水下推进无刷直流电机无位置传感器控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无刷直流电机具有高效率和高功率密度的特点,适用于水下推进装置。为了检测关键的转子位置信号,一般需在电机内安装霍尔传感器。水下推进装置中空间有限,且对可靠性要求高,而安装霍尔传感器不仅占用体积,而且需要从电机端部引出导线,带来密封和可靠性问题。故无位置传感器控制具有重要意义。水下推进无刷直流电机系统一般采用蓄电池供电。受蓄电池输出电压限制,本文研究的无刷直流电机具有反电势低和电流大的特点,运行时续流时间较长,存在反电势过零淹没现象,基于反电势过零检测的常规位置估算方法不能应用。故研究减小续流时间的方法以及续流时间较长时的无位置传感器控制具有重要意义。
     首先,基于无刷直流电机系统的动态电路模型推导了电流的解析表达式,计算和分析了影响续流导通角的因素,研究了减小续流导通角的方法。为了精确计算续流导通角,对三相六态驱动方式下的动态电路拓扑结构分析,推导了续流状态和两相导通状态下的电流解析表达式,获得了求解续流导通角的方程。结合电流表达式中的参数,分析了影响续流导通角的主要因素。提出了两种减小续流导通角的方法,仿真结果表明利用改进的变流器拓扑能够有效减小续流导通时间。
     其次,针对续流时间较长造成无法直接检测反电势过零点的问题,提出了一种基于转子磁链模型的磁链过零点估算方法。推导的磁链计算模型中采用了以虚拟中点(由电阻网络构造)为参考点的绕组端电压,无需引出电机中线,而且计算磁链中不含三次谐波。分析了利用估算的三相磁链过零点控制逆变器的换相逻辑。为了获得磁链模型中的电感参数,利用有限元软件计算了电机空载时的视在电感。通过Simulink仿真对本文提出的无位置传感器控制方法进行了验证。
     第三,结合转子磁链的实际计算过程,研究了磁链过零点的估算误差。对磁链计算误差的数学模型进行了分析,结果表明电机电感变化是造成磁链计算误差的主要原因。结合电机电枢反应磁场的空间分布,分析了各电感分量受饱和影响的程度。针对本文研究的样机,利用Flux-Simulink联合仿真研究了电感误差对磁链过零点估算的影响。
     最后,设计并实现了基于转子磁链过零点估算的无刷直流电机无位置传感器控制系统。通过合理选择电压电流传感器、驱动模块和数字控制芯片,搭建了硬件系统。推导了磁链计算模型的离散化形式,设计了以实际电机转速为参数的滤波环节,利用加权平均思想设计了动态响应较快的平均值测速模块。实验结果证明了本文提出的无位置传感器控制方法的有效性。
The brushless DC motors is increasingly being used in underwater propulsions because of its high torque, compactness, and high efficiency. Its self-synchronous operation needs six discrete rotor position information, which is usually generated by hall effective sensors. When sensors are used, extra space and wires are needed. However, in underwater propulsions space is limited and reliability,which will be reduced by too much wiring, is very important. So sensorless control is much more attractive. Moreover, underwater propulsions are always powered by batteries. Because of the relative low output voltage of batteries, the brushless DC motors are designed with low rated back emf and high rated current. So the freewheeling time of the brushless DC motor system, which is studied in this paper, is significantly long. The sensorless control technique based on back-emf detection from terminal voltages can’t be used any more. This paper studies the methods to restrain freewheeling and the sensorless control technique when freewheeling time is long.
     In the first part of this paper, based on the dynamic circuit model of brushless DC motor drive system, the analytical formula of phase currents is derived,which is then used to calculate the conduction angle of freewheel diodes.The influence of each parameter in current formula on conduction angle is discussed in detail before the method restraining freewheeling procedure is presented. The simulation result demonstates that improved converter topology can restrain the freewheeling procedure significantly.
     In the second part,a rotor position estimation technique,which is based on rotor flux linkage zero-crossing detection and not effected by freewheeling procedure, is presented. The flux linkage model in this paper utilizs virtual neutral point,which is generated by resistor network, as the referance point of the terminal voltage. So the real neutral point is not required and flux linkage without the third harmonic is obtained. How flux linkage zero-crossing is used for inverter commutation control is also analyzed. As a necessary parameter in flux linkage model, the no-load apparent inductance of the studied brushless DC motor is calculated using FEA software. Using Simulink software, the presented sensorless control technique is verified.
     In the third part, zero-crossing detection error of flux linkage in practical systerm is analyzed. Error model of calculated flux linkage is derived and the analysis implies that delta inductance is the main reason of flux linkage error. Distribution of the armature reaction magnetic field ,then the influnce of saturation on each inductance components is discussed. For the studied brushless DC motor,the effect of inductance fluctuation on zero-crossing detection is studied by co-simulation of FLUX and Simulink.
     At last, a brushless DC motor system is established using the presented sensorless control technique. Hardware system is constructed with accurate current and voltage sensors, power driving module and high performance control chip. Discrete flux linkage calculation model, filters using actual rotor speed as parameter and weighted average speed measurement block are designed to gain correct commutation instants. To verify the validity of the system, experimental results are presented.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000
    [2]冯培悌,舒振杰,郑吉,等.永磁无刷直流电机的无位置传感器控制技术[J].机电一体化,2001(05):49-51.
    [3] N. Ertugrul,P. P. Acarnley. Indirect rotor position sensing in real time for brushless permanent magnet motor drives[J]. IEEE Transactions on Power Electronics,1998,13(Compendex):608-616.
    [4]恽嘉陵,凌至福,谭作武.水下推进系统用稀土永磁直流伺服电动机[J].中小型电机,1995(04):24-25.
    [5]陈治飞,孙昌志,张兴政.采用混合优化方法的水下推进电机优化设计[J].中小型电机,1997(06)
    [6]李锡群,王志华.无人水下航行器(UUV)技术综述[J].船电技术,2003(06):12-14+29.
    [7]张强.无刷直流电动机在集成电机推进器中的应用及设计[J].微特电机,2010,38(3):3.
    [8]李锡群.电机/推进器一体化装置(IMP)介绍[J].船电技术,2003,23(2):3.
    [9] Nesimi Ertugrul,Paul Acarnley. New algorithm for sensorless operation of permanent magnet motors[J]. IEEE Transactions on Industry Applications,1994,30(Compendex):126-133.
    [10] James P. Johnson,M. Ehsani,Yilcan Guzelgunler. Review of sensorless methods for brushless DC[C]// IEEE Industry Applications Conference - 34th IAS Annual Meeting. Phoenix, AZ, USA,1999. :IEEE:143-150
    [11]沈建新,陈永校.永磁无刷直流电动机基于反电势的无传感器控制技术综述[J].微特电机,2006,34(7):5.
    [12] Julio C. Moreira. Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range[J]. IEEE Transactions on Industry Applications,1996,32(Compendex):1394-1401.
    [13] Rusong Wu,Gordon R. Slemon. A permanent magnet motor drive without ashaft sensor[J]. IEEE Transactions on Industry Applications,1991,27(Compendex):1005-1011.
    [14] J. X. Shen,K. J. Tseng. Analyses and compensation of rotor position detection error in sensorless PM brushless dc motor drives[J]. IEEE Transactions on Energy Conversion,2003,18(Compendex):87-93.
    [15] Satoshi Ogasawara,Hirofumi Akagi. An approach to position sensorless drive for brushless DC motors[J]. IEEE Transactions on Industry Applications,1991,27(Compendex):928-933.
    [16] Tae-Hyung Kim,Byung-Kuk Lee,Mehrdad Ehsani. Sensorless control of the BLDC motors from near zero to high speed[C]//Eigtheenth Annual IEEE Applied Power Electronics Conference and Exposition, Febrary 9, 2003 - Febrary 13, 2003. Miami Beach, FL, United states,2003. :Institute of Electrical and Electronics Engineers Inc.:306-312
    [17] P. Damodharan,Krishna Vasudevan. Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference[J]. IEEE Transactions on Energy Conversion,2010,25(Compendex):661-668.
    [18] Jaebok Lee,Swamidoss Sathiakumar,Yash Shrivastava. A novel speed and position estimation of the brushless DC motor at low speed[C]//2008 Australasian Universities Power Engineering Conference. Sydney, NSW, Australia,2008. :Inst. of Elec. and Elec. Eng. Computer Society
    [19]邹继斌,江善林,张洪量.一种新型的无位置传感器无刷直流电机转子位置检测方法[J].电工技术学报,2009,24(4):6.
    [20] M. Tomita,M. Satoh,H. Yamaguchi, et al. Sensorless estimation of rotor position of cylindrical brushless DC motors using eddy current[C]//Advanced Motion Control, 1996. ,1996. :24-28 vol.21
    [21] T. W. Nehl,F. A. Fouad,N. A. Demerdash. Determination of Saturated Values of Rotating Machinery Incremental and Apparent Inductances by an Energy Perturbation Method[J]. Power Engineering Review, IEEE,1982,PER-2(12):28-29.
    [22] J. D. Ede,Z. Q. Zhu,D. Howe. Design considerations for high-speed sensorless permanent magnet brushless DC motors[C]//Second International Conference on Power Electronics, Machines and Drives. Edinburgh, United kingdom , 2004. : Institution of Engineering andTechnology:686-690
    [23] Z. Q. Zhu,J. D. Ede,D. Howe. Design criteria for brushless dc motors for high-speed sensorless operation[J]. International Journal of Applied Electromagnetics and Mechanics,2001,15(Compendex):79-87.
    [24]张存山.考虑IGBT特性的无刷直流电机数学模型[J].电工技术学报,2005,20(7):6.
    [25] Kai Wang,Jianxin Shen,Fengzheng Zhou, et al. Design aspects of a high-speed sensorless brushless dc motor using third harmonic back-emf for sensorless control[C]. NY,United States,2008. :American Institute of Physics
    [26] K. Wang,M. A. Rahman,J. X. Shen. Control of high-speed sensorless PM brushless DC motors[C]//2010 IEEE Industry Applications Society Annual Meeting. Houston, TX, United states,2010. :Institute of Electrical and Electronics Engineers Inc.
    [27] N. A. Demerdash,T. W. Nehl. Dynamic Modeling of Brushless dc Motors for Aerospace Actuation[J]. Aerospace and Electronic Systems, IEEE Transactions on,1980,AES-16(6):811-821.
    [28] Salaheddin A. Zabalawi,Adel Nasiri. State space modeling and simulation of sensorless control of brushless DC motors using instantaneous rotor position tracking[C]//2007 IEEE Vehicle Power and Propulsion Conference. Arlington, TX, United states , 2007. : Inst. of Elec. and Elec. Eng. Computer Society:90-94
    [29]蒋涛.基于动、静态电感特性的开关磁阻电机非线性磁参数模型[J].微电机,2010,43(6)
    [30]王世山.无轴承开关磁阻电机动、静态电感耦合的数学拟合[J].电工技术学报,2007,22(12):7.
    [31] M. H. Sarul,G. Yildirmaz,R. Gulgun. Measurement of the inductance of a coil with core at different currents by a dc chopper[J]. Electrical Engineering,2000,82(Compendex):273-277.
    [32]陈世坤.电机设计[M].第2版.北京:机械工业出版社,2000
    [33]赵凯华.电感系数的定义问题[J].大学物理,2001,20(2):2.
    [34]花为.新型三相磁通切换型双凸极永磁电机电感特性分析[J].电工技术学报,2007,22(11):8.
    [35] Vas Peter. Sensorless Vector and Direct Torque Control[M]. Oxford, UnitedKingdom:Oxford University Press,1998
    [36]朱宏伟.表贴式永磁同步电动机鲁棒控制策略的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2008
    [37]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,1999
    [38]康敏,黄进,刘东,等.多相异步电机参数的计算与测量[J].中国电机工程学报,2010(24):81-87.
    [39]吴新振,王祥珩. 12/3相双绕组异步发电机定子谐波漏感的计算[J].中国电机工程学报,2007(21):71-75.
    [40]郝振洋,胡育文,黄文新,等.电力作动器中永磁容错电机的电感和谐波分析[J].航空学报,2009(06):1063-1069.
    [41] Ayman M. El-Refaie,Z. Q. Zhu,Thomas M. Jahns, et al. Winding inductances of fractional slot surface-mounted permanent magnet brushless machines[C]//2008 IEEE Industry Applications Society Annual Meeting. Edmonton, AB, Canada,2008. :Institute of Electrical and Electronics Engineers Inc.
    [42] L. T. Ergene,Y. Donmezer. A study of end turn inductance calculation of BLDC motors[C]//2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Pisa, Italy ,2010. :IEEE Computer Society:111-114
    [43]纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模的新方法[J].系统仿真学报,2003(12):1745-1749+1758.
    [44]邢逾,李伟力,程鹏.永磁无刷直流电动机时步有限元与Matlab协同仿真计算[J].微电机,2007(01):40-44.
    [45]陈霞,邹继斌,朱红柳.基于FLUX和SIMULINK联合运算的反作用飞轮力矩伺服系统仿真研究[J].电工技术学报,2007,22
    [46]谢珺耀. LEM电流传感器的应用探讨[J].电子工业专用设备,2010,39(1):5.
    [47]陈伯时.电力拖动自动控制系统[M].第三版.北京:机械工业出版社,2003
    [48]原庆兵.智能小车平稳越障控制策略研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010