Sphingopyxis sp.113P3聚乙烯醇脱氢酶的异源高效表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯醇(PVA)主要以1,3-二醇键的化学结构存在,是一种难于被降解的高分子化合物。PVA具有很多优良性能,在工业上得到广泛应用。然而,大量PVA废水排放到环境,导致严重的污染,因此,实现PVA的生物降解具有重要的现实意义。PVA脱氢酶(PVADH)催化PVA降解的第一步反应,本论文以Sphingopyxis sp.113P3PVADH为研究对象,详细研究该酶基因在大肠杆菌(E. coli)和毕赤酵母(P. pastoris)中的表达情况,并对该酶的应用进行初步研究,具体研究内容如下:
     (1)Sphingopyxis sp.113P3聚乙烯醇脱氢酶基因(PVADH)的人工合成及在大肠杆菌(E. coli)中的融合表达与包涵体复性。以Sphingopyxis sp.113P3PVADH的氨基酸序列为模板,按P. pastoris密码子偏好性并替换掉E. coli稀有密码子,合成1965bp的基因序列。聚合酶链式反应(PCR)扩增1887bp的成熟酶基因(mPVADH),并插入质粒pET32a(+),转化E. coli BL21(DE3)。以20oC、0.05mM异丙基-β-D-硫代半乳糖苷(IPTG)、2%葡萄糖条件,诱导12h,目的蛋白仍以包涵体存在。通过包涵体复溶、稀释复性、重组肠激酶(rEK)切割、透析去除rEK和硫氧还蛋白(TrxA),纯化得到约67kDa的mPVADH蛋白,酶活和比酶活分别为60U/mL和109U/mg。
     (2)成熟PVADH在毕赤酵母(P. pastoris)中的高效表达、纯化和酶学性质研究。将mPVADH基因插入载体pPIC9K并电转化P. pastoris GS115,高拷贝转化子在摇瓶和3L发酵罐最高酶活分别为56和902U/mL,是首次在真核表达系统中成功表达PVADH。但是,表达的目的蛋白分子量小于预期,N-端氨基酸测序表明截短蛋白缺少mPVADH的1-81氨基酸。纯化的截短酶最适反应温度和pH分别为41-53oC和pH7.0-8.0;Ca~(2+)对酶活有促进作用;催化最适底物(PVA1799)的米氏常数(Km)和最大反应速率(Vmax)分别是1.87mg/mL和34.9nmol/(min·mg)。
     (3)成熟PVADH在P. pastoris中截短表达分析。P. pastoris GS115/pPIC9K/mPVADH摇瓶诱导时,分别添加1%酪蛋白氨基酸、5g/L六偏磷酸钠;或将质粒pPIC9K/mPVADH转化P. pastoris SMD1168,表达的目的蛋白是截短的,说明不是胞外蛋白酶将目的蛋白降解。反转录PCR(RT-PCR)表明mPVADH转录时的mRNA是全长的,说明转录正确。分别缺失mPVADH截断位点前的ATG59、ATG64、ATG67和ATG76;或缺失mPVADH蛋白N端的1-21、22-51和52-81氨基酸,各突变转化子表达的目的蛋白仍然是截短的。同时,将绿色荧光蛋白(EGFP)与mPVADH融合,所得突变转化子表达的2段外源蛋白的分子量分别与EGFP和截短PVADH相当,说明融合蛋白翻译完整,但胞内蛋白酶将其错误切割。为了确定胞内蛋白酶对mPVADH的识别位点,首先针对蛋白酶Kex2的识别位点设计突变;然后针对其它蛋白酶,将mPVADH截断位点附近的氨基酸突变为(GlyGlyGlyGlySer)2,或缺失截断位点-5至+5的氨基酸序列,突变转化子表达的都是截短蛋白,说明不是Kex2错切mPVADH,该蛋白酶识别mPVADH的位点可能在截断位点后某区域,还有待于进一步研究。
     (4)截短PVADH(tPVADH)在P. pastoris中的过量表达与相关机制分析。将1644bp的tPVADH基因插入pPIC9K多克隆位点并转化P. pastoris GS115,转化子在摇瓶最高酶活为546U/mL,与表达mPVADH基因相比,酶活提高了10倍。荧光定量PCR(qRT-PCR)表明表达mPVADH的转录水平是表达tPVADH的1.9倍,但表达tPVADH基因时,胞外目的蛋白含量更多的原因可能是胞内蛋白酶对mPVADH错切影响了目的蛋白的分泌效率。在3L发酵罐上,分别优化了28和22oC诱导时的甲醇浓度,所得最高酶活分别是5515和8464U/mL;后者是文献报道的最高水平。低温诱导时,tPVADH的产量和生产强度大幅度提高归结于高细胞存活率、低胞外蛋白酶活力、高AOX酶活和高tPVADH转录水平。
     (5)tPVADH降解PVA1799的应用效果评价。红外光谱(IR)分析表明氧化型PVA(oxiPVA)的羰基在1735cm-1出现新吸收峰;~1H-NMR表明在3.8ppm处出现新吸收峰,该峰对应的官能团是oxiPVA二酮基之间的α-次甲基基团,说明tPVADH的功能是催化PVA分子上相邻羟基生成β-二酮基。凝胶过滤色谱(GPC)检测发现,PVA1799和oxiPVA的粘度分子量(Mv)分别是154786和71564,而OPH水解产物中大分子物质已消失,说明oxiPVA能自降解,OPH能加快oxiPVA的降解。最后,tPVADH和OPH联合处理40g/L的PVA溶液,其粘度下降约15%,说明tPVADH和OPH联合应用对PVA有一定降解效果。
Poly(vinyl alcohol)(PVA) was a high molecular compound which was difficult to bedegraded, its basic structure was composed mainly of head-to-tail1,3-diol units. PVA hadmany perfect performances, which made its wide application in industry. However, a largeamount of waste water containing PVA were poured into rivers, leding to serious waterpollution. Thus, it was more significant to realize PVA biodegradion. Poly(vinyl alcohol)dehydrogenase (PVADH) took responsibility for catalyzing the first reaction of PVAbiodegradation. In this study, we investigated the heterologous expression of PVADH fromSphingopyxis sp.113P3in Escherichia coli (E. coli) and Pichia pastoris (P. pastoris) system,and some application researches were also done. The major results were summarized asfollows:
     (1) Synthesis of Sphingopyxis sp.113P3PVADH gene, fusion expression in E. coli andrenaturation of inclusion bodies.
     Using the amine acid subsequence of Sphingopyxis sp.113P3PVADH as template, a1965bp fragment was synthesized based on the codon bias of P. pastoris and taking place ofrare codons of E.coli. The1887bp gene without native signal peptide (mPVADH) wasamplified by polymerase chain reaction (PCR) and cloned into pET32a(+). Under thecondition of induction at20oC,0.05mM isopropyl β-D-1-thiogalactopyranoside (IPTG),2%glucose and induction of12h, the fusion protein of thioredoxin (TrxA)-PVADH wasexpressed mainly in the form of inclusion bodies in E.coli BL21(DE3). Inclusion bodies weredissolved in buffer, followed by dilution renaturation, cleaving fusion protein by recombinantenterokinase (rEK), removing rEK and TrxA by dialysis, the active mPVADH were obtained.The enzyme activity and specific activity were60U/mL and109U/mg protein, respectively.
     (2) Expression, purification, and enzymatic characterization of mature PVADH in P.pastoris using mPVADH gene.
     The mPVADH gene was amplified and inserted into pPIC9K. The recombinant plasmidwas linearized and transformed into P. pastoris GS115, a positive transformant of P. pastorisGS115/pPIC9K/mPVADH was seleted for expression. Its maxmun activity reached55and902U/mL in a shake flask and3L bioreactor. This study was the first acquired in theeukaryon expression system of P. pastoris. Surprisingly, the molecular weight (Mw) of targetprotein was apparent smaller than anticipation, and its N-terminal amine acids matched themPVADH starting from the82thamino acid. The optimum temperature and pH ranged for thepurified enzyme were41-53oC and7.0-8.0, respectively. Ca~(2+)had stimulating effect on theactivity of PVADH. The enzyme had a Michaelis constant (Km) of1.89mg/mL and amaximum reaction rate (Vmax) of34.9nmol/(min) toward optimal substrate of PVA1799.
     (3) Truncation analysis of expression in P. pastoris using mPVADH gene.
     At shake flask level, adding1%casamino acid or5g/L sodium hexameta phosphate intoBMMY medium when induction of P. pastoris GS115/pPIC9K/mPVADH proceeded,SDS-PAGE results showed the target proteins were truncated. The expression level of intactPVADH was also not improved by transforming the recombinant plasmid pPIC9K/mPVADH into proteinase A-deficient SMD1168, indicating expression truncation was not incorrectcleavage by extracellular proteolytic. Reverse transcription polymerase chain reaction(RT-PCR) results showed that the mRNA of P. pastoris GS115/pPIC9K/mPVADH duringtranscription was intact, so there was no problem with transcription. Subsequently, a series ofdeletion mutations were carried out as follows: deleting ATG59, ATG64, ATG67and ATG76before the truncation site of mPVADH, respectively; deleting1-21,22-51and52-81amineacids at the N-terminal of mPVADH, respectively. The enzyme expressed by the mutatedtransformants were also truncated. Furthermore, fusion protein of EGFP-mPVADH wasexpressed in P. pastoris, the target protein was cleaved into two parts, which matched the Mwof truncated PVADH and EGFP. These results indicated that the translation was correct. Inorder to determine the recognition site of intracellular protease, a few mutations were donearming at the recognition site of Kex2. Referring to other intracellular protease, mutationswere proceeded as follows: changing amine acids near the truncation site to(GlyGlyGlyGlySer)2, or direct deleting amine acids of-5to+5areas. However, the targetproteins expressed by all the transformants were also truncated. In conclusion, someintracellular protease incorrectly cleaved mPVADH, the recognition site of this protease (notKex2) probably exited in the amine acids sequence of truncated PVADH, and relativeresearches should be done continuously to determine the cleaving mechanism.
     (4) Overproduction of a truncated PVADH (tPVADH) in recombinant P. pastoris usingtPVADH gene and related mechanism analysis.
     The1644bp tPVADH gene was amplified and inserted into pPIC9K, followed bylinearrization and transformation into P. pastoris GS115, a positive transformant of P.pastoris GS115/pPIC9K/tPVADH was picked out. The maximal tPVADH activity reached546U/mL in shake flask, which was nearly10times that of the mPVADH under the sameconditions (55U/mL). Fluorescence quantitative PCR (qRT-PCR) showed that thetranscription level of mPVADH was1.9times higher than that of tPVADH in shake flask.However, there was less interest protein in the fermentation broth expressed by mPVADH.The most probable reason for the differences might be incorrect cleaving mPVADH by somepretease, the expression of tPVADH could overcome this incorrect cleaving with a higheryield of enzyme in fermentation broth, although its transcriptional level was lower comparedwith that of mPVADH. In3L bioreactor, the induction concentrations of methanol wereoptimized at28and22oC, and the highest activity reached5515and8464U/mL. Thesignificant improvement of tPVADH production at low induction are attribute to the highercell viability, lower extracellular proteases activity, and higher alcohol oxidase (AOX)activity at induction phase.
     (5) Effect evaluation of cleaving PVA by PVADH and OPH.
     Infrared spectrum (IR) spectra of the carboxylate groups in oxidized PVA (oxiPVA)showed a new absorption at1735cm-1, which was not observed for PVA1799.~1H-NMRresult showed that there was a new absorption peak at3.8ppm for oxiPVA, whichcorresponded to internal α-methylene protons of β-diketone. The molecular weight ofviscosity (Mv) of PVA1799and oxiPVA were154786and71564, respectively. Thehydrolyzates by OPH were nearly the low Mv substance. The results above illustrated that oxiPVA was not stable, while OPH could entirely degrade β-diketone structure of oxiPVA.Eventually, the PVA solution of40g/L was handled by PVADH and OPH, and the viscosityof PVA solution decreased approximately15%after reaction of24h. It was stated that addingtPVADH and OPH had a certain effect on PVA degradation.
引文
[1]张颖.微生物降解聚乙烯醇的条件及降解过程机制研究[D]:[博士学位论文].无锡:江南大学,2006.
    [2] Chiellini E, CortiA, D’Antone S, et al. Biodegradation of poly (vinyl alcohol) based materials[J]. ProgProg Polym Sci,2003,28(6):963-1014.
    [3] Kawai F, Hu XP. Biochemistry of microbial polyvinyl alcohol degradation[J]. Appl MicrobiolBiotechnol,2009,84(2):227-237.
    [4] Singh NB, Rai S. Effect of polyvinyl alcohol on the hydration of cement with rice husk ash[J]. CementConcrete Res,2001,31(2):239-243.
    [5] Jia D, Li J, Liu L, et al. High-level expression, purification, and enzymatic characterization of truncatedpoly(vinyl alcohol) dehydrogenase in methylotrophic yeast Pichia pastoris[J]. Appl Microbiol Biotechnol,2013,97(3):1113-1120.
    [6]李敏,堵国成,陈坚.生物降解聚乙烯醇研究进展[J].食品与生物技术学报,2008,27(5):8-14.
    [7]陈文,吴建华.全棉织物生物酶退浆工艺研究[J].浙江纺织服装职业技术学院学报,2008,3:10-12.
    [8]朱谱新,姚永毅. PVA浆料的生物降解性及应用前景[J].棉纺织技术,2005,33(2):62-64.
    [9] Mori T, Sakimoto M. Kagi T, et al. Isolation characterization of a strain of Bacillus megaterium thatdegrades poly(vinyl alcohol)[J]. Biosci Biotech Bioch,1996,60(2):330-332.
    [10]鞠喜,堵国成,陈坚.金属离子和醇类对混合菌产聚乙烯醇降解酶的影响[J].工业微生物,2008,38(2):15-19.
    [11] Tang B, Liao X, Zhang D, et al. Enhanced production of poly(vinyl alcohol)-degrading enzymes bymixed microbial culture using1,4-butanediol and designed fermentation strategies[J]. Polym DegradStability,2010,95(4):557-563.
    [12] Hu X, Mamoto R, Fujioka Y, et al. The pva operon is located on the megaplasmid of Sphingopyxis sp.strain113P3and is constitutively expressed, although expression is enhanced by PVA[J]. Appl MicrobiolBiotechnol,2008,78(4):685-693.
    [13] Shimao M, Tamogami T, Kishida S, et al. The gene pvaB encodes oxidized polyvinyl alcoholhydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcoholdehydrogenase gene pvaA[J]. Microbiology,2000,146(3):649-657.
    [14] Suzuki T, Ichihara Y, Yamada M, et al. Some characteristics of Pseudomonas O-3which utilizespolyvinyl alcohol[J]. Agric Biol Chem,1973,37:747-756.
    [15] Watanabe Y, Morita M, Hamada N, et al. Formation of hydrogen peroxide by a polyvinyl alcoholdegrading enzyme[J]. Agric Biol Chem,1975,39(12):2447-2448.
    [16] Sakazawa C, Shimao M, Taniguchi Y, et al. Symbiotic utilization of polyvinyl alcohol by mixedculures[J]. Appl Environ Microbiol,1981,41(1):261-267.
    [17] Hashimoto S, Fujita M. Isolation of bacterium requiring three amino acis for polyvinyl alcoholdegradation[J]. J Ferment Technol,1985,63(5):471-474.
    [18] Fukae R, Fujii T, Takeo M, et al. Biodegradation of poly(vinyl alcohol) with high isotacticity[J].Polym J,1994,26(2):1381-1386.
    [19] Matsumura S, Tanaka T. Novel malonate-type copolymers containing vinyl alcohol blocks asbiodegradable segments and their builder perfomance in detergent formulations[J]. J Environ PolymDegrad,1994,2(2):89-97.
    [20] Hatanaka T, Kawahara T, Asahi N, et al. Effects of the structure of poly(vinyl alcohol) on thedehydrogenation reaction by poly(vinyl alcohol) dehydrogenase from Pseudomonas sp.113P3[J]. BiosciBiotechnol Biochem,1995,59(7):1229-1231.
    [21] Mori T, Sakimoto M, Kagi T, et al. Isolation and characterization of a strain of Bacillus megateriumthat degrades poly(vinyl alcohol)[J]. Biosci Biotechnol Biochem,1996,60(2):330-332.
    [22] Mori T, Sakimoto M, Kagi T, et al. Degradation of vinyl alcohol oligomers by Geotrichum sp.WF9101[J]. Biosci Biotechnol Biochem,1996,60(7):1188-1190.
    [23] Tokiwa Y, Kawabata G, Jarerat A. A modified method for isolating poly(vinyl alcohol)-degradingbacteria and study of their degradation patterns[J]. Biotechnol Lett,2001,23(23):1937-1941.
    [24] Kim BC, Sohn CK, Lim SK, et al. Degradation of polyvinyl alcohol by Sphingomonas sp. SA3and itssymbiote[J]. J Ind Microbiol Biotechnol,2003,30(1):70-74.
    [25] Qian D, Du G, Chen J, et al. Isolation and culture characterization of a new polyvinylalcohol-degrading strain: Penicillium sp.WSH02-21[J]. World J Microbiol Biotechnol,2004,20(6):587-591.
    [26] Choi K, Park C, Kim S, et al. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM10507and Paenibacillus amylolyticus KCCM10508in dyeing wastewater[J]. J Microbiol Biotechnol,2004,15(5):1009-1013.
    [27] Zhang Y, Li Y, Shen W, et al. A new strain, Streptomyces venezuelae GY1, producing a poly(vinylalcohol)-degrading enzyme[J]. World J Microbiol Biotechnol,2006,22(6):625-628.
    [28] Sakai K, Fukuba M, Hasui Y, et al. Purification and characterization of an esterase involved inpoly(vinyl alcohol) degradation by Pseudomonas vesicularis PD [J]. Biosci Biotechnol Biochem,1998,60(10):2000-2007.
    [29] Watsumura S, Tomizawa N, Toki A, et al. Novel poly (vinyl alcohol)-degrading enzyme and thedegradation mechanism[J]. Macromol,1999,32(23):7753-7761.
    [30] Morita M, Hamada N, Sakai K, et al. Purification and properties of secondary alcohol oxidase from astrain of pseudomonas [J]. Agric Biol Chem,1979,43:1225-1235.
    [31] Watanabe Y, Hamada N, Morita M, et al. Purification and properties of a polyvinyl alcohol-degradingenzyme produced by a strain of Pseudomonas [J]. Arch Biochem Biophys,1976,174(2):575-581.
    [32] Sakai K, Hamada N, Watanaba Y. Purification and Properties of Secondary Alcohol Oxidase with anacidic isoelectric point [J]. Agric Biol Chem,1985,49(3):817-825.
    [33] Shimao M, Tamogami T, Nishi K, et al. Cloning and characterization of the gene encodingpyrroloquinoline quinone dependent poly(vinyl alcohol) dehydrogenase of Pseudomonas sp. strainVM15C[J]. Biosic Biotechnol Biochem,1996,60(7):1056-1062.
    [34] Shimao M, Ninomiya K, Kuno O, et al. Existence of a novel enzyme, pyrroloquinolinequinone-dependent polyvinyl alcohol dehydrogenase, in a bacterial symbiont, Pseudomonas sp. strainVM15C[J]. Appl Environ Microbiol,1986,51(2):268-275.
    [35] Shimao M, Taniguchi Y, Shikata S, et al. Production of polyvinyl alcohol oxidase by a symbioticmixed culture[J]. Appl Environ Microbiol,1982,44(1):28-32.
    [36] Shimao M, Saimoto H, Kato N, et al. Properties and roles of bacterial symbionts of polyvinylalcohol-utilizing mixed cultures[J]. Appl Environ Microbiol,1983,46(3):605-10.
    [37] Sakai K, Hamada N, Watanabe Y. Purification of membrane-bound polyvinyl alcohol oxidase inPseudomonas sp. VM15C[J]. FEMS Microbiol Lett,1983,20(3):429-433.
    [38] Shimao M, Yamamoto H, Ninomiya K, et al. Pyrroloquinoline quinone as an essential growth factorfor a polypoly(vinyl alcohol)-degrading symbiont, Pseudomonas sp.VM15C[J]. Agric Biol Chem,1984,48(11):2873-2876.
    [39] Shimao M, Fujita I, Kato N, et al. Enhancement of Pyrroloquinoline Quinone Production andPolyvinyl Alcohol Degradation in Mixed Continuous Cultures of Pseudomonas putida VM15A andPseudomonas sp. Strain VM15C with Mixed Carbon Sources[J]. Appl Environ Microbiol,1985,49(6):1389-1391.
    [40] Shimao M, Nishimura Y, Kato N, et al. Localization of Polyvinyl Alcohol Oxidase Produced by aBacterial Symbiont, Pseudomonas sp. Strain VM15C[J]. Appl Environ Microbiol,1985,49(1):8-10.
    [41] Hatanaka T, Asahi N, Tsuji M. Purification and characterization of poly(vinyl alcohol) dehydrogenasefrom Pseudomonas sp.113P3[J]. Biosci Biotechnol Biochem,1995,59(10):1813-1816.
    [42] Hirota-Mamoto R, Nagai R, Tachibana S, et al. Cloning and expression of the gene for periplasmicpoly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain113P3, a novel-type quinohaemoproteinalcohol dehydrogenase[J]. Microbiol,2006,152(7):1941-1949.
    [43] Klomklang W, Tani A, Kimbara K, et al. Biochemical and molecular characterization of a periplasmichydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain113P3[J]. Microbiol,2005,151(4):1255-1262.
    [44] Mamoto R, Hu X, Chiue H, et al. Cloning and expression of soluble cytochrome c and its role inpolyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain113P3[J]. J BiosciBioeng,2008,105(2):147-151.
    [45] Suzuki T. Oxidation of secondary alcohol by polyvinyl alcohol-degrading enzyme produced byPseudomonas O-3[J]. Agric Biol Chem,1978,42:1187-1194.
    [46] Morita M, Watanabe Y. A secondary alcohol oxidase, acomponent of a polyvinyl alcohol degradingenzyme preparation[J]. Agric Biol Chem,1977,41:1535-1537.
    [47] Yang Y, Zhang D, Liu S, et al. Expression and fermentation optimization of oxidized polyvinyl alcoholhydrolase in E. coli[J]. J Ind Microbiol Biotechnol,2012,39(1):99-104.
    [48] Hu X, Mamoto R, Shimomura Y, et al. Cell surface structure enhancing uptake of polyvinyl alcohol(PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain113P3[J]. Arch Microbiol,2007,188(3):235-241.
    [49]鞠喜,堵国成,陈坚.金属离子和醇类对混合菌产聚乙烯醇降解酶的影响[J].工业微生物,2008,2:15-19.
    [50] Mori T, Sakimoto M, Kagi T, et al. Enzymatic desizing of polyvinyl alcohol from cotton Fabrics[J]. JChem Technol Biotechnol,1997,68(2):151-156.
    [51]朱红裕,李强.外源蛋白在大肠杆菌中的可溶性表达策略[J].过程工程学报,2006,1:150-155.
    [52]余祖华.利用巴斯德毕赤酵母表达外源蛋白的研究进展[J].生物技术通讯,2004,6:614-616.
    [53] Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression inEscherichia coli[J]. J Biotechnol,2005,115(2):113-128.
    [54] Park SJ, Georgiou G, Lee SY. Secretory production of recombinant protein by a high cell densityculture of a protease negative mutant Escherichia coli strain[J]. Biotechnol Prog,1999,15(2):164-167.
    [55] Wang Y, Jiang Y, Gong T, et al. High-level expression and novel antifungal activity of mouse betadefensin-1mature peptide in Escherichia coli[J]. Appl Biochem Biotechnol,2010,160(1):213-221.
    [56] Yi L, Yin X, Wei D, et al. Expression and purification of exendin-4dimer in Escherichia coli and itsinteraction with GLP-1receptor in vitro[J]. Protein Pept Lett,2006,13(8):823-827.
    [57] Wu AB, Chen HD, Tang ZZ, et al. Synthesis of Drosophila melanogaster acetylcholinesterase geneusing yeast preferred codons and its expression in Pichia pastoris[J]. Chem Biol Interact,2008,175(1-3):403-405.
    [58] Teng D, Fan Y, Yang Y, et al. Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanasegene and its expression in Pichia pastoris[J]. Appl Microbiol Biotechnol,2007,74(5):1074-1083.
    [59] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72(1-2):248-254.
    [60]冯德江,刘翔,李旭刚,等. tRNA丰度与基因表达的关系[J].中国生物工程杂志,2002,22(6):4-8.
    [61] Micheelsen PO, Ostergaard PR, Lange L, et al. High-level expression of the native barleyalpha-amylase/subtilisin inhibitor in Pichia pastoris[J]. J Biotechnol,2008,133(4):424-432.
    [62] Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite[J]. Nucleic Acids Res,2008,36(Web Server issue): W70-74.
    [63] Luo H, Fan L, Chang Y, et al. Gene cloning, overexpression, and characterization of the nitrilase fromRhodococcus rhodochrous tg1-A6in E. coli[J]. Appl Biochem Biotechnol,2010,160(2):393-400.
    [64]魏巍. Mycobacterium neoaurum NwIB-01降解甾醇母核关键酶3-甾酮-△~1-脱氢酶和3-甾酮-9α-羟化酶基因的鉴定及其基因工程改造[D]:[博士学位论文].上海:华东理工大学,2010.
    [65] Mainfroid V, Terpstra P, Beauregard M, et al. Three hTIM mutants that provide new insights on whyTIM is a dimer[J]. J Mol Biol,1996,257(2):441-456.
    [66] Nygren PA, Stahl S, Uhlen M. Engineering proteins to facilitate bioprocessing[J]. Trends Biotechnol,1994,12(5):184-188.
    [67] Pan SH, Malcolm BA. Reduced background expression and improved plasmid stability with pETvectors in BL21(DE3)[J]. Biotechniques,2000,29(6):1234-1238.
    [68]王增,马会勤,张文,等.包涵体蛋白的分离和色谱法体外复性纯化研究进展[J].中国生物工程杂志,2009,29(7):102-107.
    [69] Rinas U, Bailey JE. Protein compositional analysis of inclusion bodies produced in recombinantEscherichia coli[J]. Appl Microbiol Biotechnol,1992,37(5):609-614.
    [70]饶胜其.降血压活性肽的筛选及其前体多肽的设计、克隆表达与活性鉴定[D]:[博士学位论文].无锡:江南大学,2011.
    [71] Brunel L, Neugnot V, Landucci L, et al. High-level expression of Candida parapsilosislipase/acyltransferase in Pichia pastoris[J]. J Biotechnol,2004,111(1):41-50.
    [72] Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichiapastoris[J]. FEMS Microbiol Rev,2000,24(1):45-66.
    [73] Macauley-Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichiapastoris expression system[J]. Yeast,2005,22(4):249-270.
    [74] Jia D, Liu L, Wang H, et al. Overproduction of a truncated poly (vinyl alcohol) dehydrogenase inrecombinant Pichia pastoris by low-temperature induction strategy and related mechanism analysis[J].Bioprocess Biosyst Eng,2012, DOI:10.1007/00449-012-0863-5.
    [75]谢涛,王红宁.外源基因在巴斯德毕赤酵母中多拷贝整合的研究进展[J].生物技术通讯,2006,3:415-417.
    [76] White CE, Kempi NM, Komives EA. Expression of highly disulfide-bonded proteins inPichiapastoris[J]. Structure,1994,2(11):1003-1005.
    [77]张克斌,朱军民,饶贤才.铜绿假单胞菌噬菌体PaP3一个结构蛋白的N-端测序及编码基因的确定[J].第三军医大学学报,2003,13:1140-1142.
    [78] Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental toolin protein engineering and production[J]. J Mol Recognit,2005,18(2):119-138.
    [79] Wan L, Zhu S, Li Y, et al. Production and characterization of LEA29Y, a variant of cytotoxicT-lymphocyte antigen4-immunoglobulin, in Pichia pastoris[J]. Appl Microbiol Biotechnol,2011,91(3):543-551.
    [80]赵鹏伟.蒙古绵羊β-防御素-1的表达、纯化及生物学功能研究[D]:[博士学位论文].呼和浩特:内蒙古农业大学,2011.
    [81] Clare JJ, Romanos MA, Rayment FB, et al. Production of mouse epidermal growth factor in yeast:high-level secretion using Pichia pastoris strains containing multiple gene copies[J]. Gene,1991,105(2):205-212.
    [82] Vedvick T, Buckholz RG, Engel M, et al. High-level secretion of biologically active aprotinin from theyeast Pichia pastoris[J]. J Ind Microbiol,1991,7(3):197-201.
    [83]韩雪清,尹双辉.毕赤酵母表达系统[J].微生物学杂志,2003,4:35-40.
    [84] Jungo C, Schenk J, Pasquier M, et al. A quantitative analysis of the benefits of mixed feeds of sorbitoland methanol for the production of recombinant avidin with Pichia pastoris[J]. J Biotechnol,2007,131(1):57-66.
    [85] Liang Q, Li W, Zhou B. Caspase-independent apoptosis in yeast[J]. Biochim Biophys Acta,2008,1783(7):1311-1319.
    [86] Mazzoni C, Falcone C. Caspase-dependent apoptosis in yeast[J]. Biochim Biophys Acta,2008,1783(7):1320-1327.
    [87]王芸.重组毕赤酵母高密度发酵生产碱性果胶酶的策略研究[D]:[硕士学位论文].无锡:江南大学,2008.
    [88]汪志浩.重组毕赤酵母生产碱性果胶酶的流加策略及工业化放大[D]:[硕士学位论文].无锡:江南大学,2008.
    [89] Wang H, Li J, Liu L, et al. Increased production of alkaline polygalacturonate lyase in the recombinantPichia pastoris by controlling cell concentration during continuous culture [J]. Bioresour Technol,2012,124:338-346.
    [90] Sun W, Arese M, Brunori M, et al. Cyanide binding to cd(1) nitrite reductase from Pseudomonasaeruginosa: role of the active-site His369in ligand stabilization[J]. Biochem Biophys Res Commun,2002,291(1):1-7.
    [91] Solaro R, Corti A, Chiellini E. Biodegradation of poly(vinyl alcohol) with different molecular weightsand degree of hydrolysis[J]. Polym Adv Technol2000,11(8-12):873-878.
    [92]陈晟.嗜热单孢菌角质酶的基因鉴定、高效表达及分子改造[D]:[博士学位论文].无锡:江南大学,2009.
    [93] Toyama H, Mathews FS, Adachi O, et al. Quinohemoprotein alcohol dehydrogenases: structure,function, and physiology[J]. Arch Biochem Biophys,2004,428(1):10-21.
    [94]郭艳梅,郑平,孙际宾.黑曲霉作为细胞工厂:知识准备与技术基础[J].生物工程学报,2010,10:1410-1418.
    [95] Hou J, Tyo KE, Liu Z, et al. Metabolic engineering of recombinant protein secretion bySaccharomyces cerevisiae[J]. FEMS Yeast Res,2012,12(5):491-510.
    [96] Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impact onprotein production[J]. Appl Microbiol Biotechnol,2010,86(2):403-417.
    [97] Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, et al. Oxygen-limited fed-batch process: analternative control for Pichia pastoris recombinant protein processes[J]. Bioprocess Biosyst Eng,2005,27(6):399-406.
    [98] Mason N, Ciufo LF, Brown JD. Elongation arrest is a physiologically important function of signalrecognition particle[J]. EMBO J,2000,19(15):4164-4174.
    [99] Rapiejko PJ, Gilmore R. Empty site forms of the SRP54and SR alpha GTPases mediate targeting ofribosome-nascent chain complexes to the endoplasmic reticulum[J]. Cell,1997,89(5):703-713.
    [100] Jungmann J, Munro S. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae withalpha-1,6-mannosyltransferase activity[J]. EMBO J,1998,17(2):423-434.
    [101] Rockwell NC, Krysan DJ, Komiyama T, et al. Precursor processing by kex2/furin Proteases[J]. ChemRev,2002,102(12):4525-4548.
    [102] Julius D, Blair L, Brake A, et al. Yeast alpha factor is processed from a larger precursor polypeptide:the essential role of a membrane-bound dipeptidyl aminopeptidase[J]. Cell,1983,32(3):839-852.
    [103] Iwaki T, Hosomi A, Tokudomi S, et al. Vacuolar protein sorting receptor in Schizosaccharomycespombe[J]. Microbiology,2006,152(5):1523-1532.
    [104] Burd CG, Babst M, Emr SD. Novel pathways, membrane coats and PI kinase regulation in yeastlysosomal trafficking[J]. Semin Cell Dev Biol,1998,9(5):527-533.
    [105] Brierley RA, Davis GR, Holtz GC. Production of Insulin-Like Growth Factor-1in MethylotrophicYeast Cells[J]. United States Patent,1994:5,324,639.
    [106] Lin-Cereghino J, Lin-Cereghino GP. Vectors and strains for expression[J]. Methods Mol Biol,2007,389:11-26.
    [107]陈坚.一种添加蛋白酶抑制剂提高过氧化氢酶产量[P].中国专利,201110187904.2011-07-06
    [108]敖世洲. DNA的双螺旋结构与基因的转录[J].生命的化学,1993,3:5-6.
    [109] Kuge H, Richter JD. Cytoplasmic3' poly(A) addition induces5' cap ribose methylation: implicationsfor translational control of maternal mRNA[J]. EMBO J,1995,14(24):6301-6310.
    [110]谢兆晖,曾强成,沈亮,等.真核生物翻译过程中的mRNA质量控制[J].生物化学与生物物理进展,2013,40(1):22-29.
    [111]俎鲁霞,徐国恒. tRNA的结构、功能及合成简介[J].生物学通报,2008,1:19-20.
    [112] Grass DS, Manley JL. Selective translation initiation on bicistronic simian virus40late mRNA[J]. JVirol,1987,61(7):2331-2335.
    [113] Ledgerwood EC, George PM, Peach RJ, et al. Endoproteolytic processing of recombinant proalbuminvariants by the yeast Kex2protease[J]. Biochem J,1995,308(1):321-325.
    [114] Shapiro RI, Wen D, Levesque M, et al. Expression of Sonic hedgehog-Fc fusion protein in Pichiapastoris. Identification and control of post-translational, chemical, and proteolytic modifications[J]. ProteinExpr Purif,2003,29(2):272-283.
    [115] Chen Z, Chen H, Wang X, et al. Expression, purification, and characterization of secretedrecombinant human insulin-like growth factor-binding protein-6in methylotrophic yeast Pichia pastoris[J].Protein Expr Purif,2007,52(2):239-248.
    [116] Vedvick T, Buckholz RG, Engel M, et al. High-level secretion of biologically active aprotinin fromthe yeast Pichia pastoris[J]. J Ind Microbiol,1991,7(3):197-201.
    [117] Brenner C, Fuller RS. Structural and enzymatic characterization of a purified prohormone-processingenzyme: secreted, soluble Kex2protease[J]. Proc Natl Acad Sci U S A,1992,89(3):922-926.
    [118] Werten MW, den Bosch TJ v, Wind RD, et al. High-yield secretion of recombinant gelatins by Pichiapastoris[J]. Yeast,1999,15(11):1087-1096.
    [119]汪志浩,张东旭,李江华,等.混合碳源流加对重组毕赤酵母生产碱性果胶酶的影响[J].生物工程学报,2009,12:1955-1961.
    [120] Breeuwer P, Abee T. Assessment of the intracellular pH of immobilized and continuously perfusedyeast cells employing fluorescence ratio imaging analysis[J]. J Microbiol Methods,2000,39(3):253-264.
    [121] Huang H, Yang P, Luo H, et al. High-level expression of a truncated1,3-1,4-beta-D-glucanase fromFibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation[J]. Appl MicrobiolBiotechnol,2008,78(1):95-103.
    [122] Gallet PF, Vaujour H, Petit JM, et al. Heterologous expression of an engineered truncated form ofhuman Lewis fucosyltransferase (Fuc-TIII) by the methylotrophic yeast Pichia pastoris[J]. Glycobiology,1998,8(9):919-925.
    [123] Khatri NK, Hoffmann F. Impact of methanol concentration on secreted protein production inoxygen-limited cultures of recombinant Pichia pastoris[J]. Biotechnol Bioeng,2006,93(5):871-879.
    [124]李飞,喻晓蔚,沙冲,等.基因拷贝数和甲醇浓度对重组毕赤酵母产华根霉脂肪酶的影响[J].微生物学通报,2011,3:301-309.
    [125] Wu D, Yu XW, Wang TC, et al. High yield Rhizopus chinenisis prolipase production inPichia pastoris Impact of methanol concentration[J]. Biotechnol Bioprocess Eng,2011,16(2):305-311.
    [126] Wang Y, Wang Z, Du G, et al. Enhancement of alkaline polygalacturonate lyase production inrecombinant Pichia pastoris according to the ratio of methanol to cell concentration[J]. Bioresour Technol,2009,100(3):1343-1349.
    [127] Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion ofheterologous proteins in the methylotrophic yeast Pichia pastoris[J]. Gene,1997,190(1):55-62.
    [128] Kobayashi K, Kuwae S, Ohya T, et al. High-level expression of recombinant human serum albuminfrom the methylotrophic yeast Pichia pastoris with minimal protease production and activation[J]. J BiosciBioeng,2000,89(1):55-61.
    [129] Jahic M, Gustavsson M, Jansen AK, et al. Analysis and control of proteolysis of a fusion protein inPichia pastoris fed-batch processes[J]. J Biotechnol,2003,102(1):45-53.
    [130] Li Z, Xiong F, Lin Q, et al. Low-temperature increases the yield of biologically active herringantifreeze protein in Pichia pastoris[J]. Protein Expr Purif,2001,21(3):438-445.
    [131] Shi X, Karkut T, Chamankhah M, et al. Optimal conditions for the expression of a single-chainantibody (scFv) gene in Pichia pastoris[J]. Protein Expr Purif,2003,28(2):321-330.
    [132]唐波.碳源流加策略提高混合微生物体系对聚乙烯醇的降解能力[D].[硕士学位论文].无锡:江南大学,2010.
    [133]平郑骅,丁雅娣,丁之明.傅里叶红外光谱法研究高分子共混物的相容性[J].复旦学报,1997,4:439-444.
    [134]张正行.有机光谱分析[M].北京:人民卫生出版社,1995,60-70.