973:463-467.
    114. Amara FM, Junaid A, Clough RR, Liang B:TGF-beta(1), regulation of alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line:mRNA stabilization[J]. Brain Res Mol Brain Res 1999,71:42-49.
    115. Araria-Goumidi L, Lambert JC, Mann DM, Lendon C, Frigard B, Iwatsubo T, Cottel D, Amouyel P, Chartier-Harlin MC:Association study of three polymorphisms of TGF-beta1 gene with Alzheimer's disease[J]. J Neurol Neurosurg Psychiatry 2002,73:62-64.
    116. Harris-White ME, Chu T, Balverde Z, Sigel JJ, Flanders KC, Frautschy SA:Effects of transforming growth factor-beta (isoforms 1-3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures[J]. J Neurosci 1998,18:10366-10374.
    117. Huang WC, Yen FC, Shie FS, Pan CM, Shiao YJ, Yang CN, Huang FL, Sung YJ, Tsay HJ: TGF-betal blockade of microglial chemotaxis toward Abeta aggregates involves SMAD signaling and down-regulation of CCL5[J]. J Neuroinflammation 2010,7:28.
    118. Lesne S, Docagne F, Gabriel C, Liot G, Lahiri DK, Buee L, Plawinski L, Delacourte A, MacKenzie ET, Buisson A, Vivien D:Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice[J]. J Biol Chem 2003, 278:18408-18418.
    119. Ongali B, Nicolakakis N, Lecrux C, Aboulkassim T, Rosa-Neto P, Papadopoulos P, Tong XK, Hamel E:Transgenic mice overexpressing APP and transforming growth factor-beta 1 feature cognitive and vascular hallmarks of Alzheimer's disease[J]. Am J Pathol 2010,177:3071-3080.
    120. Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L: Amyloidogenic role of cytokine TGF-betal in transgenic mice and in Alzheimer's disease[J]. Nature 1997,389:603-606.
    121. Mazur-Kolecka B, Frackowiak J, Le Vine H,3rd, Haske T, Evans L, Sukontasup T, Golabek A: TGFbetal enhances formation of cellular Abeta/apoE deposits in vascular myocytes[J]. Neurobiol Aging 2003,24:355-364.
    122. Burton T, Liang B, Dibrov A, Amara F:Transcriptional activation and increase in expression of Alzheimer's beta-amyloid precursor protein gene is mediated by TGF-beta in normal human astrocytes[J]. Biochem Biophys Res Commun 2002,295:702-712.
    123. Wyss-Coray T, Lin C, Sanan DA, Mucke L, Masliah E:Chronic overproduction of transforming growth factor-betal by astrocytes promotes Alzheimer's disease-like microvascular degeneration in transgenic mice[J]. Am J Pathol 2000,156:139-150.
    124. Luppi C, Fioravanti M, Bertolini B, Inguscio M, Grugnetti A, Guerriero F, Rovelli C, Cantoni F, Guagnano P, Marazzi E, et al:Growth factors decrease in subjects with mild to moderate Alzheimer's disease (AD):potential correction with dehydroepiandrosterone-sulphate (DHEAS) [J]. Arch Gerontol Geriatr 2009,49 Suppl 1:173-184.
    125. Das P, Golde T:Dysfunction of TGF-beta signaling in Alzheimer's disease[J]. J Clin Invest 2006, 116:2855-2857.
    126. Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A:TGF-betal pathway as a new target for neuroprotection in Alzheimer's disease[J]. CNS Neurosci Ther 2011,17:237-249.
    127. El Khoury J, Luster AD:Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications[J]. Trends Pharmacol Sci 2008,29:626-632.
    128. Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ, Mucke L:Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer's disease[J]. Brain Res Brain Res Rev 1997,23:47-61.
    129. Wyss-Coray T:Tgf-Beta pathway as a potential target in neurodegeneration and Alzheimer's[J]. Curr Alzheimer Res 2006,3:191-195.
    130. Zhang H, Zou K, Tesseur I, Wyss-Coray T:Small molecule tgf-beta mimetics as potential neuroprotective factors[J]. Curr Alzheimer Res 2005,2:183-186.
    131. Peterson PK, Chao CC, Hu S, Thielen K, Shaskan EG:Glioblastoma, transforming growth factor-beta, and Candida meningitis:a potential link[J]. Am J Med 1992,92:262-264.
    132. Finn PE, Bjerkvig R, Pilkington GJ:The role of growth factors in the malignant and invasive progression of intrinsic brain tumours[J]. Anticancer Res 1997,17:4163-4172.
    133. Hamel W, Westphal M:Growth factors in gliomas revisited[J]. Acta Neurochir (Wien) 2000, 142:113-137; discussion 137-118.
    134. Kuczynski EA, Patten SG, Coomber BL:VEGFR2 expression and TGF-beta signaling in initial and recurrent high-grade human glioma[J]. Oncology 2011,81:126-134.
    135. Puchner MJ, Koppen JA, Zapf S, Knabbe C, Westphal M:The influence of tamoxifen on the secretion of transforming growth factor-beta2 (TGF-beta2) in glioblastomas:in vitro and in vivo findings[J]. Anticancer Res 2002,22:45-51.
    136. Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K:Enhanced expression of transforming growth factor-beta and its type-Ⅰ and type-Ⅱ receptors in human glioblastoma[J]. Int J Cancer 1995,62:386-392.
    137. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG: TGF-beta signalling in colon carcinogenesis[J]. Cancer Lett 2012,314:1-7.
    138. Ashley DM, Kong FM, Bigner DD, Hale LP:Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model[J]. Cancer Res 1998,58:302-309.
    139. Ashley DM, Sampson JH, Archer GE, Hale LP, Bigner DD:Local production of TGF beta1 inhibits cerebral edema, enhances TNF-alpha induced apoptosis and improves survival in a murine glioma model[J]. J Neuroimmunol 1998,86:46-52.
    140. Samanta D, Datta PK:Alterations in the Smad pathway in human cancers[J]. Front Biosci 2012, 17:1281-1293.
    141. Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D:Transforming growth factor-beta signaling in tumor initiation, progression and therapy in breast cancer:an update[J]. Cell Tissue Res 2012,347:73-84.
    142. Lin B, Madan A, Yoon JG, Fang X, Yan X, Kim TK, Hwang D, Hood L, Foltz G:Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFB1 and SOX4 in human glioblastoma[J]. PLoS One 2010,5:e10210.
    143. Cooper O, Isacson O:Intrastriatal transforming growth factor alpha delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons[J]. J Neurosci 2004,24:8924-8931.
    144. Nagatsu T, Mogi M, Ichinose H, Togari A:Cytokines in Parkinson's disease[J]. J Neural Transm Suppl 2000:143-151.
    145. Garcion E, Sindji L, Nataf S, Brachet P, Darcy F, Montero-Menei CN:Treatment of experimental autoimmune encephalomyelitis in rat by 1,25-dihydroxyvitamin D3 leads to early effects within the central nervous system[J]. Acta Neuropathol 2003,105:438-448.
    146. Chang JR, Zaczynska E, Katsetos CD, Platsoucas CD, Oleszak EL:Differential expression of TGF-beta, IL-2, and other cytokines in the CNS of Theiler's murine encephalomyelitis virus-infected susceptible and resistant strains of mice[J]. Virology 2000,278:346-360.
    147. Deigner HP, Haberkorn U, Kinscherf R:Apoptosis modulators in the therapy of neurodegenerative diseases[J]. Expert Opin Investig Drugs 2000,9:747-764.
    148. Lee YB, Nagai A, Kim SU:Cytokines, chemokines, and cytokine receptors in human microglia[J]. J Neurosci Res 2002,69:94-103.
    149. Merrill JE:Proinflammatory and antiinflammatory cytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome[J]. J Immunother (1991) 1992, 12:167-170.
    150. Ilzecka J, Stelmasiak Z, Dobosz B:Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis[J]. Cytokine 2002,20:239-243.
    151. Espejo EF, Gonzalez-Albo MC, Moraes JP, El Banoua F, Flores JA, Caraballo I:Functional regeneration in a rat Parkinson's model after intrastriatal grafts of glial cell line-derived neurotrophic factor and transforming growth factor beta 1-expressing extra-adrenal chromaffin cells of the Zuckerkandl's organ[J]. J Neurosci 2001,21:9888-9895.
    152. Fernandez-Espejo E:Pathogenesis of Parkinson's disease:prospects of neuroprotective and restorative therapies[J]. Mol Neurobiol 2004,29:15-30.
    153. Nagatsu T, Mogi M, Ichinose H, Togari A:Changes in cytokines and neurotrophins in Parkinson's disease[J]. J Neural Transm Suppl 2000:277-290.
    154. Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ:TGFbetal and TGFbeta2 concentrations are elevated in Parkinson's disease in ventricular cerebrospinal fluid[J]. Exp Neurol 1996,142:313-322.
    155. Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T:Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease[J]. Neurosci Lett 1995,193:129-132.
    156. Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK:Animal models of multiple sclerosis--potentials and limitations[J]. Prog Neurobiol 2010,92:386-404.
    157. Enam S, Sweet TM, Amini S, Khalili K, Del Valle L:Evidence for involvement of transforming growth factor beta1 signaling pathway in activation of JC virus in human immunodeficiency virus 1-associated progressive multifocal leukoencephalopathy[J]. Arch Pathol Lab Med 2004, 128:282-291.
    158. Hori K, Burd PR, Kutza J, Weih KA, Clouse KA:Human astrocytes inhibit HIV-1 expression in monocyte-derived macrophages by secreted factors[J]. AIDS 1999,13:751-758.