干旱遥感监测模型研究及墒情预报探索——以黑龙江省为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是近年来频繁发生的世界性自然灾害现象,它已严重影响到自然生态环境的平衡及人类社会、经济的可待续发展。加强对干旱灾害的成灾机理及其调控措施的研究,充分发挥遥感和地理信息系统的综合技术优势,建立干旱遥感监测的土壤墒情预报模型及系统,具有重要的现实意义。
     本文在系统分析当前国内外干旱遥感监测研究现状及其发展趋势的基础上,分析探讨了现有模型方法的优势与不足,论述了干旱的概念及性质特征,建立了新的基于热惯量方法且考虑植被影响的干旱遥感监测信息模型,并综合了遥感反演蒸散发量方法的优势,基于能量平衡原理提出了计算简化且实用的、以作物缺水指数为干旱监测指标的遥感信息模型。利用极轨气象卫星的遥感数字图像、气象数据和黑龙江省40个墒情站的数据对所建立的模型进行了计算和验证,并在GIS支持下给出了土壤含水量、蒸发量、旱情等级的空间分布图;通过分析土壤墒情预报的模型方法,本文建立了基于水量平衡的新安江模型预报方案和土壤墒情BP神经网络预报模型,并以黑龙江省为例进行了土壤墒情预报试验。结果表明,本文建立的干旱遥感监测模型及墒情预报模型对于区域性的干旱监测具有较好的实用性,可广泛应用于干旱的监测、评估及墒情预报工作中。
Drought, which occurred frequently all over the world in recent years, seriously threatens the balance of natural eco-environment, and has great influence on the sustainable development of mankind, society and economy. So, it is of great significance to study the mechanisms of drought and the countermeasures of drought control, to establish the drought monitoring models based on remote sensing and geographic information system which have unmatchable advantages in information collecting and processing, as well as to set up soil moisture prediction models.In this study, the current situation and development tendency of drought monitoring based on remote sensing and soil moisture prediction are analyzed; the advantages and shortages of the related models are discussed; the conception and characteristics of drought are addressed; the new drought remote sensing information models based on the principles of thermal inertia and on the consideration of vegetable cover is developed. By integrating the advantages of evapotranspiration remote sensing models and the crop water stress index, also the crop water stress models based on energy balance is also developed. The models are tested by meteorological satellite data, meteorological data and soil moisture data collected in Heilongjiang Province, and the paper produces the distributing maps of the soil moisture, evapotranspiration and drought classes by means of GIS. Meanwhile, the paper develops different soil moisture prediction models including Xin'anjing prediction model based on water balance and back propagation neural network model for soil moisture prediction. The paper predicts the soil moisture in Heilongjiang Province by these two models. The results show that the drought remote sensing monitoring models and soil moisture prediction models can be widely used in practical works for drought monitoring, evaluation and prediction.
引文
[1] 李克让,林贤超,1993.中国干旱灾害,孙广忠,王昂生等,中国自然灾害,学术书刊出版社,76-92.
    [2] 韩渊丰,张治勋,赵汝植主编,1993.中国,灾害地理,陕西师范大学出版社,p18.
    [3] 张兰生,1991年.中国的自然灾害与灾情研究,北京师范大学—中国人民保险公司农村灾害保险技术研究中心年报(1990—1991),31—41.
    [4] 陶诗言,1990.中国的气象灾害,中国科学院地学部,中国自然灾害的灾情分析与减灾对策,湖北科学技术出版社,112—121.
    [5] 李吉顺,王秀英,1996.我国农业作物面积的统计分析,中国减灾,6,28—31.
    [6] 李克让,1995.中国干旱灾害区划,中国自然灾害区划—灾害区划、影响评价、减灾对策(王劲峰等著),科学出版社.
    [7] 田国良,余涛,吕永红,1993.土壤水分的热惯量模型,重大自然灾害遥感监测与评估研究进展,北京:中国科技出版社,53—58.
    [8] 孙利国,杨习荣,田国良,1993.微波遥感土壤水分的理论模型,重大自然灾害遥感监测与评估研究进展,北京:中国科技出版社,59—63.
    [9] 秦益,田国良,1993.NOAA/AVHRR图象大气影响校正模型,重大自然灾害遥感监测与评估研究进展,北京:中国科技出版社,64—69.
    [10] Idso, S.B., et al., 1980. Estimation grain yields by remote sensing of crop senscencerate, Remote Sensing of Environment, 9, 87-91.
    [11] Tucker C.J., et al., 1980. Relationship of spectral data to grain yields variation, Photo. Eng. and Remote Sensing, 46, 657-666.
    [12] Henricksen B.L., and Durkin, J.W.. 1986. Growing period and drought early warning in Africa using satellite data. Int. J. of Remote Sensing, 7, 1583-1608
    [13] Henricksen B.L., 1986. Detection on drought: Ethiopia 1983-1984. Int. J. of Remote Sensing, 7, 1447-1451.
    [14] Kogan, F.N., 1990. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. of Remote Sensing, 11,1405-1420.
    [15] Reed, B.C., 1993. Using remote sensing and geographic information systems for analyzing landscape/drought interaction. Int. J. of Remote Sensing, 14, 3489-3503.
    [16] Lozano-Garcia, D.E, Fernansez, R.N., Gallo, K.P., and Johannsen, C.J., 1995. Monitoring the 1988 severe drought in Indiana, Int. J. of Remote Sensing, 16, 1327-1340.
    [17] Liu, W.T, and Kogan, F.N., 1996. Monitoring regional drought using the vegetation condition index, Int. J. of Remote Sensing, 17, 2761-1782.
    [1
    
    [18] Tucker C.J., and Choudhury B.J., 1987. Satellite remote sensing of drought conditions, Remote Sensing of Environment, 23,243-251.
    [19] Gutman G.G., 1990. Towards monitoring droughts from space, Journal of Climate, 3, 282-295.
    [20] Walsh, J., 1987. Comparison of NOAA/AVHRR data to meteorological drought indices. Photogrammetric Engineering and Remote Sensing, 53, 1069-1074.
    [21] Peters, A.J., Rundquist, D.C., and Wilhite, D.A., 1991. Satellite detection of the geographic core of the 1988 Nebraska drought. Agile. For. Meteor., 57, 35-47.
    [22] Di, Liping, et al. 1994. Modeling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. of remote sensing, 15, 2121-2136.
    [23] AgRISTARS Program Management Group, AgRISTARS Research Report, Fy 1982,1983.
    [24] Paloscia, S., Pampaloni, P., Chiarantini, et al.,1993. Multifrequeney passive microwave remote sensing of soil moisture and roughness, Int. J. Remote Sensing, 14(3), 467-483.
    [25] James R. Wang, James C. Shiue, Thomas J. Sehmugge, Edwin T. Engman, 1989. Mapping surface soil moisture with L-Band radiometric measurements, 27, 305-312
    [26] Thomas Sehmugde et al., Passive microwave soil moisture research, IEEE Transaction on Geoscience and Remote Sensing, Vol. GE-24, No. 1, 1986.
    [27] M.C. Dobson, ET. Ulaby, Active Microwave soil moisture research, IEEE Trans. GE. Vol. GE-24, No.1.pp., 23-36, 1986.
    [28] 田国良,耿淮滨,李生平,1990.微波后向散射系数和土壤水分及地表粗糙度的关系,黄河流域典型地区遥感动态研究,科学出版社,112—121.
    [29] Jaeger, J.C., 1953. Conduction of heat in a solid with periodic boundary conditions, with an application to the surface temperature of the Moon. Proceedings of the Cambridge Philosophical Society, 49, 355-359.
    [30] Watson, K., 1973. Periodic heating of a layer over a semi infinite solid. J. Geophysical Research, 78, 5904-5910.
    [31] Pohn, H.A., Offield, G.W., and Watson, K., 1974. Thermal inertia mapping from satellites discrimination of geologic units in Oman. Joumai of Research US. Geological Survey, 2, 147-158.
    [32] Idso, S.B., Schmugge, T.J., Jackson, R.D., and Reginato, R.J., 1975. The Utility of surface temperature measurements for remote sensing of surface soil moisture status. J. Geophysical Research, 80, 3044-3049.
    [33] Rosema, A. and Bijleveld, J.H., 1977. TELL-US test of an algorithm for the determination of soil moisture and evaporation from remotely sensed surface temperatures, E.A.R.S., Kanaalweg 1, Delft, The Netherlands.
    [3
    
    [34] Price, J.C., 1977. Thermal inertia mapping: a new view of the earth, J. Geophysical Research, 82, 2582-2590.
    [35] Price, J.C., 1982. on the use of satellite data to infer surface fluxes at meteorological scales, J. Application of Meteorology, 21, 1111-1122.
    [36] Price, J.C., 1985. on the analysis of thermal infiared imagery: the limited utility of apparent thermal inertia, Remote Sensing of Environment, 18, 59-73.
    [37] 张向前,马蔼乃,崔成禹.热惯量成像研究,遥感信息,2,17—22,1984.
    [38] 马蔼乃.遥感信息模型,北京:北京大学出版社,1997.
    [39] 马蔼乃.地理科学与地理信息科学论,武汉:武汉出版社,2000.
    [40] 刘兴文,冯勇进.应用热惯量编制土壤水分及土壤水分探测效果,土壤学报,24(30),1987.
    [41] 隋洪智,田国良,李建军等.热惯量方法监测土壤水分,黄河流域典型地区动态研究,科学出版社,122—131,1990.
    [42] 张仁华.改进的热惯量模式及遥感土壤水分,地理研究,19(2),101—112,1990.
    [43] 肖乾广,陈维英,盛永伟等.用气象卫星监测土壤水分的试验研究,应用气象学报,5 (3),312—317,1994.
    [44] Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, P.J., Jr.. Canopy temperature as a crop water stress indicator. Water Resources Research, 17, No.4, 1133-1138, 1981.
    [45] Jackson, R.D., 1987. the crop water stress index: A second look, in Proe. Int. Conf. On Measurement of Soil and Plant Water Status, Utah State Univ., 6-10 July, Logan, UT.
    [46] 张仁华.以红外辐射信息为基础的估算作物缺水状况的新模式,中国科学(B辑),7,776—784,1986.
    [47] 田国良,郑柯,李付琴等.用NOAA—AVHRR数字图像和地面气象站资料估算麦田的蒸散和土壤水分.田国良.黄河流域典型地区动态研究,北京:科学出版社,161—176,1990.
    [48] Kogon, F. N., 1990. Remote sensing of weather impacts on vegetation in nonhomogeneous area. Int. J. of Remote Sensing, 11, 1405-1420.
    [49] Kongon, EN., 1995. Droughts of the late 1980s in the United States AS derived from NOAA polar-orbiting satellite data. Bull Am Meteor. Soc., 76, 655-668.
    [50] 冯强,田国良,柳饮火.全国干旱遥感监测运行系统的研制,遥感学报,2003,7(1),14—18.
    [51] 田国良,杨希华,郑柯.冬小麦旱情遥感监测模型研究,环境遥感,1992,7(2),83 -90.
    
    [52] Brown, K.W., and Rosenberg, H.T., 1973. A resistance model to predict evapotranspiration and its application to a Sugar Beetfield, Agron. J., 65,341-347.
    [53] Jackson, R.D., Reginato, R.J. and Idso, S.B., 1977. Wheat canopy temperatures: a practical tool for evaluation water requirement. Water Res., 13,651-656.
    [54] Seguin, B., Baelz, S., Monget, J. M., & Petit, V. (1982a). Utilisation de la thermographie IR pour 1' estimation de 1' evaporation regionale: I. Mise au point methodologique sur le site de la Crau. Agronomic 2, 7 - 16.
    [55] Seguin, B., Baelz, S., Monget, J. M., & Petit, V. (1982b). Utilisation de la thermographie IR pour 1' estimation de 1' evaporation regionale: II. Resultats obtenus a partir de donnees de satellite. Agronomie, 2,113 - 118.
    [56] Seguin, B. and Itier, B., 1983. Using midday surfacee temperature to estimate daily evaporation from satellite thermal IR data, Int. J. of Remote Sensing, 4, 371-383.
    [57] Carlson, T.N., Capehart, WJ. and Gillies, R.R., 1995. A new look at the simplified method for remote sensing of daily evapotranspiration, Remote Sensing of Environment, 54, 161-167.
    [58] Lagouarde, J.P., 1991. Use of NOAA/AVHRR data combined with an agro meteorological model for evaporation mapping. International Journal of Remote Sensing, 12, 1853- 1864.
    [59] Courault, D., Lagouarde, J. P., & Aloui, B., 1996. Evaporation for maritime catchments combining a meteorological model with vegetation information and airborne surface temperatures. Agricultural and Forestry Meteorology, 82,93-117.
    [60] Nieuwenhuis, GJ.A., et al., 1985. Estimation of regional evapotranspiration of arable crops from thermal infrared images, Int. J. Remote Sensing, 6,1319-1334.
    [61] Brutsaert, W. and sugita, M., 1991. Abulk similarity approach in the atmospheric boundary layer suing radiometric skin temperature to determine regional fluxes, Boundary Layer Meteor., 55, 1-23.
    [62] Kustas, W.P. and Daughtry, C.S.T., 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric. For. Meteor., 49, 205-223.
    [63] Kustas, W.P. and Norman, J.M., 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrol. Sci.-J. Sci. Hydrol., 41,495-516.
    [64] Ek, M., and Mahrt, L., 1989. A one-dimensional planetary boundary layer model with interactive soil layers and plant canopy. Department of Atmospheric Science, Oregon State University, pp. 106.
    
    [65] Huang, X., Lyons, T.J., 1995. The simulation of surface heat fluxes in a land surface-atmosphere model. J. Appl. Meteorol. 34, 1099-1111.
    [66] Lhomme, J.P., Monteny, B., and Amadou, M., 1994a. Estimating sensible heat flux from radiometric temperature over sparse millet. Agric. For. Meteor., 68, 77-91.
    [67] Lhomme, J.P., Monteny, B., Chehbouni, A., and Troufleau, D., 1994b. Determination of sesible heat flux over Sahelian fallow savannah using infrared thermometry, Agric. For. Meteor., 68, 93-105.
    [68] Price, J.C., 1990. Using spatial context in satellite data to infer regional scale evapotranspiration, IEEE Trans. Geosci. Remote Sens., 28, 940-948.
    [69] Moran, M.S., Clarke, T.R., Inoue, Y., Vidal, A., 1994. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ. 49, 246-263.
    [70] Moran, M.S., Rahman, A.E, Washburne, J.C., Goodrich, D.C., Weltz, M.A., Kustas, W.P., 1996. Combining the Pcnman-Monteith equatin with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric. For. Meteorol., 80, 87-109.
    [71] Mcvicar, T.R., David, L.B.J., 2002. Using covariates to spatially interpolate moisture availability in the Murrcy-Darling Basin. A novel use of remotely sensed data, Remote Sensing of Environment, 79, 199-212.
    [72] Jen-hwua Chen, Chun-E.Kan, Chih-Hung Tan, Sun-Fu Shih, 2002. Use of spectral information for wetland evapotranspiration assessment, Agriculture Water Management, 55, 239-248.
    [73] 韩承荣.墒情预报,见:中国水利百科全书,北京:水利电力出版社,第三卷,P1470,1991.
    [74] 尚松浩,雷志栋,杨诗秀.冬小麦田间墒情预报的经验模型,农业工程学报,2000,16(5),31—33.
    [75] 张胜平,杨罗.山东省墒情规律分析及实用墒情预报方案编制的探讨,水文,1996(3),24—31.
    [76] 张胜平,苏传宝.土壤墒情变化规律及预报模型研究,西北水资源与水工程,1998,9(4),11—17.
    [77] 杨诗秀,雷志栋,郭群善.农田水均衡模式研究综述,见:节水农业应用基础研究进展,北京:中国农业出版社,1995,131—140.
    [78] 蒋洪庚,厬自强,陈海芳,李国芳.概念性土壤墒情模型在霍泉灌区的应用研究,水文,1999(6),12—16.
    [79] 蒋洪庚,夏自强,陈海芳.区域土壤墒情模型研究,河海大学学报,2000,28(5),21 —24.
    [8
    
    [80] 吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法,水利学报,1996(2),1—10,
    [81] 陈玉民,肖俊夫,孙景生.关于农田用水动态管理的基本程序与方法研究,见:节水农业应用基础研究进展,北京:中国农业出版社,1995,191—198.
    [82] 康绍忠,刘晓明,熊运章.土壤—植物—大气连续体水分传输理论及应用,北京:水利电力出版社,1994,P208—212.
    [83] 黄冠华,沈荣开,张瑜芳.考虑气象因素不确定性条件下土壤墒情的估计与预测,水利学报,1997(增刊),195—202.
    [84] 罗毅,雷志栋,杨诗秀.根系层储水量对随机腾发响应特性的初步分析,水分学报,1998(5),44—48.
    [85] 罗毅,雷志栋,杨诗秀.一个预测作物根系层储水量动态变化的概念性随机模型,水利学报,2000(8),80—83.
    [86] Chopart, J.L., Vauclin,H., 1990. Water balance estimation model: field test and sensitivity analysis, S.S.S.A.J., 54, 1377-1384.
    [87] Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A.. The design of a simple biosphere model (SIB) for use within general circulation models, J.Atmos. Sci., 1986, 43, 505-531.
    [88] Van de G-fiend, A.A., Van Boxel, J.H.. Water and surface energy balance model with a multiplayer canopy representation for remote sensing purposes, Water Resour. Res. 1989, 25(5), 949-971.
    [89] 康绍忠,刘晓明,张国瑜.作物覆盖条件下田间水健谈运移的模拟研究,水利学报,1993(3),11—17.
    [90] 毛晓敏,杨诗秀,雷志栋.叶尔羌灌区冬小麦生育期SPAC水热传输的模拟研究,水利学报,1998(7),35—39.
    [91] 尚松浩,毛晓敏,雷志栋,杨诗秀.冬小麦田间墒情预报的BP神经网络模型,水利学报,2002(4),60—64.
    [92] 张育才,何维勋.中国农业气象灾害概论,气象出版社(第一版),1991,261—304.
    [93] 刘昌明,任鸿遵.平原地区水量转换关系计算方法的初步探讨,华北平原水量平衡与南水北调研究文集,科学出版社(第一版),168—184.
    [94] 马蔼乃,苏鸿瑞,谭仲军.黄淮海平原冬小麦旱灾估损遥感信息模型,重大自然灾害监测与评价(何建邦等主编),科学出版社,1993,70—80.
    [95] 马蔼乃,21世纪重新认识地球,重新认识地球,地理学报,1994年第一期.
    [96] 侯云光,林文.农业气象灾害定量指标研究,河南农业科学,1994,(12),10—13.
    [97] 李克让,徐淑英,郭其蕴等.华北平原早涝气候研究,1990年,科学出版社(第一版).
    
    [98] 黄河水利委员会勘测设计院.黄河1922至1932年连续枯水段研究报告,1989,郑州.
    [99] 陈潍英,肖乾广等.距平植被指数在1992年特大干旱监测中的应用,环境遥感,1994,9(2),106—112.
    [100] 王延禄.我国建立引用和验证气象干旱指标综述,干旱地理,1990,13(3),80—86.
    [101] 安顺清.修正的帕尔默干旱指数及应用,气象,1995,11(12),17.
    [102] 尚嗣荣.关于农业旱涝指标的研究,地理研究,1995,4(2),56.
    [103] 谢应齐.关于干旱指标的研究,自然灾害学报,1993,2(2),55—62.
    [104] 黑龙江省水利厅编著.黑龙江省水旱灾害,黑龙江科学技术出版社,1998.
    [105] 黑龙江省统计年鉴-2000.中国统计出版社,2000年.
    [106] Jaeger, J.A., Conduction of heat in a solid with periodic boundary conditions, with and application to the surface temperature of the moon cambrige, Phil. Proc., 1958,49,355-359.
    [107] Kahle, A.B., et al., Thermal inertia imaging: A new geologic mapping tool, Geoph.,Res. Lett., 1976,3(1), 26-28.
    [108] Pratt, D., et al., Image registration for thermal inertia mapping and its potential use for mapping of soil moisture and geology in Australia, 12th Int. Symp. Rem. Sens. Env., 1978.
    [109] Pratt, D.A, Foster, A.J., and Ellyett, C.D., A calibration procedure for Fourier series thermal inertia models, Photogrammetric Engineering and Remote Sensing, 1980, 46, 529-538.
    [110] 薛勇,用热惯量方法监测土壤含水量的研究,1989,北京大学硕士学位论文.
    [111] 马蔼乃,遥感信息模型,北京:北京大学出版社,1997.
    [112] Xue, Y., and Ctacknell, A.P., Operational bi-angle approach to retrieve the Earth surface albedo from AVHRR data in the visible band. International Journal of Remote Sensing, 1995,16, 417-429.
    [113] Xue, Y., and Ctacknell, A.P., Advanced thermal inertia modeling and its application: modeling the emissive of the ground. Proceedings of the 25th Intemational Symposium on Remote Sensing and Global Environmental Change held in Graz, Austria, on 4-8 April, 1993, 121-122.
    [114] Brest, C.L. and Goward, S.N., 1987. deriving surface albedo measurements from narrow band satellite data. Int. J. Remote Sens., 8, 351-367.
    [115] 雷志栋,杨诗秀,谢森传.土壤水动力学,北京:清华大学出版社,1988.
    [116] 李纪人,黄诗峰等.“3S”技术水利应用指南,北京:中国水利水电出版社,2003.
    [117] 肖乾广,陈维英.用NOAA-AVHRR资料监测土壤湿度.遥感信息,1990,5(1),22-26.
    
    [118] 翁笃鸣等.小气候和农田小气候.农业出版社,北京:1979.
    [119] 冯金朝,刘新民等.干旱环境与植物的水分关系.中国环境科学出版社,北京:1998.
    [120] 陈鸣,潘之棣,用卫星遥感热红外数据估算大面积蒸散量.水科学进展,1994,5(2):126—133.
    [121] 马耀民,王介民,非均匀陆面上区域蒸发(散)研究概况.高原气象,1997,16(4):446—452.
    [122] Choudhury, BJ. and Idso, S.B., Reginato, R.J., 1986. Analysis of a resistance -energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations. Remote Sensing of Environment, 19, pp. 253-268.
    [123] 谢贤群,遥感瞬时作物表面温度估算农田全日蒸发散总量,环境遥感,1991,6(4),253—259.
    [124] Jackson, R.D., Pinter, P.J., Jr., and Reginato, R.J., 1985. Net radiation calculation from remote multispectral and ground station meteorological data. Agri. And For. Meteor., 35, 153-164.
    [125] 谭仲军,干旱监测遥感信息模型研究—以华北平原为例.北京大学博士学位论文,1997.
    [126] Prata, A.J. and Platt, C.M.R., 1991. Land surface temperature measurements from the AVHRR, Proceedings of the 5th AVHRR Data Users' Meeting in Troms6, Norway, 25-28 June 1991, Eumetsat report EUM P 09.
    [127] Kerr, Y.H., Lagouarde, J.P. and Imbemon, J., 1992. Accurate land surface terrtperature retrieval from AVHRR data with use of an improved split-window algorithm, Remote Sensing of the Environment, No. 41, pp. 197-209.
    [128] Choudhury, B.J., 1991. Multispactral satellite data in the context of land surface heat balance, Rev. Geophys., 29, 217-236.
    [129] 陈云浩,李晓兵,史培军.中国西北地区蒸发散量计算的遥感研究.地理学报,2001,56(3),261—268.
    [130] Gutman, G., and Ignatov, A., 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sensing, 19(8), 1533-1543.
    [131] Choudhury, B.J., Ahmed, N.U., Idso, S.B., Reginato, R.J., and Daughtry, C.S.T., 1994. Relations between evaporation coefficients and vegetation indices studied by model simulations, Remote Sens. Environ. 50: 1-17.
    [132] Dalu G., Liberti G. L., 1988. Validation problems for remotely sensed sea surface temperature. Ⅱ Nuovo Cimento, Volume 11 C: pp.5-6.
    [1
    
    [133] Wydick, J.E., Davis, P.A. and Gruber, A., 1987. Estimation of broadband planetary. albedo from operational narrowband satellite measurements. NOAA Tech. Rep. NESDIS 27, NOAA, Washington, D.C., 32pp.
    [134] He, C., Kittleson, K. and Bartholic, J., 1987. Evapotmnspiration monitored from satellite as an indication of shift and impact of vegetation change. Proc. 21st Int. Symp. on Remote Sensing of Environment, Ann Arbor, MI, Environmental Research Institute of Michigan, 695-708.
    [135] Saunders, R.W., 1990. The determination of broad band surface albedo from AVHRR visible and near-infrared radiance. Int. J. Remote Sens., 11, 49-67.
    [136] Potdar, M.B and Narayana, A., 1993. Determining short-wave planetary albedo from spectral signatures of land-ocean features and albedo mapping using NOAA AVHRR data. Acta Astronaut., 29, 687-690.
    [137] Hucek, R. and Jacobowitz, H., 1995. Impact of scene dependence on AVHRR albedo models. J.Atmos. Oceanic Technol., 12, 697-711.
    [138] Valiente, J.A., Nunez, M., Lopez-Baeza, E., and Moreno, J.E., 1995. Narrow-band to broad-band conversion for Meteosat-visible channel and broad-band albedo using both AVHRR-land-2 channels. Int. J. Remote Sens., 16, 1147-1166.
    [139] Russell, M.J., Nunez, J.M., Chladil, M.A., Valiente, J.A, and Lopez-Baeza, E., 1997. Conversion of nadir, narrowband reflectance in red and near-infrared channel to hemispherical surface a!bedo. Remote Sens. Environ., 61, 16-23.
    [140] Song, J., and Gao, W., 1999. An improved method to derive surface albedo from narrowband AVHRR satellite data: narrowband to broadband conversion. American Meteo. Soci., 239-249.
    [141] J.N.Roozekrans. The monitoring of desertification processes in Spain using NOAA-AVHRR data. Proceedings of the 6th AVHRR Data User's Meeting. Belgirate, Italy. 1993, 29th June-2nd July, pp.313-322.
    [142] http://www.newenergy.org.cn/magazine/solar/太阳辐射计算讲座/王炳忠(8).
    [143] Fuchs and Tanner, 1966. Infrared thermometry of vegetation. Agron. J., 58,597-601.
    [144] Van de Griend, A.A., Owe, M., Vugts, H.K, Ramothwa, GK., and Peters, S.W.M., 1992. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results, BCRS report, No. 91-38a.
    [145] Brutsaert, W., 1975. On a derivable formula for long wave radiation from clear skies. Water Resources Research, 14, 742-744.
    
    [146] Sattedund, D.R., 1979. An improved equation for estimating longwave radiation from the atmosphere. Water Resources Research, 15, 1649-1650.
    [147] Holtslag, A.A.M. and A.E van Ulden. Estimates of incoming shortwave radiation and net radiation from standard meteorological data, KNMI Scientific Report W.R. 1980, 80-6.
    [148] Hatfield, J.L., A.Perrier and R.D.Jackson, 1983. Estimation of evaporation at one time of day using remotely sensed surface temperature. Agric. Water Mgt., 7:341-350.
    [149] 谢贤群.一个改进的计算麦田总蒸发量的能量平衡-空气动力学阻抗模式.气象学报,1998,46(1):102-106.
    [150] Beljaars, A.C.M., and Holtslag, A.A.M, 1991. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 327-341.
    [151] 陈境明.现用遥感蒸散模式中的一个重要缺点及改进.科学通报,1988,第6期,454-457.
    [152] Thom, A.S., and Oliver, H.R., 1977. On Penman's equation for estimating regional evaporation. Quart. J.Royal Meteor. Sot., 103, pp.345-357.
    [153] Moran, M.S.. A satellite-based approach for evaluation of the spatial distribution of evapotranspiration from agricultural lands. University of Arizona, Tuscon, USA, 1990.
    [154] 李付琴,田国良,隋洪智等.植被条件下遥感监测土壤水分的方法探讨-田间实验部分.田国良.黄河流域典型地区遥感动态研究.北京:科学出版社,1990,151-176.
    [155] 庞治国,付俊娥,李纪人等.基于能量平衡的蒸散发遥感反演计算模型研究.水科学进展,2003(待刊).
    [156] 隋洪智,田国良,李会琴.农田蒸散双层模型及其在干早遥感监测中的应用,遥感学报,1997,1(3).
    [157] Choudhury, B.J., and Monteith, J.L., 1988. A four-layer model for the heat budget of homogeneous land surfaces. Quart. J. Roy. Meteor. Soc., 114, 373-398.
    [158] Norman, J.M., Kustas, W.P., Humes, K.S., 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 77, 263-293.
    [159] Moran, M.S., Jackson, R.D., Raymond, L.H., Gay, L.W., Slaer, P.N., 1989. Mapping surface energy balance components by combining landsat thematic mapper and ground-based meteorological data. Remote Sens. Environ. 30, 77-88.
    [160] Choudhury, B.J., 1989. Estimating evaporation and carbon assimilation using infrared temperature data: vistas in modeling. In: Asrar, G. (Ed.), Theory and Applications of Optical Remote Sensing. Wiley, New York, pp. 628-690.
    [161] Reginato.R.J., R.D.Jackson and P.J.Pinter, Jr.. Evapotranspiration calculated from remote multispectral and ground station meteorological data, Remote Sens. Environ, 1985, 18: pp. 75-89.
    [1
    
    [162] Penman, H.L., 1956. Estimating evaporation. Trans. Am. Geoph. Union, 37, 43-50.
    [163] 王建华.基于RS技术的黄河流域水循环要素与过程研究.中国水利水电科学研究院博士后出站报告,2002年.
    [164] FAO.农业气象监测与作物收成预报.罗马,1979.
    [165] Doorenbos, J., Pruitt, W.O., 1977. Guidelines for predicting crop water requirements. FAO-ONU, Rome, Irrigation and Drainage, Paper No. 24 (review) 144pp.
    [166] 侯琼,郝文俊.内蒙古地区玉米农田土壤墒情动态预测模式.干旱地区农业研究,2000,18(4),50-56.
    [167] 赵人俊.流域水文模拟——新安江模型与陕北模型.北京:水利电力出版社,1984.
    [168] 李纪人.新安江模型(三水源)在东湾流域的应用以及流域蒸散发计算方法的探讨.华东水利学院研究生毕业论文,1982.
    [169] 袁增任.人工神经元网络及其应用.北京:清华大学出版社,1999.
    [170] 苑希民,李鸿雁,刘树坤,崔广涛.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社,2002.