稀土氟化物和硼化物纳米材料的合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文发展了基于液相和固相制备稀土纳米材料的合成方法,旨在探索可用于稀土发光标记物纳米材料的控制合成及温和条件合成稀土硼化物场发射纳米材料,通过控制合成条件制备出目标产物。对合成产物进行了性能测试,以期得到纳米材料特殊的物理和化学性质。具体内容如下:
     (1)作者以水为溶剂水热法成功地合成了YF_3∶Ln~(3+)多种新颖的纳米结构。通过实验参数的选择,实现了对不同纳米结构的选择性控制合成,对纳米纺锤体的时间演化过程进行了充分的研究,从而提出了其可能的形成机理。研究了产物的发光性能,产物无需煅烧就具有很高的发光强度,性质稳定,因此可望用于发光标记物。
     (2)作者利用溶剂热、水热和改进的St(?)ber方法,制备了球形双功能Fe_3O_4@NaYF_4∶Ln~(3+)@SiO_2核壳结构的纳米复合物。10 nm磁性Fe_3O_4纳米晶为内核,近红外发光层为NaYF_4∶Ln~(3+),二氧化硅包裹后的纳米复合物约180 nm,其中二氧化硅层约40 nm,层厚可控。核壳结构的纳米复合物具有磁性识别和近红外发光特性,在生物检测和非侵入化验方面具有潜在的应用。
     (3)利用低温高压釜固相反应500℃制备了立方相RB_6(R=La,Ce,Pr,Nd)纳米立方块,400℃时制备了纳米颗粒。纳米颗粒的形貌可以通过条件反应条件来控制。所得LaB_6纳米立方块的场发射性能和报道的LaB_6纳米线在同一数量级上,是报道的LaB_6纳米薄膜的10倍。总体上,纳米立方体的场发射性能优于其纳米颗粒,且CeB_6的性能优于LaB_6。
     (4)将高压釜固相反应制备LaB_6的方法进一步拓展,500℃制备了立方相RB_6(R=Sm,Eu,Gd,Tb)纳米立方块、纳米棒。通过实验参数的改变实现了稀土硼化物一维纳米结构的控制合成。
In this dissertation,solution and solid-based routes were developed to realize the chemical synthesis and simultaneous assembly of one-dimensional(1D) nanostructures.This dissertation aims at searching for new rare-earth luminescent nanomaterial labels and mild conditions synthesis of rare-earth borides field-emission nanomaterials by adjusting the reaction conditions to control the morphology of the products.The as-prepared products are applied in different fields to check their performance,and it is expected that the products possess some novel physical and chemical properties.The details are summarized as follows:
     1.A new example of novel spindle-like Ln~(3+)-doped YF_3 luminescent nanomaterial has been prepared through a facile method by low-temperature hydrothermal treatment of YCl_3,NaF and EDTA at 140℃for 12h.High quality, large scale,and uniform nanospindles with a mean length of 560 nm and a mean width of 240 nm can be easily obtained.The size of the products can be controlled by varying reaction conditions.The effect of the molar ratio of EDTA to Y~(3+),reaction temperatures and reaction time on the nanospindle growth has been investigated in detail.The possible growth mechanism of nanospindles has also been discussed.The results of the photoluminescence spectroscopy measurements reveal that the as-prepared Ln~(3+)-doped YF_3 nanospindles show strong red and green emission.It is found that the morphology and size of the products have great influence on their emission intensity.Since the products exhibit excellent luminescence and can be expected to become a good candidate for research in optical and optoelectronic devices.
     2.Bifunctional nanocomposites with superparamagnetic and NIR luminescent properties were synthesized by a layer-by-layer and a modified St(?)ber method.Fe_3O_4 nanoparticles(NPs)as the core were coated with NaYF_4:Ln~(3+)(Ln=Nd,Er,Pr,or Ho) to form the first layer.Then,the second layer was coated with silica to improve the chemical stability and photostability.The X-ray diffraction(XRD)patterns showed that a cubic spinel structure of Fe_3O_4 and coexistence of cubic and hexagonal structure of NaYF_4 were obtained.Energy dispersive X-ray(EDX)spectroscopy analysis confirmed the core/shell structure of Fe_3O_4@NaYF_4:Ln~(3+).Transmission electron microscope(TEM)images revealed that the bifunctional nanocomposites consisted of crystalline Fe_3O_4@NaYF_4:Ln~(3+)cores and amorphous SiO_2 shells,in a spherical shape with a narrow size distribution.Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior.Emission spectra indicated that the bifunctional nanocomposites possessed a high NIR luminescent intensity.Moreover,the hexagonal phase NaYF_4:Ln~(3+)showed NIR emission 10~15 times stronger than the cubic phase.
     3.A family of rare-earth hexaborides(RB_6,R=La,Ce,Pr,Nd)nanocrystals was prepared by solid-state reactions in an autoclave.Single-crystalline RB_6 nanocubes with mean size of~200 nm were prepared at 500℃starting from B_2O_3,RCl_3·6H_2O and metallic magnesium powder.If using NaBH_4 instead of B_2O_3,RB_6 nanoparticles with mean particle size of 30 nm could be obtained around 400℃.The X-ray diffraction(XRD)patterns of the samples could be indexed as cubic RB_6 with the lattice constants in good agreement with the literature values.An atomic ratio of B to R very close to 6:1 was determined from energy dispersive X-ray spectroscopy(EDS) of the samples.Field-emission scanning electron microscope(FESEM)and transmission electron microscope(TEM)were used to characterize the morphologies of the samples.Raman spectra of the samples were investigated.This novel and efficient method using cheap and simple inorganic salts as reactants could be extended further to the preparation of other rare-earth metals hexaborides.
     4.The above-mentioned method was extended to prepare rare-earth hexaborides (RB_6,R=Sm,Eu,Gd,Tb)nanocubes.Single-crystalline RB_6 nanocubes with mean size of~200 nm were prepared at 500℃for 12h starting from B_2O_3,RCl_3·6H_2O and metallic magnesium powder.By prolonging reaction time to 24h,however, single-crystalline RB_6 nanorods with dimeter of about 200 nm and length of about 3μm were obtained.Controlled synthesis of one dimension rare-earth borides nanostructure was realized by adjusting expenment parameters.
引文
[1]Henglein A.,J.Phys.Chem.B,2000,104,2432.
    [2]Parker D.W.,Adv.Mater.& Proc.,1991,139,68.
    [3]Stichmair J.,Chem.Eng.Sci.,1992,47,3015.
    [4]Iijima S.,Nature,1991,354,56.
    [5]Brus L.E.,Appl.Phys.A,1991,93,465.
    [6]Henglein A.,Top.Curr.Chem.,1988,143,113.
    [7]Wang Y.,Herron N.,J.Phys.Chem.,1991,95,525.
    [8]Li Q.,Zeng G.,Xi S.,Chin.Chem.Bull.,1995,6,128.
    [9]Leon R.,Petroff P.M.,Leonard D.,et al.,Science,1995,267,1966.
    [10]Dag O.,Kuperman A.,Ozin G.A.,Adv.Mater.,1995,7,72.
    [11]Colvin V.L.,Alivisatos A.P.,Nature,1994,370,354.
    [12]Wang Y.,Mahaler Y.,Herron N.,J.Opt.Soc.Am.,1989,B6,808.
    [13]Ozin G.A.,Adv.Mater.,1992,4,612.
    [14]Pool R.,Science,1994,263,1698.
    [15]Ozin G.A.,U.Patent S.,Jul.,1990,494,2119.
    [16]Wark M.,Schulz-Ekloff G.,Jaeger N.I.,Catal.Today,1991,8,467.
    [17]Klein D.L.,Roth R.,Lim A.K.,et al.,Nature,1997,389,699.
    [18]Dabbousi B.O.,Bawendi M.G.,Onitsuka O.,et al.,Appl.Phys.Lett.,1995,66,1316.
    [19]Nirmal M.,Dabbousi B.O.,Bawendi M.G.,et al.,Nature,1996,383,802.
    [20]Empedocles S.A.,Norris,D.J.,Bawendi,M.G.,Phys.Rev.Lett.,1996,77,3873.
    [21]Andres R.P.,Bein T.,Dorogi M.,et al.,Science,1996,272,1323.
    [22]Dagani R.,C&EN,1994,72,8.
    [23]Weller H.,Eychmuller A.,Advances in Photochemistry,Vol.20,New York,John Whiley &Sons.Inc.1995.
    [24]Henglein A.,Chem.Rev.,1989,891,861.
    [25]Landau L.D.,Lifshits E.M.,Quantum Mechanics:Non-relativistic Theory.[M].New York:Pergamon Press,1977,178.
    [26]裘式纶,瞿庆洲,肖丰收,张宗涛.化学研究与应用.1998,10,331.
    [27]Tsang S.C.,Chen Y.K.,Harris P.J.H.,Nature,1994,372,159.
    [28]Shi S.,Ji W.,Tang S.H.,Lang J.P.,Xin X.Q..J.Am.Chem.Soc.,1994.116,3615.
    [29]Russ D.M.,Proc.SPIE,1986,630:161.
    [30]Koch S.W.,Peyghambarian W.,Gibbs H.M.,J.Appl.Phys.,1988,63,11.
    [31]李小兵,刘竞超.[J].塑料,1999,28,19.
    [32]张泰.[J].辽宁化工,1999,28,3.
    [33]Yang S.F.,Liu Y.H.,Guo Y.P.,et al.J.Mater.Chem.Phys.,2002,77:501.
    [34]Wang H.M.,Simmonds M.C.,Huang Y.Z.,et al.Chem.Mater.,2003,15,3474.
    [35]Wu G.S.,Zhang L.D.,Cheng B.C.,et al.J.Am.Chem.Soc.,2004,126,5976.
    [36]Chen D.H.,Wu S.H.,Chem.Mater.,2000,12,1354.
    [37]Hopwood J.D.,Mann S.,Chem.Mater.,1997,9,1819.
    [38]Yang J.,Lin C.K.,Wang Z.L.,et al.Inorg.Chem.,2006;45,8973.
    [39]Kim T.H.,Lim D.Y.,Yu B.S.,et al.Ind.Eng.Chem.Res.,2000;39,4702
    [40]Sun Y.P.,Rollins H.W.,Guduru R.,Chem.Mater.,1999;11,7.
    [41]Davidson F.M.Wiacek R.;Korgel B.A.Chem.Mater.,2005;17,230.
    [42]Liao Q.;Tannenbaurn R.;Wang Z.L.,J.Phys.Chem.B,2006,110,14262.
    [43]Wang X.;Li Y.D.J..Am.Chem.Soc.,2002,124,2880.
    [44]Liang L.F;Xu H.F.;Su Q.et al.Inorg.Chem.,2004,43,1594.
    [45]Liu J.R,Li Y.Y.,Huang X.T.,et al.Chem.Mater.,2008,20,250.
    [46]Bai Y.J.,Liu Z.G.,Xu X.G.,et al.J.cryst.Growth,2002,241,189.
    [47]Qian Y.T.,Su Y.,J.Mater.Res.Bull.,1995,30,601.
    [48]Schlecht,S.,Kienle,L.,Inorg.Chem.,2001,40,5719.
    [49]段学臣,曾真诚,高桂兰.[J].稀有金属与硬质合金,2001,12,49.
    [50]张吉林,洪广言.[J].发光学报,2005,26,285.
    [51]Rajeshwar K.,Tacconi N.R.,Chenthamarakshan C.R.,Chem.Mater.,2001,13,2765.
    [52]Trindade T.,O'Brien P.,Pickett N.L.,Chem.Mater.,2001,13,3843.
    [53]Wang Z.G.,J.Semicond.Technol.,2001,26,17.
    [54]Zhou Y.H.,Lin J.,Zhang H.J.,Chem.Res.Appl.,2001,13,117.
    [55]Zhou J.G.,Li Z.Q.,Zhao F.Y.,et al.Chem.Ind.Engi.Pro.,2003,22,573.
    [56]Li Q.,Gao L.,Yan D.S.,Chin.J.Inorg.Mater.,2001,16,17.
    [57]Konrad A.,Herr U.,Tidecks R.,et al.Appl.Phys.,2001,90,3516.
    [58]Bazzi R.,Flores-Gonzalez M.A.,Louis C.,et al.J.Lumin.,2003,102-103,445.
    [59]Zhang W.,Xie P.,Duan C.,et al.Chem.Phys.Lett.,1998,292,133.
    [60]Bhargava R.N.,J.Cryst.Growth,2000,2141215,926.
    [61]Wang X.,Sun X.M.,Yu D.P.,et al.Adv.Mater.,2003,15,1442.
    [62]Wang X.,Li Y.D.,Angew.Chem.Inter.,2002,41,4790.
    [63]Yan Z.G.,Zhang Y.W.,You L.P.,et al.J.Cryst.Growth,2004,262,408.
    [64]Gaponenko N.V.,J..Synth,Met.,2001,124,125.
    [65]Gaponenko N.V.,Sergeev O.V.,Borisenko V.E.,et al.Mater.Sci.Eng.,2001,81,191.
    [66]Chen W.,Sammynaiken R.,Huang Y.N.,J.Appl.Phys.,2000,88,1424.
    [67]Dvaies H.A.,Liu Z.W.,J.Mag.Mag.Mater.,2005,294,213.
    [68]Gumzna J.,Carrettin S.,Corma A.,J.Am.Chine.Soc.,2005,127,3286.
    [69]Dong X.T.,Qu X.G.,Hong G.Y.,et al.Chin.Sci.Bull.,1996,41,1396.
    [70]Alivisatos A.P.,Science,1996,271,933.
    [71]Bruehez M.J.,Moronne M.,Gin P.,et al.Science,1998,281,2013.
    [72]Wilson R.,Chem.Commun.,2003,108-109,136.
    [73]Goldman E.R.,Balighian E.D.,Mattoussi H.,et al.J.Am.Chem.Soc.,2002,124,6378.
    [74]Brust M.,Walker M.,Bethell D.,et al.Chem.Commun,1994,801.
    [75]Mirkin C.A.,Letsinger R.L.,Mucic R.C.,et al.Nature,1996,382,607.
    [76]Storhoff J.J.,Mucic R.C.,Mirkin C.A.,J.Clust.Sci.,1997,8,179.
    [77]Elghanian R.,Storhoff J.J.,Mucic R.C.,et al.Science,1997,277,1078.
    [78]Laffery J.M.,J Appl Phys.,1951,22,299.
    [79]Hieb K.,Sienko M.J.,Inorg.Chem.,1980,19,2179.
    [80]Otani S.,Nakagawa H.,Nishi Y.,Kieda N.,J.Solid State Chem.,2000,154,238.
    [81]Zhao X.D.,Liu X.Y.,Lin F.,Liu W.N.,Su W.H.,J.Alloy.Compd.,1997,249,247.
    [82]Post B.,Moskowitz D.,Glaser F.W.,J.Am.Chem.Soc.,1956,78,1800.
    [83]Gurin V.V.,Korsukova M.M.,Nikanorov S.P.,et al,J.Less-Common Met.,1979,67,115.
    [84]Kamaludeen M.,Selvaraj I.,Visuvasama A.,et al,J.Mater.Chem.,1998,8,2205.
    [85]Zhang H.,Zhang Q.,Tang J.,Qin L.C.,J.Am.Chem.Soc.,2005,127,2862.
    [86]Zhang H.,Zhang Q.,Tang J.,Qin L.C.,J.Am.Chem.Soc.,2005,127,8002.
    [87]Zhang H.,Zhang Q.,Zhao G.P.,Tang J.,Zhou O.,Qin L.C.,J.Am.Chem.Soc.,2005,127,13120.
    [88]Xu J.Q.,Zhao,Y.M.,Zou C.Y.,Chem.Phys.Lett.,2006,423,138.
    [89]Zou C.Y.,Zhao Y.M.,Xu J.Q.,J.Cryst.Growth,2006,291,112.
    [90]Xu J.Q.,Chen X.L.,Zhao Y.M.,Zou C.Y.,Ding Q.W.,Nanoteehnology,2007,18,115621.
    [1]Alivisatos A.P.Science,1996,271,933.
    [2]Li J.B,Wang,L.W.Nano Lett.,2003,3,1357.
    [3]El-Sayed M.A.Acc.Chem.Res.,2001,34,257.
    [4]Sheu C.Y.,Lee S.F.,Lii K.H.Inorg.Chem.,2006,45,1891.
    [5]Zhu H.W.,Jiang B.,Xu C.L.,et al.J.Phys.Chem.B,2003,107,6514.
    [6]Liu,Z.,Zhang,D.,Han,S.,et al.Adv.Mater.,2003,15,1754.
    [7]Knez M.,Bittner A.M.,Boes F.et al.Nano Lett.,2003,3,1079.
    [8]Litvin A.L.,Valiyaveettil S.,Kaplan D.L.Adv.Mater.,1997,9,124.
    [9]Tanabe S.,Tamaoka T.J.Non-Cryst.Solids,2003,326,283.
    [10]Santo A.M.E.,Librantz A.F.H.,Gomes L.,et al.J.Non-Cryst.Solids.2006,292,149.
    [11]Bensalah A.,Ito,M.,Guyot Y.,et al.J.Lumin.,2007,122,444.
    [12]Cremona M.,Mauricio M.H.P.,Fehlberg L.V.,et al.Thin Solid Films.1998,333,157.
    [13]Camposeo A.,Fuso F.,Arimondo E.,et al.Surf.Coat.Tech.,2004,180,607.
    [14]Vaneijk C.W.E.J.Lumin.,1994,60,936.
    [15]Dejneka M.,Snitzer E.R.,Riman E.J.Lumin.,1995,65,227.
    [16]Yi G.S.,Lu H.C.,Zhao,S.Y.,et al.Nano Lett.,2004,4,2191.
    [17]Bender C.M.,Burlitch J.M.Chem.Mater.,2000,12,1969.
    [18]Lemyre J.L.,Ritcey A.M.Chem.Mater.,2005,17,3040.
    [19]Yan,R.X.;Li,Y.D.Adv.Funct.Mater.,2005,15,763.
    [20]Wang X.,Li Y.D.Angew.Chem.Int.Ed.,2003,42,3497.
    [21]Wang X.,Zhuang J.,Peng Q.,Inorg.Chem.,2006,45,666.
    [22]Tao F.,Wang Z.J.,Yao L.Z.et al.J.Phys.Chem.C,2007,111,3241.
    [23]Li L.,Jiang W.G.,Pan,H.H.,et al.J.Phys.Chem.C,2007,111,4111.
    [24]Mao Y.B.,Zhang F.,Wong S.S.Adv.Mater.,2006,18,1895.
    [25]Qin G.S.,Qin W.P.,Wu C.F.,et al.Opt.Commun.,2004,242,215.
    [26]Tkachuk A.M.,Ivanova S.E.,Joubert M.F.,et al.J.Lumin.,2001,94,343.
    [27]Khaidukov N.M.,Lain S.K.,Makhov V.N.,et al.Opt.Mater.,2002,19,365.
    [28]Pi D.,Wang F.,Fan X.,et al.Spectrochim.Acta.Part A,2005,61,2455.
    [29]Bawendi M.G.,Wilson W.L.,Rothberg L.,et al.Phys.Rev.Lett.,1990,65,1623.
    [30]Alivisatos A.P.,Harris A.L.,Lennos N.J.,et al.Chem.Phys.,1988,89,4001.
    [31]Sharma Pramod K.,Nass R.,chmidt H.Opt.Mater.,1998 10,161.
    [1] (a) Mank A. J. G., Lingeman H., Gooijer C. V. Trends Anal. Chem., 1992, 11, 210.
    (b) Mank A. J. G., Vander Laan H. T. C., Lingeman H., et al. Anal. Chem., 1995, 67,1742.
    [2] (a) Baar M. J., Patonay G. Anal. Chem., 1999, 71, 667.
    (b) Legender B. L., Moberg, L., Williams, D. C., Soper, S. A. J. Chromatogr. A, 1997, 779, 185.
    (c) Zhao X. Y., Shippy S. A. Anal. Chem., 2004, 76, 1871.
    (d) Sun C. X., Yang J. H., Li, L, et al. J. Chromatogr. B, 2004, 803, 173.
    [3] Tanaka T., Matsunaga T. Anal. Chem., 2000, 72, 3518.
    [4] (a) Lee J. H., Huh Y. M., Jun, Y. W., et al. Nat. Med, 2007, 13, 95.
    (b) Seo W. S., Lee J. H., Sun X. M., et al. Nat. Mater., 2006, 5, 971.
    
    [5] Hong X:, Gao X., Jiang L. J. Am. Chem. Soc., 2007,129, 1478.
    
    [6] Kettering M., Winter J., Zeisberger M. et al. Nanotechnology, 2007,18,175101.
    
    [7] Meldrum F. C., Heywood B: R., Mann S. Science, 1992, 257, 522.
    
    [8] (a) Hatanaka S., Matsushita N., Abe M., et al. J. Appl. Phys., 2003, 93, 10.
    
    (b) Lu Y., Yin Y. D., Mayers Brian T., et al. Nano Lett., 2002, 2,183.
    
    (c) Laurent L., Yudhisthira S., Kim K. S., et al. Chem. Mater., 2002,14, 3715.
    
    (d) Ma D. L., Guan J. W., Normandin F., et al. Chem. Mater., 2006, 18, 1920.
    
    [9] Lu H. H., Yi G. H., Zhao S. Y., et al. J. Mater. Chem., 2004,14, 1336.
    
    [10] Yu S. Y., Zhang H. J., Yu, J. B., et al. Langmuir, 2007,23, 7836.
    
    [11] Deng T., Li J. S., Jiang J. H., et al. Adv. Funct. Mater., 2006,16, 2147.
    
    [12] (a) Nelson-Avery B. A., Tilotta D. C. Appl. Spectrosc, 1994, 48, 1461.
    
    (b) Ovechko V. S., Dmytruk A. M., Fursenko O. V., et al. Vacuum, 2001, 61, 123.
    
    [13] Si S. F., Li C. H., Wang X., et al. Cryst. Growth Des., 2005, 5, 391.
    
    [14] (a) Stober W., Fink A., Bohn E. J. Colloid Interface Sci., 1968, 26, 62.
    
    (b) Ohmori M, Matijevic E. J. Colloid Interface Sci., 1992, 150, 594.
    
    (c) Lu Y., Yin Y., Mayers B. T., Xia, Y. Nano Lett., 2002, 2, 183.
    
    [15] (a) Yang T. Z., Shen C. M., Li, Z., et al. J. Phys. Chem. B, 2005, 109, 23233.
    
    (b) Ma D. L., Teodor V., Clime L., et al. J. Phys. Chem. C., 2007, 111, 1999.
    
    [16] (a) Ohmori M., Matijevic E. J. Colloid Interface Sci., 1992, 150, 594.
    
    (b) Ohmori M., Matijevic E. J. Colloid Interface Sci., 1993,160, 288.
    
    [17] (a) Bean C. P., Livingston J. D. J. Appl. Phys., 1959, 30, 120S.
    
    (b) Eason K. A., Klabunde K. J., Sorensen C. M., et al. Polyhedron, 1994, 13, 1197.
    [18]Salgueirino-Maceira V.,Correa-Duarte M.A.,Spasova M.,Fade M.Adv.Funct.Mater.,2006,16,509.
    [19](a)Sato T.,Iijima T.,Seki M.,Inagaki J.J.Magn.Magn.Mater.,1987,65,252.
    (b)Tronc E.,Belleville P.,Jolivet J.P.,Livage,J.,Langmuir,1992,8,313.
    [20]Wang L.Y.,Luo J.,Fan Q.,et al.J.J.Phys.Chem.B,2005,109,21593.
    [21]Stouwdam J.W.,Van Veggel F.C.J.M.Nano Lett.,2002.2.733.
    [22]Bhutta T.,Chardon A.M.,Shepherd D.P.,et al.IEEE J.Quantum Elect.,2001,37,1469.
    [23]Fiorenzo V.,Boyer J.C.,Capobianco J.A.J.Phys.Chem.B,2003,107,10747.
    [24]Nishida Y.,Yamada M.,Kanamori T.,et al.IEEE J.Quantum Elect.,1998,34,1332.
    [25]Stouwdam J.W.,Hebbink G.A.,Huskens J.,et al.Chem.Mater.,2003,15,4604.
    [26]Zeng J.H.,Su J.,Li Z.H.,et al.Adv.Mater.,2005,17,2119.
    [27]Kramer K.W.,Biner D.,Frei G.,et al.Chem.Mater.,2004,16,1244.
    [28]Liu S.H.,Han M.Y.Adv.Funct.Mater.,2005,15,961.
    [1]Hiebl K.,Sienko M.J.Inorg.Chem.,1980,19,2179.
    [2]Bat'Ko I.,Bat'Kova M.,Flachbart K.J.Alloys Compd.,1995,217,L1.
    [3]Hacker H.,Shimada Y.,Chung K.S.Physica Status Solidi(a),1970-1996,4,459.
    [4]Shannon J.R,,Sienko M.J.Inorg.Chem.,1972,11,904.
    [5]Takahashi K.,Kunii S.J.Solid State Chem.,1997,133,198.
    [6]Kerley E.L.,Hanson C.D.,Russell D.H.Anal.Chem.,1990,62,409.
    [7]Zhang H.,Zhang Q.,Tang J.,Qin L.C.J.Am.Chem.Soc.,2005,127,2862.
    [8]Zhang H.,Tang J.,Zhang Q.,Zhao G.,et al.Adv.Mater.,2006,18,87.
    [9]Baranovskiy A.E.,Grechnev G.E.,Logosha A.V.,et al.Phys.Stat.Sol.(c),2006,3,229.
    [10]Takeda M.,Fukuda T.,Domingo F.,Miura T.J.Solid State Chem.,2004,177,471.
    [11]Swanson L.W.,McNeely D.R.Surf.Sci.,1979,83,11.
    [12]Davis P.R.,Gesley M.A.,Schwind G.A.,Swanson L.W.Appl.Surf.Sci.,1989,37,381.
    [13]Meschel S.V.,Kleppa O.J.J.Alloys Compd.,1995,221,37.
    [14]Richard W.D.,Dean W.S.J.Appl.Phys.,1955,26,1004.
    [15]Lafferty J.M.J.Appl.Phys.,1951,22,299.
    [16]Curtis B.J.,Graffenberger H.Mater.Res.Bull.,1966,1,27.
    [17]Rea J.R.,Kostiner E.J.Cryst.Growth,1971,11,110.
    [18]Otani S.,Nakagawa H.,Nishi Y.,Kieda N.J.Solid State Chem.,2000,154,238.
    [19]Otani S.,Korsukova M.M.,Mitsuhashi T.,Kieda N.J.Cryst.Growth,2000,217,378.
    [20]Zhao X.D.,Liu X.Y.,Lin F.,et al.J.Alloy.Compd.,1997,249,247.
    [21]Post B.,Moskowitz D.,Glaser F.W.J.Am.Chem.Soc.,1956,78,1800.
    [22]Gurin V.V.,Korsukova M.M.,Nikanorov S.P.,et al.J.Less-Common Met.,1979,67,115.
    [23]Brewer J.R.,Deo N.,Wang Y.M.,Cheung C.L.Chem.Mater.,2007,19,6379.
    [24]Kamaludeen M.,Selvaraj I.,Visuvasama A.,Jayavel R.J.Mater.Chem.,1998,8,2205.
    [25]Craciun V,,Craciun D.Appl.Surf.Sci.,2005,247,384.
    [26]Selvan R.K.,Genish I.,Perelshtein I.,et al.J.Phys.Chem.C,2008,112,1795.
    [27]Teredesai P.,Muthu D.V.S.,Chandrabhas N.,et al.Solid State Commun.,2004,129,791.
    [28]Yahia Z.,Turrell S.,Turrell G.,Mercurio J.P.J.Mol.Struct.,1990,224,303.
    [29]Yahia Z.,Turrell S.,Mercurio J.P.,Turrell G.J.Raman Spectrosc.,1993,24,207.
    [30]Ogita N.,Nagai S.,Okamoto N.,et al.Phys.Rev.B,2003,68,224305.
    [31] (a) Fowler R. H., Nordheim L., Proc. R. Soc. London, 1928,119, 173.
    
    (b) Brodie I., Spindt C. A. In Advances in Electronics and Electron Physics; Hawkes P. W. Ed. Academic Press: San Diego, 1992; Vol.83, Chapter 2.
    
    [32] Dattatray J. L., Mahendra A. M., Dilip S. J. Appl. Phys. Lett., 2006, 89,123510.
    
    [33] Nakamoto M., Fukuda K. Appl. Surf. Sci., 2002, 202, 289.
    [1] Laffery J. M. J. Appl. Phys., 1951, 22, 299.
    [2] Hieb K., Sienko M. J. Inorg. Chem., 1980,19, 2179.
    [3] Otani S., Nakagawa H., Nishi Y., Kieda N. J. Solid State Chem., 2000,154, 238.
    [4] Zhao X. D., Liu X. Y., Lin F., et al. J. Alloy. Compd., 1997, 249, 247.
    [5] Post B., Moskowitz D., Glaser F. W. J. Am. Chem. Soc., 1956, 78, 1800.
    [6] Gurin V. V., Korsukova M. M., Nikanorov S. P., et al. J. Less-Common Met., 1979, 67,115.
    [7] Kamaludeen M., Selvaraj I., Visuvasama A., Jayavel R. J. Mater. Chem., 1998, 8, 2205.
    [8] Cumberland R. W. J. Am. Chem. Soc., 2005,127,7264.
    [9] Chung H. Y., Weinberger M. B., Levine J. B., et al. Science, 2007, 316, 436.
    
    [10] Zhang H., Zhang Q., Tang J., Qin L. C. J. Am. Chem. Soc., 2005,127,2862.
    
    [11] H. Zhang, Q. Zhang, J. Tang, L. C. Qin, J. Am. Chem. Soc. 2005,127, 8002.
    [12] Zhang H., Zhang Q., Zhao G. P., et al. J. Am. Chem. Soc.2005,127,13120.
    [13] Xu J. Q., Zhao Y. M., Zou C. Y. Chem. Phys. Lett., 2006, 423,138.
    [14] Zou C. Y., Zhao Y. M., Xu J. Q. J. Cryst. Growth, 2006, 291,112.
    [15] Xu J. Q., Chen X. L., Zhao Y. M., et al. Nanotechnology, 2007,18,115621.
    [16] Xu J. Q., Chen X. L., Zhao Y. M., et al. J. Cryst. Growth, 2007, 303, 466.