β-细辛醚对缺糖缺氧PC12细胞自噬的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.研究PC12细胞在缺糖缺氧(2h)再给氧过程中ATP与Beclin-1的相关性。
     2.研究自噬在PC12细胞缺糖缺氧(2h)再给氧过程中的的作用。
     3.研究β-细辛醚对缺糖缺氧再给氧PC12细胞Beclin-1、线粒体膜电位(MMP)、细胞内游离钙离子浓度([Ca2+]i)、细胞成活率、细胞形态的影响。
     方法:
     1.建立缺糖缺氧再给氧PC12细胞损伤模型:将高糖DMEM完全培养液换为无糖的Earle's平衡盐溶液,并将培养板放入1%O2、94%N2和5%CO2的培养箱培养2h,作为模拟细胞缺糖缺氧的状态,然后弃Earle's平衡盐溶液并换回高糖DMEM完全培养液,并将培养板放入5%CO2的培养箱培养模拟再给氧状态。
     2.建立高效液相(HPLC)检测ATP的方法学:通过设置阴性对照组,标准品对照组,样品对照组,考察细胞提取液ATP检测的专属性;精密称取10.0mgATP并用双蒸水溶解定容至10mL。精密量取以上1.00mg/mL ATP标准液0.5mL定容至10mL,浓度即为50.0μg/mL。依次精密量取50.0μg/mL ATP标准液16、32、48、64、80μL并用双蒸水定容至10mL,浓度依次为0.080、0.160、0.240、0.320、0.400ng/mL。进样器精密吸取20μL进样。在0.080-0.400mg/mL范围内,考察ATP浓度与峰面积的线性关系;取0.080、0.240、0.400μg的低、中、高三种不同的ATP对照品溶液各一份,连续进样五次,考察精密度;取再给氧0、10、24h3个不同时点的细胞各5份,分别加入600μL PBS重悬,然后加入80μL50%的HCl04-80℃/室温反复冻融2次,分别加入0.1、0.2、0.4μg/mLATP标准溶液1mL,再用300μL,2mol/LNaOH将细胞提取液的pH值调至中性,4℃12000r/min离心15min,取上清液进行测定,考察平均回收率。将处理后的再给氧24h的细胞提取液于-80℃放置Od、3d、7d检测,考察样品储存的稳定性。
     3.建立流式细胞仪检测Beclin-1的方法学:包括考察自噬抑制剂3-甲基腺嘌呤(3-methyladenine,3-MA),2%牛血清的PBS封闭液,一抗的浓度(0.002、0.004、0.006μg/μL孵育温度(25、37℃),孵育时间(15、30、60min),保存方法及时间(标本标记制备后立即检测和4℃放置6h、24h上机检测;或用1%多聚甲醛固定后4℃保存放置1、3、7d检测)对Beclin-1蛋白测定的影响。
     4.研究自噬的作用及自噬与ATP关系。体外培养PC12细胞48h,弃细胞完全培养液,PBS洗一遍后,加入Earle's平衡盐溶液并放入1%O2、94%N2和5%CO2的培养箱中培养2h,然后弃Earle's平衡盐溶液并换回细胞完全培养液培养0,4,10,24,,18h,HPLC检测ATP(并检测24h的正常对照组ATP),BCA法检测蛋白含量,流式细胞仪检测Beclin-1,MTT法检测细胞活力,倒置相差显微镜下观察细胞形态。透射电子显微镜下观察正常培养PC12细胞与再给氧24h PC12细胞的自噬体数量和形态。将同一孔的再给氧0、24h的细胞分别分成两份,一份用于检测ATP含量,另一份用于检测Beclin-1表达,并做两者的相关性分析。
     13-细辛醚对缺糖缺氧再给氧PC12细胞自噬的影响:体外培养PC12细胞48后,分别用含β-细辛醚(20、30、45μg/mL),尼莫地平(10μmol/L)的细胞完全培养液预给药1h后,弃药液,PBS洗1遍,分别加入含β-细辛醚(20、30、45μg/mL)、尼莫地平(10μmol/L)的Earle's平衡盐溶液并放入1%02、94%N2和5%CO2的培养箱中培养2h,然后弃Earle's平衡盐溶液并换回细胞完全培养液培养24小时,流式细胞仪检测Beclin-1,MMP,[Ca2+]i,MTT法检测细胞活力,倒置相差显微镜观察细胞数量和形态,透射电子显微镜观察自噬体。
     6.统计分析方法:数据以均数±标准差(x±s)表示,采用独立样本t检测法检测组间的差异性和Pearson相关性分析法分析两指标之间的相关性。
     结果:
     1.在0.08-0.40mg/mL范围内,ATP浓度与峰面积有良好的线性关系(r=0.9995);连续测定5次0.080,0.240,0.400μg/mL ATP的峰面积,RSD分别为2.8、2.1、1.8%,精密度良好;测得再给氧0、10、24h3个不同时点细胞提取液的平均回收率为95.6±2.8%,RSD为2.9%,准确度良好;-80℃冰箱储存0,3,7d,ATP浓度分别为0.331±0.010,0.312±0.012,0.303±0.008μg/mL,RSD为4.5%,储存7天内稳定性良好。
     2.正常细胞的Beclin-1表达很低(6.49±1.19%),但缺糖缺氧再给氧后,Beclin-1表达显著升高(33.14±2.16%)。自噬抑制剂3-MA能够显著降低模型组Beclin-1表达(15.27±1.51%vs模型组,P<0.001)。标本标记过程中使用2%BSA/PBS与不使2%BSA/PBS测得的Beclin-1表达率分别是35.40±2.13%和43.99±7.26%,两者有统计学差异(P<0.01)一抗浓度为0.004μg/μL时,测得的Beclin-1表达率最高(35.40±2.13%),一抗浓度为0.002、0.006时,测得的Beclin-1表达率均所下降(分别为33.54±2.27%,29.95±1.76%);抗体孵育温度在室温(25℃)和37℃水浴时,测得的Beclin-1表达率无显著性差异(36.27±3.29%vs36.70±2.84%6,P>0.05);孵育时间30min、60min检测结果无统计学差异(36.38±3.51%vs36.36±3.64%,P>0.05),但孵育时间15min时,测得的Beclin-1表达率有所降低(31.67±3.76%vs36.38±3.51%,P<0.05);标本制备后立即检测和放置于4℃保存6h检测结果无显著性差异(36.30±3.29%vs34.93±3.38%,P>0.05),但4℃保存24h检测结果明显下降(20.81±3.99%vs36.30±3.29%,P<0.001);标记制备后的标本固定在1%多聚甲醛中并置放于4℃可保存3天其检测结果与当天检测的结果无显著性差异(36.59±3.19%vs37.67±3.38%,P>0.05),第7天检测结果则明显下降。(24.04±3.83%vs37.67±3.38%,P<0.001)。
     3.PC12细胞缺糖缺氧2h再给氧期间,细胞成活率、细胞ATP含量先降低后升高,Beclin-1表达先升高后降低,细胞形态的变化是先损伤后改善。PC12细胞缺糖缺氧2h,再给氧0、4、10h,细胞成活率持续下降(64.6±4.6%、51.8±1.6%、36.0±5.6%),再给氧24、48h细胞成活率持续上升(56.8±3.7%、73.4±4.3%)。再给氧0、4h细胞ATP含量持续下降(3.4±0.5、3.2±0.4mg/g蛋白),10h有所恢复(4.1±0.7mg/g蛋白),但是仍低于缺氧前水平(4.6±0.9mg/g蛋白),再给氧24、48h,细胞ATP含量持续升高(5.4±0.9、6.7±1.2mg/g蛋白)。再给氧24h细胞ATP含量显著低于正常对照组(5.4±0.9mg/g蛋白vs7.7±1.2mg/g蛋白,p<0.001)。再给氧0、4、10、24,48h,Beclin-1蛋白表达上调(10.5±1.4%、12.7±1.4%、16.1±1.8%、28.2±3.1%、20.0±3.2%),再给氧48h与再给氧24h相比,Beclin-1蛋白表达下调。再给氧0、4、10h,细胞数量持续减少,并在10h时减少至最低值,突起变短,细胞变圆变小,皱缩聚集。再给氧24h,细胞数量增加,胞体变得较为饱满,轴突变长。再给氧48h,细胞数量增加,胞体变得饱满,突起相互交织形成网状。正常培养的细胞较难观察到自噬体,再给氧24h的细胞可明显观察到一些自噬体。再给氧0h,ATP与Beclin-1呈显著负相关关系(r=-0.61,P<0.05),再给氧24h,ATP与Beclin-1没有显著相关性(r=0.24,P>0.05)。
     4.体外正常培养48h的PC12细胞缺糖缺氧2h,再给氧24h后,在光镜下可观察到细胞数量减少,胞体变圆,轴突变细长;在电镜下能够明显观察到一些自噬体;Beclin-1表达显著增加(28.5±2.3%,vs正常组(6.3±0.8%),p<0.001),OD值显著降低(0.46±0.02,vs正常组(0.79±0.04),p<0.001);MMP显著降低(335.2±19.3,vs正常组(542.5±26.6),p<0.001);[Ca2+]i显著升高(294.9±42.7,vs正常组(124.7±14.9),p<0.001)。β-细辛醚(20,30,45μg/mL)和尼莫地平(10μmol/L)都非常显著地降低模型组细胞Beclin-1表达(19.1±2.8%、17.6±2.6%、20.5±2.8%、15.6±2.5%,vs模型组,p<0.001)和[Ca2+]i(137.8±23.5、132.4±25.5、169.7±23.9、139.0±19.0,vs模型组p<0.001),升高模型组细胞的OD值(0.64±0.07,0.75±0.09,0.56±0.08,0.74±0.04,vs模型组,p<0.01)和MMP(422.4±27.5,478.7±21.6,414.1±25.1,483.5±28.2,vs模型组,p<0.01),并且不同程度地增加造模细胞数量,改善细胞形态。其中β-细辛醚(30μg/mL)使模型组细胞的活力和[Ca2+]i接近于正常组水平(P>0.05)。
     结论:
     1.使用终浓度约为6%的HCLO_4反复冻融细胞2次能够较好的提取细胞内ATP。HPLC能够分离细胞内的复杂成分,并且快速、准确定量分析细胞内ATP含量。
     2.流式细胞仪和透射电子显微镜的研究结果表明,缺糖缺氧再给氧使PC12细胞自噬表达增加。流式细胞仪能够简便、快速、准确地定量细胞Beclin-1的相对百分含量。筛选分析结果表明,优化的流式细胞仪检测Beclin-1蛋白的参数是:标记过程中使用2%牛血清的PBS封闭液;一抗浓度为0.004μg/μL;孵育温度室温(25℃),孵育时间30min;标记制备后标本立即检测或置4℃保存6h内检测,否则要固定在1%多聚甲醛并于4℃保存,3天内检测。
     3.PC12细胞缺糖缺氧期间升高的自噬与能量代谢障碍有关,再给氧期间升高的自噬与[Ca2+]i、降低的MMP有关。自噬在2h缺糖缺氧再给氧期间可能起到细胞保护的作用。
     4.20、30、45μg/mL的p-细辛醚预给药1h,缺糖缺氧期间给药2h,能不同程度地减轻缺糖缺氧再给氧造成的细胞损伤,其中以30μg/mL的β-细辛醚效果最佳。p-细辛醚可能通过钙离子拮抗作用,改善细胞功能,从而降低自噬,提高细胞成活率。
Objective
     First, study the relationship between autophagy and ATP during reoxyg enation.
     Second, study the role of autophagy in PC12cells subjected to2h of oxygen-glucose deprivation (OGD) with different time-points of reoxygenation.
     Third, study the effect of β-asarone on Beclin-1, intracellular free calcium concentration ([Ca~(2+)] mitochondrial membrane potential (MMP), cell viability and cellular morphology in PC12cells treated with2h OGD followed by24h reoxygenation.
     Methods
     First, establish an oxygen-glucose deprivation and reoxygenation induced injury model of PC12cells:The high glucose Dulbecco's modifed Eagle's medium (DMEM) was exchanged for Earle's balanced salt solution, and the plates were placed in a hypoxia chamber with1%O_2,94%N_2and5%CO_2for2h. Then the full culture medium replaced the Earle's balanced salt solution, and the plates were placed under an atmosphere of95%air and5%C02for different time-points of reoxygenation.
     Second, establish a method of high-performance liquid chromatography (HPLC) for detection of ATP. Study the specificity of the ATP in cell extracts by setting negative control group, standard control group, and sample control group.10mg ATP was dissolved with10mL double distilled water, the concentration of which was1. OOmg/mL.0.5mL β-asarone (1.00mg/mL) was diluted with9.5mL double distilled water to achieve the concentration of 50.0μg/mL16,32,48,64,80μLβ-asarone (50.0μg/mL) was diluted with appropriate double distilled water to achieve the concentration of0.080,0.160,0.240,0.320,0.400μg/mL.20μL of each concentration was injected for analysis. Investigate the linear relationship of the ATP concentration and peak area within0.080-0.400mg/mL ATP. For precision and accuracy, five replicate quality control samples at three concentrations (0.080,0.240and0.400(μg/20μL) were continuously assayed.600μL PBS was added to suspense the cells at three time-points of reoxygenation (0,10,24h).80μL of HClO_4(concentration50%, v/v) was added to the cell suspensions, then-80℃freezed and room temperature thawed for two times.0.1,0.2,0.4μg/mL ATP standard solution was added to the cell suspensions, respectively.300μL of2mol/L NaOH was added to adjust pH value to neutral. The neutral cell suspensions were then spun at12000rpm for15min. The upper] ayer was injected for analysis and for investigation of the recovery. For investigation of the stability of samples, ATP in cell extractions (reoxygenation time-point24h) were detected after storage at-80℃for0d,3d,7d.
     Third, establish a flow cytometric method for quantitative detection of Beclin-1expression:Investigate the influence of3-methyladenine (3-MA, the autophagic inhibitor),2%Bovine serum albumin/Phosphate buffer solution (BSA/PBS), the concentration of primary antibody (0.002,0.004,0.006μg/μL), incubation temperature (25,37℃), incubation time (15,30,60min), preserved time and methods (Sample preparation was determined immediately or determined after6h or24h of storage at4℃respectively. Sample preparation was determined after0,3or7d of storage fixing with1%paraformaldehyde at4℃, respectively.) on analysis of Beclin-1.
     Forth, study the role of autophagy and the relationship of autophagy with ATP. After growth of PC12cells for48h, the full culture medium wa s discarded, the cells was washed once with PBS and incubated with Earle' s balanced salt solution in a hypoxia chamber with a compact gas oxygen c ontroller to maintain oxygen concentration at1%by injecting a gas mixtu re of94%N2and5%CO2for2h. After OGD, the cells were transferred bac k to full culture medium with oxygen for0,4,10,24,48h. ATP (includi ng normal control group at24h reoxygenation) was measured using HPLC, c ell protein determined using the BCA assay, cell viability was measured b y3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assa y, cellular morphology was observed under inverted phase contrast microsc ope, and autophagosomes (model control group and normal control group at24h reoxygenation) were observed under transmission electron microscope. Cells grown in the same well were divided into two groups. One was used for ATP detection, and the other was used for Beclin-1analysis. Correlat ion of ATP and Beclin-1was analyzed.
     Fifth, Protective mechanism of β-asarone on Beclin-1in PC12cells following oxygen-glucose deprivation and reoxygenation induced injury. After growth for48h, PC12cells were incubated with full culture medium containing β-asarone (20,30or45μg/mL) or nimodipine (10μmol/L) under normoxic conditions for1h before OGD. The full culture medium containing drug was discarded. The cells were rinsed once with PBS, and incubated with Earle's balanced salt solution containing beta-asarone (20,30or45μg/mL) or nimodipine (10μmol/L) for2h OGD. The Earle's balanced salt solution was discarded, and then PC12cells were incubated with full culture medium free of drug under normoxic conditions for24h. After these treatments, Beclin-1,[Ca~(2+)]i and MMP were analyzed by flow cytometry, cell viability was measured by MTT assay, cellular morphology was observed under inverted phase contrast microscope, and autophagosomes were observed under transmission electron microscope.
     Sixth, the methods of statistical analysis were used in this study. Measurement data were expressed as mean±standard deviation (Mean±SD). Statistical significance was determined by independent-samples t-test. Correlation analysis was determined by Pearson correlation analysis.
     Results
     First, a good linear relationship (r=0.9995) between ATP concentration and peak area in0.08-0.40mg/mL ATP. For precision and accuracy, the relative standard deviation (RSD) of the three concentrations (0.080,0.240and0.300μg/mL) were2.8%,2.1%and1.8%, respectively (five samples for each concentration level), indicating the precision and accuracy was good. The average recoveries of three concentrations (0.100,0.200and0.400μg/mL) were95.6±2.8%, respectively, and the RSD were2.9%.(five samples for each concentration level), indicating the method is accuracy. ATP concentration was0.331±0.010,0.312±0.012,0.303±0.008μg/mL, respectively, after0,3,7d of storage in-80℃refrigerator, indicating the stability of storage within7d is good.
     Second, Beclin-1(6.49±1.19%) expression was very low in normal control cells. However, after OGD/R treatment, Beclin-1expression (33.14±2.16%) was significantly upregulated. The autophagic inhibitor3-MA significantly reduced Beclin-1expression (15.27±1.51%) in OGD/R treated cells (P<0.001). Detected Beclin-1was35.40±2.13%or43.99±7.26%in blocked group or non-blocked group, respectively. These two groups were significant statistical difference (P<0.01). Detected Beclin-1was highest at0.004μg/μL of primary antibody (35.40±2.13%). Detected Beclin-1was decreased at0.002,0.006μg/μL of primary antibody (33.54±2.27%,29.95±1.76%). Detected Beclin-1was36.27±3.29%or36.70±2.84%in group incubated at room temperature (25℃) or at37℃, respectively. There was no significant statistical difference (P>0.05). Detected Beclin-1was36.38±3.51%or36.36±3.64%in sample incubated for30min or60min, respectively. The statistical difference was no significant (P>0.05). However, detected Beclin-1(31.67±3.76%) in sample incubated for15min was significantly decreased (P<0.05) compared to group incubated for30min or60min. Samples were stored at4℃and were not fixed with1%paraformaldehyde. There was no significant statistical difference (P>0.05) of detected Beclin-1(36.30±3.29%,34.93±3.38%, respectively) in group determined immediately or determined after6h of sample preparation. Compared to group determined immediately, detected Beclin-1(20.81±3.99%) was dramatically decreased in group determined after24h of sample preparation (P<0.001). Samples were all fixed with1%paraformaldehyde and stored at4℃. Detected Beclin-1was36.59±3.19%in sample after3d of storage and37.67±3.38%in sample in0d of storage. They had no significant statistical difference (P>0.05). Detected Beclin-1was significantly reduced in group after7d of storage (24.04±3.83%) compared to group in0d of storage (P<0.001).
     Third, during reoxygenation, the cell viability and ATP content decreased at first, and then increased, Beclin-1expression was upregulated at first, and then was downregulated, and cellular morphology was injury at first, and then was improved. Cell viability continued to decrease at0,4,10h reoxygenation (64.6±4.6%,51.8±1.6%,36.0±5.6%), and increase at24,48h reoxygenation (56.8±3.7%、73.4±4.3%). ATP continued to decrease at0,4h reoxygenation (3.4±0.5,3.2±0.4mg/g protein). It recovered at10h reoxygenation (4.1±0.7mg/g protein), but it was still lower than that before OGD (4.6±0.9mg/g protein). ATP continued to increase at24,48h reoxygenation (5.4±0.9,6.7±1.2mg/g protein). ATP at24h reoxygenation was lower than normal control (5.4±.09mg/g protein vs7.7±1.2mg/g protein, p<0.001). Beclin-1expression was upregulated at0,4,10,24,48h reoxygenation (10.5±1.4%,12.7±1.4%,16.1±1.8%,28.2±3.1%,20.0±3.2%). Beclin-1expression at48h reoxygenation was lower than that at24h reoxygenation. The numbers showed a trend of reduction at0h reoxygenation after2h OGD,, and continued to be reduced as well at4and10h reoxygenation, reaching its minimum at10h reoxygenation, while they were increased significantly at24and48h. Somas were smaller at0,4or10h reoxygenation than that before OGD. The cells exhibited round, gathered, slender and degenerated morphology at0,4and10h reoxygenation. Somas became satiation, and neurite became slender at24h reoxygenation. Somas was satiation, neurite interweave with each other to form a mesh at48h reoxygenation. Autophagosomes cound be hardly observed in the normal cultured cells, but some autophagosomes could be obviously observed in cells treated with OGD/R. At0h reoxygenation after2h OGD, a significant negative correlation was occurred between ATP and Beclin-1expression (r=-0.61, P<0.05), while there was not a significant correlation between ATP and Beclin-1expression at24h reoxygenation (r=0.24, P>0.05).
     Forth, After24h reoxygenation, the number of neurons showed a significant reduction, which was observed under inverted phase contrast microscope. The PC12cells exhibited round, slender and degenerated morphology. Some autophagosomes could observed under transmission electron microscopy. Beclin-1expression was increased (28.5±2.3%, vs normal control6.3±0.8%, p<0.001). Cell viability (OD value) was decreased (0.46±0.02, vs normal control0.79±0.04, p<0.001). MMP was decreased (335.2±19.3, vs normal control (542.5±26.6), p<0.001).[Ca~92+)] was increased (294.9±42.7, vs normal control (124.7±14.9), p<0.001). Beta-asarone (20,30,45g/mL)μand nimodipine (a calcium antagonist,10(μmol/L) both significantly decreased Beclin-1expression (19.1±2.8%,17.6±2.6%,20.5±2.8%,15.6±2.5%, vs model control group, p<0.001) and [Ca~(2+)](137.8±23.5,132.4±25.5,169.7±23.9,139.0±19.0,vs model control group, p<0.001), but increased MMP (422.4±27.5,478.7±21.6,414.1±25.1,483.5±28.2, vs model control group, p<0.01), cell viability (0.64±0.07,0.75±0.09,0.56±0.08,0.74±0.04, vs model control group, p<0.01) in PC12cells treated with OGD/R. They also increased the cell numbers and improved the cellular morphology in PC12cells subjected to OGD/R. For cell viability and [Ca~(2+)]; there was no significant difference between beta-asarone (30μg/mL) group and normal control group normal control group (P>0.05).
     Conelusions
     First, ATP can be well extracted from the cell using6%HClO_4(final concentration, v/v). HPLC can isolate complex components in the cells, and analyzed intracellular ATP content quickly, accurately and quantitatively.
     Second, the results got from flow cytometry and transmission electron microscopy indicates that OGD/R can generate autophagy. Flow cytometry c an easily, quickly, accurately and quantitatively determine Beclin-1. The results of screening analysis indicate that the optimization of multi-pa rameters for Beclin-1protein staining is as follows.2%BSA-PBS was used for sample block. Concentration of primary antibody was0.004μg/μL. Sam ples were incubated at room temperature(25℃) for30min. They were detec ted immediately or in6h storing at4℃or in3days fixing in1%paraf ormaldehyde and storing at4℃after sample preparation.
     Third, energy metabolism dysfunction can induce autophagy during OGD in PC12cells. Increased [Ca~(2+)], and decreased MMP may induce autophagy during reoxygenation in PC12cells. Autophagy may be a protective effect on PC12cells treated with different time-points of reoxygenation after2h OGD.
     Forth, treatment with β-asarone (20,30or45μg/mL) for1h before OGD and2h during OGD can protect PC12cells against OGD/R induced injury, of which30μg/mL β-asarone is the most effective. It may reduce Beclin-1expression partly by decreasing [Ca~(2+)],and increasing MMP in OGD/R treated PC12cells.β-asarone may improve cell function through calcium antagonism, and then reduces autophagy and improves cell viability.
引文
[1]鲍继奎,姚恩东,厉秀云,等.活血化痰开窍法治疗卒中后抑郁150例[J].陕西中医,2011,32(3):294-296.
    [2]汪保林.化痰通络汤治疗脑中风30例疗效观察[J].深圳中西医结合杂志,2008,18(5):302-303.
    [3]赵军,赵丽艳,张晋,等.益气活血化痰通络法治疗急性脑梗死64例[J].中国中医急症,2011,20(12):1912-1913.
    [4]金维岳.石菖蒲注射液治疗肺性脑病279例次临床观察初步小结[J].中成药研究,1982,10:23-24.
    [5]方永奇,李翎,邹衍衍.石菖蒲对缺血一再灌注脑损伤大鼠脑电图和脑水肿的影响[J].中国中医急症,2003,12(1):55-56.
    [6]方永奇,匡忠生,谢宇辉,等.石菖蒲对缺血再灌注脑损伤大鼠神经细胞凋亡的影响[J].现代中西医结合杂志,2002,11(17):1647-1679.
    [7]方永奇,李翎,吴启端,等.β-细辛醚和冰片对大鼠缺血再灌注脑损伤的保护作用[J].中国中医药科技,2004,11(6):353-354.
    [8]李翎,邹衍衍,吴启端,等.石菖蒲系列提取物对大鼠脑缺血再灌注损伤的影响[J].中医药学刊,2003,21(2):212.
    [9]Alirezaei M, Kemball CC, Flynn CT, et al. Short-term fasting induces profound neuronal autophagy, Autophagy[J].2010,6(6):702-710.
    [10]Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms[J]. Am J Pathol,2009, 175(5):1962-1974.
    [11]Ecker N, Mor A, Journo D, et al. Induction of autophagic flux by amino acid deprivation is distinct from nitrogen starvation-induced macroautophagy[J]. Autophagy,2010, 6(7):879-890.
    [12]Chu CT. Autophagic stress in neuronal injury and disease[J]. J Neuropathol Exp Neurol 2006,65(5):423-432.
    [13]Qin AP, Zhang HL, Qin ZH. Mechanisms of lysosomal proteases perticipating in cerebral ischemia-induced neuronal death. Netrosei Bull 2008,24(2):117-123.
    [14]Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor[J]. Proc Natl Acad Sci USA,1976,73(7):2424-2428.
    [15]国家药典委员会.中华人民共和国药典[M].北京:中国医药出版社,2010,一部:85.
    [16]鲍继奎,姚恩东,厉秀云,等.活血化痰开窍法治疗卒中后抑郁150例[J].陕西中医,2011,32(3):294-296.
    [17]汪保林.化痰通络汤治疗脑中风30例疗效观察[J].深圳中西医结合杂志,2008,18(5):302-303.
    [18]赵军,赵丽艳,张晋,等.益气活血化痰通络法治疗急性脑梗死64例[J].中国中医急症,2011,20(12):1912-1913.
    [19]陈莉,刘静生,庞国明,刘学勤教授治疗癫痫经验举隅[J].中医研究,2011,24(8):51-52.
    [20]喜斌,吴根子.复方石菖蒲散剂治疗癫痫152例疗效观察[J].天津中医,2002,19(1):66-67.
    [21]邓颖,袁昌文.止痫汤治疗难治性癫痫30例[J].中医药临床杂志,2010,12:1052.
    [22]陈敏.祛痰定痫汤治疗癫痫30例临床观察[J].上海中医药杂志,2009,43(12):39-40.
    [23]陆为民.徐景藩教授临床应用石菖蒲的经验[J].中国中药杂志,2006,31(5):430-431.
    [24]郝卫平.补阳还五汤加味治疗血管性痴呆38例疗效观察[J].中国实用医药,2009,4(4):164.
    [25]郭玉红.中药醒脑汤治疗老年性痴呆72例[J].中国中医药现代远程教育,2011,9(10):27-28.
    [26]王汝铎,安丽芝,姜华.清心化痰汤治疗帕金森病30例[J].陕西中医,2011,32(2):163-164.
    [27]窦维华,刁丽梅.活血止颤汤治疗帕金森病30例[J].中医杂志,2010,51(8):716-718.
    [28]吴本惠.自拟开窍复聪汤治疗耳胀、耳闭56例[J].中国民族民间医药,2010,1:121-122.
    [29]叶丽霞,杨敬霭,张燕.健脾利水化痰法治疗内耳眩晕病80例[J].中医耳鼻喉科学研究杂志,2007,6(4):23.
    [30]倪国栋.安神定志丸合酸枣仁汤治疗顽固性失眠36例体会[J].现代中西医结合杂志,2007,18(6):1099-1110.
    [31]曾艳红,赖正兴,钟琼仙,等.王氏连朴饮加味治湿温76例疗效观察[J].云南中医中药杂志,2002,23(3):9-10.
    [32]张国强,赵睿霆.运脾汤治疗脾虚气滞型慢性胃炎18例疗效观察[J].四川中医,2010,28(12):75-76.
    [33]刘振学,解刘松.和胃清热汤治疗胃溃疡肝胃郁热型40例临床观察[J].中医药导报,2011,17(4):37-38.
    [34]王荣忠,丁俊琴,王顺民,等.自拟抗炎定喘汤超声雾化吸入治疗婴幼儿哮喘疗效观察[J].中国中西医结合急救杂志,2006,13(1):60.
    [35]成珍青.甘露消毒丹加减治疗咳嗽60例[J].辽宁中医杂志,2003,30(6):482
    [36]何志军.菖蒲葛根汤治疗冠心病36例[J].湖南中医杂志,2008,24(2):63-64.
    [37]李存鲁.补气活血汤治疗冠心病心绞痛52例疗效观察[J].山西中医,2009,25(11):13-15.
    [38]裘国明.温经除痹汤治疗坐骨神经痛23例[J].浙江中西医结合杂志,2010,20(9):573-574.
    [39]黄牲.奇效止痒汤治疗顽固性皮肤瘙痒症60例[J].中医研究,2008,21(6):49.
    [40]张晖,倪云霞,王军,等.石菖蒲挥发油的初步研究—Ⅲ不同产区石菖蒲挥发油中主成分及其含量的比较[J].南京药学院学报,1979,2:38-42.
    [41]李吉来,陈飞龙,贺丰,等.石菖蒲挥发油成分的GC-MS分析及不同提取方法的比较研究[J].中药材,2001,24(7):494-495.
    [42]刘春海,刘西京,杨华生.石菖蒲挥发油的GC-MS分析[J].中医药学刊,2006,24(7):1280.
    [43]魏刚,方永奇,吴启端,等GC-MS建立醒神滴鼻液中间产物质量控制标准研究[J].中成药,2001,23(9):638-641.
    [44]洪永福,郭学敏,孙连娜,等.石菖蒲中多糖成分的分析[J].药学实践杂志,1998,16(3):149-151.
    [45]董玉,石任兵,孙玉博.石菖蒲的氨基酸成分分析[J].内蒙古大学学报,2007,38(3):296-298.
    [46]吴启端,方永奇,魏刚,等.石菖蒲去油水煎液的高效液相色谱分析[J].时珍国医国药,2002,13(7):385.
    [47]董玉,石任兵,刘斌.石菖蒲化学成分的研究[J].北京中医药大学学报,2007,30(1):61.
    [48]陶宏,朱恩圆,王峥涛.石菖蒲的化学成分[J].中国天然药物,2006,4(2):159-160.
    [49]杨晓燕,陈发奎.石菖蒲的化学成分研究概况[J].沈阳药科大学学报,1999,16(1):71.
    [50]魏立平,王文俊,吴玫涵.石菖蒲挥发油中β-细辛醚在小鼠体内的吸收、分布和排泄研究[J].中国药学杂志,2001,39(11):845-847.
    [51]吴宏斌,方永奇.β-细辛醚在大鼠体内的药代动力学[J].药学学报,2004,39(10):836-838.
    [52]魏立平,王文俊,吴玫涵.石菖蒲挥发油中β-细辛醚在家兔及小鼠体内的药动学[J].中国临床药学杂志,2004,13(4):224-227.
    [53]Fang YQ, Shi C, Liu L, Fang RM. Pharmacokinetics of β-asarone in rabbit blood, hippocampus, cortex, brain stem, thalamus and cerebellum[J]. Pharmazie,2012,67(2): 120-123.
    [54]Fang YQ, Shi C, Liu L, Fang RM. Analysis of transformation and excretion of P-asarone in rabbits with GC-MS[J]. Eur J Drug Metab Pharmacokinet 2012, [Epub ahead of print]
    [55]方永奇,李翎,吴启端.β-细辛醚对小鼠脑组织基因表达谱的影响[J].中药材,2003,26(9):650-651.
    [56]柯雪红,方永奇.石菖蒲挥发油对脑缺血-再灌注脑中氨基酸的影响[J].中国老年学杂志2003,23(5):302-303.
    [57]胡锦官,顾健,王志旺.石菖蒲及其有效成分对中枢神经系统作用的实验研究[J].中药药理与临床,1999,15(3):19-20.
    [58]Liu J, Li C, Xing G, Zhou L, Dong M, Geng Y, et al. Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus[J]. Yakugaku Zasshi,2010, 130(5):737-46.
    [59]Li C, Xing G, Dong M, Zhou L, Li J, Wang G, et al. Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bc1-2 family proteins[J]. Eur J Pharmacol 2010,635(1-3):96-102.
    [60]陈奕芝,方永奇,梁毅,等.β-细辛醚对谷氨酸所致PC12细胞损伤的保护作用[J].中国中医药信息杂志,2007,14(6):22-23.
    [61]陈奕芝,王绮雯,梁毅,等.β-细辛醚对谷氨酸所致脑皮层神经元损伤的保护作用[J].中药材,2007,30(4):436-439.
    [62]陈奕芝,方永奇,梁毅,等.β-细辛醚对谷氨酸诱导损伤的脑皮层神经元凋亡线粒体膜电位和超微结构的影响[J].卒中与神经疾病,2007,14(5):263-266.
    [63]唐洪梅.石菖蒲不同部位对大鼠脑电图的影响[J].中成药,2003,25(11):928-929.
    [64]方永奇,吴启端,王丽新.石菖蒲对中枢神经系统兴奋-镇静作用研究[J].广西中医药,2001,24(1):49-50.
    [65]张家俊,陈文为.中药酸枣仁、龙齿、石菖蒲对小鼠脑组织单胺类神经递质及其代谢物的影响[J].北京中医药大学学报,1995,18(6):64-66.
    [66]唐洪梅,郭雪霞,林继玉.石菖蒲对谷氨酸钠致惊厥小鼠的作用[J].中国实验方剂学杂志,2004,10(6):71-72.
    [67]鲁效慧,赵芬琴.石菖蒲多糖的抗惊厥作用研究[J].中国医药导报,2009,6(26):39-40.
    [68]林双峰,邹衍衍,李小兵,等.石菖蒲不同部位对戊四唑点燃大鼠药效学研究[J].中国实验方剂学杂志,2010,16(9):158-161.
    [69]杨立彬,黄民,梁健民,等.石菖蒲及其成分对幼鼠电刺激反应性和电致惊厥阈的影响[J].中风与神经疾病杂志,2004,21(2):112-113.
    [70]杨立彬,李树蕾,黄艳智,等.石菖蒲及其有效成分α-细辛醚对癫痫幼鼠运动行为和记忆功能的影响[J].中草药,2005,36(7):1035-1038.
    [71]杨立彬,李树蕾,王淑清,等.石菖蒲及其有效成分α-细辛醚对癫痫幼鼠海马区神经元N-甲基-D-天冬氨酸受体表达的影响[J].中草药,2009,38(11):1670-1672.
    [72]杨立彬,李树蕾,黄艳智,等.石菖蒲及其有效成分α-细辛醚对癫痫幼鼠脑海马神经元凋亡的影响[J].中草药,2006,37(8):1196-1199.
    [73]方若鸣,方更利,方永奇.安脑片对慢性点燃癫痫大鼠脑皮质蛋白和神经肽的影响[J].中国中药杂志,2006,31(20):1719-1721.
    [74]方若鸣,方更利,方永奇.安脑片治疗癫痫的药效观察[J].中成药,2006,28(9):1323-1325.
    [75]方永奇,方若鸣,方更利,等.β-细辛醚对慢性点燃癫痫大鼠脑组织c-fos表达的影响[J].中国中药杂志,2008,33(5):534-536.
    [76]杨晓燕,陈发奎,刘玉兰.石菖蒲杭抑郁药理作用的研究[J].海军军事医学,1999,20(2):16-19.
    [77]李明亚,陈红梅,石菖蒲对行为绝望动物抑郁模型的抗抑郁作用[J].中药材,2001,24(1):40-41.
    [78]李明亚,李娟好,季宁东,等.石菖蒲几种粗提取物的抗抑郁作用[J].广东药学院学报,2004,20(2):141-144.
    [79]陈文伟.石菖蒲、赤芍醇提取物对实验性抑郁及血管活性肠肽和P物质的影响[J].华西医学2006,21(2):321-322.
    [80]顾健,胡锦官,谭睿.石菖蒲及其有效成分对小鼠学习记忆的作用及α-细辛醚药物动力学研究[J].世界科学技术-中医药现代化,2003,5(1):53-57.
    [81]马宇昕,李国营,孙灵芝.石菖蒲不同提取部位对Aβ淀粉样蛋白致学习记忆障碍模型小鼠的影响[J].神经解剖学杂志,2011,27(5):521-526.
    [82]胡锦官,顾健,王志旺.石菖蒲及其有效成分对学习记忆的实验研究[J].中药材,1999,22(11):584-585.
    [83]林慧光,杜建,张亮亮,等.石菖蒲挥发油香熏辅助治疗老年性痴呆大鼠的实验研究[J].福建中医学院学报,2007,17(4):25-27.
    [84]吴宾,方永奇.石菖蒲益智作用的物质基础及其机理研究[J].中医药学刊,2004,22(9):
    1635-1641.
    [85]马艳喜,角建瓴,刘承宜.石菖蒲水提取液及挥发油对淀粉样β-蛋白25-35二级结构的影响[J].中国病理生理杂志,2007,23(2):352-355.
    [86]景玉宏,冯慎远,汤晓琴.石菖蒲对学习记忆的影响及突触机制[J].中国中医基础医学杂志,2002,8(6):38-40.
    [87]吴启端,吴清和,王绮雯.石菖蒲挥发油及β-细辛醚的抗血栓作用[J].中药新药与临床药理,2008,19(1):29-31.
    [88]陈奕芝,方若鸣,魏刚,等.石菖蒲挥发油、β-细辛醚对高脂血症大鼠血管舒缩与抗血小板聚集的作用[J].中国中西医结合杂志,2006,24:16-18.
    [89]冯亚,林炳辉,吴作干,等.行气祛痰化浊中药对血小板聚集性红细胞变形性及血液粘度作用 初探[J].福建中医学院学报,1998,8(1):24-26.
    [90]吴启端,方永奇,陈奕芝,等.石菖蒲挥发油及β-细辛醚对心血管的保护作用[J].中药新药与临床药理,2005,16(4):244-247.
    [91]何玉萍,江湧,方永奇.β-细辛醚干预缺氧诱导的内皮细胞黏附分子表达的作用[J].中药新药与临床药理,2006,17(3):170-172.
    [92]何玉萍,江湧,方永奇.β-细辛醚对ox-LDL诱导的内皮细胞黏附分子表达的干预作用[J].中国老年学杂志,2006,26(2):183-184.
    [93]申军,肖柳英,张丹,等.石菖蒲挥发油抗心律失常的实验研究[J].广州医药,1993,3:44-45.
    [94]周晓圆,李苗.药用菖蒲研究近况[J].山东中医学院学报,1994,18(4):270.
    [95]胡锦官,顾健.石菖蒲及其有效成分对消化系统的作用[J].中药药理与临床,1999,15(2):16-18.
    [96]秦晓民,徐敬东,邱小青.石菖蒲对大鼠胃肠肌电作用的实验研究[J].中国中药杂志,1998,23(2):107-109.
    [97]李伟,郑天珍,张英福,等.水菖蒲和石菖蒲对大鼠离体胃平滑肌条作用的比较[J].甘肃中医学院学报,2000,17(4):7-9.
    [98]李翎,邹衍衍,石琛.β-细辛醚灌胃和喷雾给药对哮喘模型豚鼠的平喘作用研究[J].中医药学刊,2006,24(12):2244-2245.
    [99]杨社华,王志旺,胡锦官.石菖蒲及其有效成分对豚鼠气管平滑肌作用的实验研究[J].甘肃中医学院学报,2003,20(2):12-13.
    [100]徐建民.石菖蒲对支气管哮喘治疗作用的实验研究[J].湖北中医杂志,2007,29(9):7-8.
    [101]徐建民.石菖蒲挥发油β-细辛醚对支气管哮喘的影响[J].广州中医药大学学报,2007,24(2):152-154.
    [102]邓业成,玉艳珍,王萌萌,等.石菖蒲提取物及其初步分离物的抑菌活性研究[J].安徽农业科学,2010,38(15):7836-7838.
    [103]肖崇厚.新编中药志[M].北京:化学工业出版社,2002:284.
    [104]杜毅,周超凡.石菖蒲临床应用与实验研究的概述[J].内蒙古中医药,1993,18(1):40.
    [105]季宇彬.中药有效成分药理与应用[M].黑龙江科学技术出版社出版,1994:47.
    [106]黄泰康.常用中药成分与药理手册[M].北京:中国医药科技出版社,1994:686.
    [107]何池全,陈少风,叶居新.石菖蒲抑菌效应的研究[J].环境与发,1997,12(3):1-4.
    [108]尹春南,梁秀明,李志红.石菖蒲挥发油抗癌作用的研究[J].广州医药,1981,3:31-32.
    [109]胡伯渊,纪耀沅.水菖蒲抗癌活性研究[J].中西医结合杂志,1986,6(8):480.
    [110]陈俐,廖卫平.石菖蒲药理作用的实验研究[J].广州医学院学报,2002,30(4):1.
    [111]TaylorM, JonesWL. Toxicity of oil calamus[J].Toxicol Appl Pharm,1967, (10):405.
    [112]Gudrun Abel. Chromosomenschadigende Wirkung von β-Asaron in menschlichen Lymphocyten [J]. Planta Medica,1987,53 (3):251-253.
    [113]Goggelmann W, et al. Mutagenicity teating of β-asarone and commercial calamus drugs with salmonella typhimurium[J]. Mutation Res,1983,121(34):191-194.
    [114]金中初.石菖蒲单体a-细辛醚的诱变性及其体外代谢途径研究[J].浙江医科大学学报,1982,11(1):1.
    [115]杨永年.石菖蒲主要成分α-细辛醚致畸性研究[J].南京医学院学报,1986,6(4):248.
    [116]杨永年,殷昌硕,肖杭,等.石菖蒲主要成分α-细辛醚致突变研究[J].南京医学院学报,1986,6(1):11.
    [117]Yu L, Yang SJ. AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor gamma coactivator-lalpha and nuclear respiratory factor 1 expression in rat visual cortical neurons[J]. Neuroscience,2010, 169(1):23.
    [118]Zhou Q, Lam PY, Han D, et al. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons[J]. J Neurochem,2008,104(2):325.
    [119]Raichle ME, Gusnard DA. Appraising the brain's energy budget[J]. Proc Natl Acad Sci USA,2002,99(16):10237.
    [120]RidgeJw. Resting and stimulated respiration in vitro in the central nervous system[J]. BioehemJ,1967,105:831.
    [121]Sokoloff L. The relationship between funetion and energy metabolism:its use in the loealization of funetiona laetivity in the nervoussystem[J]. NeuroseiRes Prog Bull,1981,19:159.
    [122]Bouzier-Sore AK, Serres S, Canioni P, et al. Lactate involvement in neuron-glia metabolic interaction:13C-NMR spectroscopy contribution[J]. Biochimie,2003, 85(9):841.
    [123]A Peters, U Schweiger, L Pellerin, et al.The selfish brain:competition for energy resources[J]. Neuroscience and Biobehavioral Reviews,2004,28(2):143.
    [124]Hitze B, Hubold C, van Dyken R, et al.How the selfish brain organizes its supply and demand[J]. Front Neuroenergetics,2010,2:1.
    [125]Piantadosi CA, Suliman HB. Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1[J]. J Biol Chem,2006,281(1):324.
    [126]Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons[J]. Mol Cell Neurosci,2005,28(1):42.
    [127]Zhao H, Shimohata T, Wang JQ, et al. Akt Contributes to Neuroprotection by Hypothermia against Cerebral Ischemia in Rats[J]. J Neurosci,2005,25(42):9794.
    [128]Robey RB, Hay N. Is Akt the "Warburg kinase"?—kt-energy metabolism interactions and oncogenesis[J]. Semin Cancer Biol,2009,19(1):25.
    [129]Pan J, Kao YL, Joshi S, et al. ctivation of Racl by phosphatidylinositol 3-kinase in vivo:role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells[J]. J Neurochem, 2005,93(3):571.
    [130]Aguirre V, Uchida T, Yenush L, et al.The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307) [J]. J Biol Chem,2000,275(12):9047.
    [131]Guoqiang Jiang, Bei B. Zhang.Glucagon and regulation of glucose metabolism[J] Am J Physiol Endocrinol Metab,2003,284:E671.
    [132]Increased mitochondri al DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid[J]. Mol Vis,2008,14:644.
    [133]Hanawa N, Shinohara M, Saberi B, et al. Role of JNK Translocation to Mitochondria Leading to Inhibition of Mitochondria Bioenergetics in Acetaminophen-induced Liver Injury[J]. J Biol Chem,2008,283(20):13565.
    [134]Park KJ, Lee SH, Lee CH, et al.Upregulation of Beclin-1 expression and phosphor ylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death [J]. Biochem Biophys Res Commun,2009,382(4):726.
    [135]McConkey DJ, Nutt LK. Calcium flux measurements in apoptosis[J]. Methods Cell Biol, 2001,66:229.
    [136]Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J]. Cell,2005,120(5):649.
    [137]Mancuso M, Coppede F, Migliore L, et al. Mitochondrial dysfunction, oxidative stress and neurodegeneration[J]. J Alzheimers Dis,2006,10(1):59.
    [138]Zhao XL, Wang WA, Tan JX,et al. Expression of β-Amyloid Induced Age-Dependent Presynaptic and Axonal Changes in Drosophila[J]. J Neurosci.2010,30(4):1512.
    [139]Heng Du, Shirley ShiDu Yan. Unlocking the Door to Neuronal Woes in Alzheimer's Disease:Aβ and Mitochondrial Permeability Transition Pore[J]. Pharmaceuticals, 2010,3(6):1936.
    [140]Chiang MC, Chen CM, Lee MR, et al. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma [J]. Hum Mol Genet,2010,19(20):4043-58.
    [141]Song D, Shults CW, Sisk A., et al. Enhanced substantia nigra mitochondrial pathology in human α-Synuclein transgenic mice after treatment with MPTP. Experimental Neurology,2004,186 (2):158.
    [142]Keeney PM, Xie J, Capaldi RA, et al. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled[J]. J Neurosci,2006,26(19):5256.
    [143]LaManna JC, Salem N, Puchowicz M, et al.Ketones suppress brain glucose consumpt ion[J]. Adv Exp Med Biol,2009,645:301.
    [144]Yang H, Tang X, Tan L, et al. Use of "P magnetic resonance spectroscopy to study the effect of cortical magnesium and energy metabolism after subarachnoid hemorrhage[J]. Cerebrovasc Dis,2008,26(3):223.
    [145]Woo CW, Lee BS, Kim ST, et al. Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia:An in vivo'H magnetic resonance spectroscopic ('H-MRS) study[J]. Acta Radiol,2010,51(3):344.
    [l46]Guthoff M, Grichisch Y, Canova C, et al. Insulin modulates food-related activity in the central nervous system[J]. J Clin Endocrinol Metab,2010,95(2):748.
    [147]Yao J, Irwin RW, Zhao L, et al.Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci US A,2009,106(34):14670.
    [148]Gilmer LK, Ansari MA, Roberts KN, et al. Age-related mitochondrial changes after traumatic brain injury[J]. J Neurotrauma,2010,27(5):939.
    [l49]Wang Q, Gong Q, Wu Q, et al. Neuroprotective effects of Dendrobium alkaloids on rat cortical neurons injured by oxygen-glucose deprivation and reperfusion[J]. Ph ytomedicine,2010,17(2):108.
    [l50]Mie Kubota, Takaoki Kasahara, Takeshi Nakamura, et al. Abnormal Ca2+ Dynamics in Transgenic Mice with Neuron-Specific Mitochondrial DNA Defects[J]. The Journal of Neuroscience,2006,26(47):12314.
    [151]Weiping Qin, Pavel Katsel, et al. PGC-1 α Expression Decreases in the Alzheimer Disease Brain as a Function of Dementia[J]. Arch Neurol,2009,66(3):352.
    [152]Antao ST, Duong TT, Aran R, et al. Neuroglobin Overexpression in Cultured Human Neuronal Cells Protects Against Hydrogen Peroxide Insult via Activating Phosphoinositide-3 Kinase and Opening the Mitochondrial KATP Channel[J]. Antioxid Redox Signal.2010,13(6):769.
    [153]Zhang YM, Liu XZ, Lu H, et al. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups[J]. Biomed Environ Sci,2009,22(5):423.
    [154]Izawa Y, Takahashi S, Suzuki N. Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia[J]. Brain Res,2009,1305:64.
    [155]熊杰,徐平湘,孙丽娜,等.丁基苯酞对原代培养神经元线粒体功能的保护作用[J].中药药理与临床,2007,23(5):73-75.
    [156]张焰,陈群,顾卫东,等.灯盏花素对缺血再灌注沙土鼠海马ATP含量变化和兴奋性氨基酸释放的影响[J].江苏医药,2005,31(11):843-845.
    [157]王建国,陈群,曾因明.灯盏花素注射液对沙土鼠脑缺血再灌注后能量代谢及脑水肿的影响[J].中国中西医结合急救杂志,2004,11(1):25-27.
    [158]Majeski AE, Dice JF. Mechanisms of chaperone-mediated autophagy[J]. Int J Biochem Cell Biol,2004,36 (12):2435-2444.
    [159]Klionsky DJ, Cregg JM, DunnWA Jr, et al. A unified nomenclature for yeastautoph agy-related genes[J]. Dev Cell,2003,8(4):539-545.
    [160]KondoY, Kanzawa T, SawayaR, et al. The role of autophagy in cancerdevelopment and response to therapy[J]. NatRev Cancer,2005,5:726~734.
    [161]Wang CW, KlionskyDJ. The molecular mechanism of autophagy [J]. Mol Med,2003,9(3~4): 65-76.
    [162]Klionsky DJ. The molecular machinery of autophagy:unanswered questions[J]. Cell Sci,2005,118(1):7-18.
    [163]Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell[J]. Eukaryot Cell,2002, 1(1):11-21.
    [164]张丽NF-κB信号通路在自噬激活和神经干细胞分化中的作用[D].苏州大学,2008.
    [165]Paludan C, Sehmid D, Landthaler M, et al. Endogenous MHC class Ⅱ processing of a viral nuclear antigen after autophagy[J]. Science,2005; 307(5709):593-596.
    [166]Takeshita F, Kobiyama K, Miyawaki A, et al. The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling[J]. Autophagy,2008; 4(1):67-69.
    [167]Hamano T, Gendron TF, Causevic E, et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression [J]. Eur J Neurosci,2008,27(5):1119-1130.
    [168]Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mTOR, A β and tau:effects on cognitive impairments. J Biol Chem,2010,285(17):13107-13120.
    [169]Spencer B, Potkar R, Trejo M. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases[J]. J Neurosci,2009,29(43):13578-13588.
    [170]Qin ZH, Wang Y, Kegel KB, et al. Autophagy regulates the processing of amino terminal huntingtin fragments[J]. Hum Mol Genet,2003,12(24):3231-3244.
    [171]Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease[J]. Nat Genet,2004,36(6):585-595.
    [172]Sheng R, Zhang LS, Han R, et al. Autophagy activation is associated with neurop rotection in a rat model of focal cerebral ischemic preconditioning[J]. Autophagy, 2010,6(4):482-494.
    [173]Masato Koike, Masahiro Shibata, Masao Tadakoshi, et al. Inhibition of Autophagy Prevents Hippocampal Pyramidal Neuron Death after Hypoxic-Ischemic Injury[J]. Neurobiology,2008,172(2):454-469.
    [174]Xu M and Zhang HL. Death and survival of neuronal and astrocytic cells in ischemic brain injury:a role of autophagy[J]. Acta Pharmacol Sin,2011,32(9):1089-1099.
    [175]Chau YP, Lin SY, Chen JH et al. Endostatin induces autophagic cell death in Eahy926 human endothelial cells[J]. Histol Histopathol,2003,18(3):715-726.
    [176]孔晓霞,张宏宇,陈然,等.神经胶质瘤U251细胞氧化损伤中自噬和凋亡过程的时间顺序[J].中国应用生理学杂志,2011,27(4):471-474.
    [177]Yang F, Yang YP, Mao CJ, et al. Role of autophagy and proteasome degradation pathways in apoptosis of PC12 cells overexpressing human alpha-synuclein[J]. Neurosci Lett, 2009,454(3):203-208.
    [178]PetiotA, Ogier-Denis E, BlommaartE, et al. Distinct classes of phosphatidylinos ito13'-Kinases are involved in signaling pathways that control macroautophagy i n HT-29 cells[J]. J Biol Chem,2000,275(2):992-998.
    [179]Dennis P B, Jaeschke A, Saitoh M, et al. Mammlian TOR:A homeostatic ATP sensor[J]. Science,2001,294(5544):1102-1105.
    [180]Guertin D A, SabatiniDM. An expanding role formTOR in cancer[J]. Trends Mol Med, 2005,11(8):353-361.
    [181]InokiK, ZhuT, GuanKL. TSC2mediates cellularenergy response to control cell growth and survival[J]. Cell,2003,115(5):577-590.
    [182]Backer JM. The regulation and function of Class III PI3Ks:novel roles for Vps34 [J]. Biochem J,2008,410(1):1-17.
    [183]Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature,1999,402 (6762):672-676.
    [184]MaiuriMC, LeToumelinG, CriolloA, et al. Functionaland physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1[J]. EMBO J,2007,26(10):2527-2539.
    [185]Wei Y, Pattingre S, Sinha S, et al. JNKl-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy[J], Mol Cell,2008,30(6):678-688.
    [186]Martinet W, DeMeyer GR, Andries L, et al. In situ detection of starvation-induced autophagy[J]. J Histochem Cytochem,2006,54(1):85-96.
    [187]Tanida I, UenoT, Kominami E. LC3 conjugation system in mammalian autophagy[J]. Int J Biochem Cell Biol,2004,36(12):2503-2518.
    [188]Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles[J]. Eur J Cell Biol,1995,66(1):3-14.
    [189]Shen ZY, Xu LY, Li EM, et al. Autophagy and endocytosis in the amnion[J]. J Struct Biol,2008,162(2):197-204.
    [190]魏水生,廖新学,谭钰嫔.热休克蛋白90在硫化氢抗化学性缺氧诱导心肌细胞氧化应激损伤中的作用[J].中国病理生理杂志,2009,25(12):2329-2333.
    [191]Grotemeier A, Alers S, Pfisterer SG, et al. AMPK-independent induction of autophagy by cytosolic Ca2+ increase [J]. Cell Signal,2010,22(6):914-925.
    [192]Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy [J]. J Cell Biol,2010,189(2):211-221.
    [193]Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms [J]. Blood.2008,111(8):3941-3967.
    [194]Hoffman RA. Flow Cytometry:Instrumentation, applications, future trends and limitations[J]. Springer Ser Fluoresc.2008,6:307-342.
    [195]Ibrahim S. F. van den Engh G. Flow cytometry and cell sorting[J]. Adv. Biochem Eng Biotechnol.2007,106:19-39.
    [l96]Loor G, Kondapalli J, Iwase H, et al. Mitochondrial oxidant stress triggers cel 1 death in simulated ischemia-reperfusion[J]. Biochim Biophys Acta,2011,1813 (7):1382-1394.
    [197]Krieger, C, Duchen, MR. Mitochondria Ca2+ and neurodegenerative disease[J]. Eur J Pharmacol,2002; 447(2-3):177-188.
    [l98]Brady NR, Hamacher-Brady A, Yuan H, et al. The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic retieulum calcium stores[J]. FEBS J 2007,274(12):3184-97.
    [199]Vicencio JM, Lavandero S, Szabadkai G. Ca2+, autophagy and protein degradation: Thrown off balance in neurodegenerative disease.Cell Calejum,2010,47(2):112-121.