海水淡化高压轴向柱塞泵的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压泵是反渗透海水淡化工程中的关键元件。与目前广泛使用的多级离心泵、往复泵相比,基于水液压技术的全水润滑轴向柱塞结构的海水淡化高压泵具有效率高、噪音低、体积小、易维护等优点,适合在中小型反渗透海水淡化系统中使用。本文以研制中小型反渗透海水淡化系统中使用的高压轴向柱塞泵为目标,开展泵的特性及其关键技术研究,为水介质轴向柱塞机械的研究和开发提供参考。
     本文考虑了泵在工作过程中因海水的可压缩性、高饱和蒸汽压诱发空化等引起的弹性模量、密度、动力粘度等流体属性的变化,建立了泵柱塞腔压力、泵柱塞腔内部空化、泵柱塞腔吸排水流量、泵进出口流量、泵关键摩擦副内泄漏流量和泵出口压力的动态模型。与不考虑流体属性变化的模型相比,该模型避免了仿真过程中绝对压力出现负值等现象,并能对柱塞腔内的空化、泵进口压力过低造成的吸空进行估计。根据海水淡化高压轴向柱塞泵的主要工作参数,通过对低粘度海水润滑下完全平衡型滑靴副缝隙流动的流态分析,得到了完全平衡型滑靴副中固定阻尼区域一般处于湍流状态,可变阻尼一般处于层流状态的结论,在此基础上进行了完全平衡型滑靴副的设计。考虑到滑靴体工程塑料覆盖层在高压水流下的微小变形对流动区域压力场的影响,提出了基于流固耦合数值分析的修正方法。在国内成功研制出适用于中小型反渗透海水淡化工程的高压轴向柱塞泵,该泵采用全水润滑端面配流结构,额定工作压力为8MPa,额定转速为1500rpm。性能试验结果表明该泵在额定工况下输出的实际流量超过110L·min-1,总效率超过80%。在反渗透海水淡化系统中的实际应用表明该泵性能稳定、可靠性高,能够在中小型海水淡化工程中替代同类进口产品。
     第一章介绍了反渗透海水淡化工程中高压泵技术的现状,分析了轴向柱塞结构高压泵的优势,指出了本文的研究目的及意义,介绍了本文的主要研究内容。
     第二章建立了海水主要流体属性随压力变化的模型,通过与轴向柱塞泵压力流量特性方程组相结合,得到了基于海水流体属性的海水淡化高压轴向柱塞泵压力流量特性模型,通过对模型的数值计算分析了泵的空化、压力、流量、泄漏和效率等特性。
     第三章建立了海水淡化高压轴向柱塞泵工作过程的动态CFD模型,对泵内部的空化流动进行了数值模拟,在不同的泵入口压力条件下,获得了泵内空化发生的位置和作用时间、柱塞腔吸排海水流量、泵出口截面的质量流量和平均压力脉动等特性。
     第四章讨论了海水润滑滑靴副的设计方法,推导了海水润滑完全平衡型滑靴副的设计计算公式。对采用了低弹性模量工程塑料的完全平衡型滑靴副的结构场和流场进行了流固耦合分析,讨论了微小弹性变形对其静压支承性能的影响。
     第五章分析了海水淡化高压轴向柱塞泵主要零件的动力学特性,获得了泵关键摩擦副的动态pv值数据。建立了海水淡化高压轴向柱塞泵的虚拟样机,综合分析了泵主要零件的动力学特性、泵的压力流量特性,获得了主要零件的动态等效应力和变形位移等数据。
     第六章在水润滑条件下对多种耐蚀金属与聚醚醚酮配对进行了摩擦学试验,获得了相应的摩擦磨损数据,分析了摩擦表面的微观形貌,为海水淡化高压轴向柱塞泵关键摩擦副配对材料的选择提供了参考。
     第七章介绍了海水淡化高压轴向柱塞泵样机的主要加工工艺过程,对加工完成的样机进行了性能试验,完成性能试验的样机进行了实际应用。
     第八章对本文的研究工作进行了总结,对进一步的研究提出了展望。
High pressure pump is one of the most important components in Sea Water Reverse Osmosis (SWRO) desalination engineering. Compared with multi-stage centrifugal pump and reciprocating pump which are widely used in SWRO projects, high-pressure axial piston pump based on water hydraulic technology has many advantages, such as high efficiency, small size, low noise and full water lubricated, and it is suitable to be used in small and medium scale SWRO systems. In order to develop the axial piston pump, this dissertation focuses on its main characteristics and key technology.
     In this dissertation, as the cavitation caused by high vapour pressure and slightly compressibility of seawater, the variable fluid properties such as elastic modulus, mass density and viscosity were considered in pressure and flow model of the high pressure axial piston pump for SWRO. Compared with the model without considering variable fluid properties, the new model avoids the negative pressure value in simulation process and can predict cavitation and sucked empty of the pump to a certain extent. Base on the main operating parameters of the pump, the gap flow pattern of the hydrostatic bearing slipper pair lubricated by seawater was analyzed. It was concluded that the flow regime of the variable damping is laminar but the fixed damping is turbulent. The corresponding design and calculation formulas were derived. Because the micro deformation of slipper body can influent the pressure field of the flow regime, the correction and compensation methods based on fluid-solid coupling numerical analysis were presented. The prototype of high pressure axial piston pump for SWRO was successfully developed in the domestic. This pump is directly lubricated by seawater and uses valveplate as it distributor. The rated operating pressure of the pump is8MPa, and the rated rotation speed is1500rpm. From the results of performance test at rated operating condition, the actual flow rate of the pump is over110L·min-1and the total efficiency is over80%. The practical application of the pump in SWRO projects shows that the pump has stable performance, high reliability, and can replace similar imported products in the small and medium scale SWRO systems.
     In Chapter1, current status of high pressure pumps in SWRO projects were described. The advantages of high pressure axial piston pump were analyzed. The main research objects and academic significances of this dissertation were pointed out. The main contents of this dissertation were introduced.
     In Chapter2, the main fluid properties of seawater varying with pressure were modeled, and the pressure and flow model of the axial piston pump for SWRO was built by the combination of fluid properties models and pressure-flow equations of axial piston pump. The dynamic pressure, flow, leakage, cavitation and efficiency of the pump were analyzed by the numerical calculation of this model.
     In Chapter3, the dynamic CFD model of the pump at working was established, and the cavitation flow in the pump was numerically simulated. At different inlet pressures, the dynamical cavitation position and duration, the mass flow rate of single cylinder chamber, the oulet mass flow and pressure ripple rate were analyzed.
     In Chapter4, the design method of slipper pair lubricated by seawater was discussed, the calculation formulas of hydrostatic bearing slipper pair were derived. The structure field and flow field of hydrostatic bearing slipper pair lubricated by seawater were analyzed by fluid-solid coupling numerical method. The influence of micro deformation of slipper body to hydrostatic supporting ablity was analyzed.
     In Chapter5, the dynamic mechanical characteristics of main parts of the pump were analyzed. The dynamic pv values of key tribo-pairs of the pump were acquired. The virtual prototype of the pump was built, and comprehensive analysis of the dynamic mechanical characteristics, stress and deformation displacement of the main parts, pressure and flow of the pump were analyzed.
     In Chapter6, tribology tests under water lubrication of variety corrosion resistant metals against composite PEEK materials were completed. Corresponding friction and wear data, morphology of friction surfaces were presented. This test is a basis for materials selection of the key tribo-pairs for the pump.
     In Chapter7, the main machining processes of the pump's prototype were introduced. The performance test of the pump was carried out. The pump, which was completed performance test, was used as high pressure pump at a SWRO experimental system. The pump was also used at a SWRO sytem in a desalination plant at a certain island as demonstration application.
     In Chapter8, the research work of this dissertation was summarized, and some advices on further research work were presented.
引文
1 解利昕,阮国岭,张耀江.反渗透海水淡化技术现状与展望[J].中国给水排水,2000(3):24-27.
    2 王世昌,周清,王志.海水淡化与反渗透技术的发展形势[J].膜科学与技术,2003(4):162-165.
    3 Zhang L, Xie L, Chen H L, et al. Progress and prospects of seawater desalination in China[J]. Desalination,2005,182(1-3):13-18.
    4 杨尚宝.关于我国海水淡化产业发展的战略思考[J].水处理技术,2011(12):1-4.
    5 王世昌.海水淡化工程[M].北京:化学工业出版社,2003.
    6 高从阶,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004.
    7 Stover R L. Seawater reverse osmosis with isobaric energy recovery devices[J]. Desalination,2007, 203(1):168-175.
    8 Al-Enezi G, Fawzi N. Design consideration of RO units:case studies[J]. Desalination,2003, 153(1-3):281-286.
    9 Grundisch A, Schneider B P. Optimising energy consumption in SWRO systems with brine concentrators[J]. Desalination,2001,138(1-3):223-229.
    10 王越,苏保卫,徐世昌,等.反渗透海水淡化技术最新研究动态[J].膜科学与技术,2004(2):49-52.
    11 叶晓琰,许国乐,胡敬宁.反渗透海水淡化高压泵的优化选择[J].水处理技术,2008(9):79-81.
    12 Fisher. Water hydraulics getting hot again[J]. Hydraulics & Pneumatics,1991,44(5):35-38.
    13 Scheffels G. Developments in water hydraulics[J]. Hydraulics & Pneumatics,1996,49(12):33-34.
    14 Lu Y. X.. New achievements and preview of fluid power engineering[C]. Proceedings of First International Conference on FPTC, Hangzhou, China,1997:16-23.
    15 Koskinen K T, Vilenius M J. Water hydraulics-a versatile technology[J]. Journal of the Japan Hydraulics & Pneumatics Society,1998,29(7):13-19.
    16 Anders, Adelstop. Trends in fluid power year 2000 and beyond[C]. International Workshop on Water Hydraulic Systems and Applications, Denmark,1999.
    17 Urata E. Technological aspects of the new water hydraulic[C]. Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland,1999:21-34.
    18 Lim G, Chua P, He Y. Modern water hydraulics-the new energy transmission technology in fluid power[J]. Applied Energy,2003,76:239-246.
    19 路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001(10):1-9.
    20 史维祥.流体控制发展的一些动向[J].液压气动与密封,2001(1):10-12.
    21 Oehler Gerhard. Hydraulic Presses[M]. London:Edward Arnold.1968.
    22 Trostmann E. Water hydraulics control technology[M], New York:Marcel Dekker,1996.
    23 Karl-Erik Rydberg. Energy Efficient Water Hydraulic Systems[C]. The 5th International Conference on Fluid Power Transmission and Control, Hangzhou, China,2001:440-446.
    24 杨署东,李壮云.水压传动的发展及其关键基础技术[J].机床与液压,2000(5):6-9.
    25 柯坚,刘思宁,许明恒等.水压驱动技术的最新研究动态[J].机床与液压,2001(2):12-14.
    26 杨华勇,周华.纯水液压传动技术的若干关键问题[J].机械工程学报,2002(S1):96-100.
    27 周华,杨华勇.重新崛起的现代水压传动技术[J].液压气动与密封,2000(4):6-9.
    28 王益群,曹栋璞,郎静.纯水液压传动及其展望[J].机床与液压,2003,31(1):13-1 5.
    29 杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程,2000,11(12):1430-1433.
    30 Hausherr G, Water Hydraulics in It's Historical Context[C]. Proceedings of 4th Scandinavian International Conference On Fluid Power, Tampere, Finland, Sept.1995:889-897.
    31 杨华勇,沙道航,张祺.纯水液压传动的应用与研究新进展[J].机床与液压,1998(4):3-5.
    32 周华,贺晓峰,李壮云.海水液压传动技术的研究与应用[J].液压与气动,1995(3):3-4.
    33 王新华,魏源迁,李剑锋等.水压传动技术发展的现状及其应用前景[J].机床与液压,2003(6):3-8.
    34 盛晓敏,邓朝晖.先进制造技术[M],北京:机械工业出版社,2000.
    35 王文斌,石治平.国外机械工业要览[M],北京:机械工业出版社,2001.
    36 杨尔庄.世界流体动力工业现状及发展动向[J].液压气动与密封,2010(2):1-6.
    37 Backe W. Water-or oil-hydraulics in the future[C]. Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Finland,1999:51-65.
    38 Cooke P. General features of water hydraulic systems[C]. Proceedings of Water-Based Fluids in Hydraulic Applications, London, UK, March 13,1996.
    39 Hukkanen P., Kukkonen J. Between oil and water hydraulics[C]. Proceedings of the Eighth Scandinavian International Conference on Fluid Power, Tampere, Finland,2003:117-128.
    40 Majdic F, Pezdirnik J, Kalin M. An analytical comparison of hydraulic systems based on water and on oil[C]. Proceedings of the 7th JFPS International Symposium on Fluid Power, Toyama, Japan, September 15-18,2008:679-684.
    41 Soini S M, Koskinen K T, Vilenius M, et al. Potential of microbial growth control in water hydraulic systems by UV-irradiation and filtration[J]. Journal of Chemical Technology and Biotechnology,2002, 77(8):903-909.
    42 Varjus S H, Riipinen H, Soini S M, et al. Microbial growth control in water hydraulic systems by conventional filtration[J]. Filtration and Separation,2004,41(3):41-47.
    43 Riipinen H, Varjus S, Soini S, et al. Effects of microbial growth and particles on filtration in water hydraulic system[C]. Proceedings of the Fifth JFPS International Symposium on Fluid Power,2002: 173-176.
    44 Usher S. Water hydraulic application examples[C]. Proceedings of International Workshop on Water Hydraulic Systems and Applications, Denmark,1999.
    45 Serensen P. Latest Development in the Application of Water Hydraulics[C]. Fluid Power Theme days in IHA, Water Hydraulics, Tampere, Finland,1997.
    46 Sorensen P, Sc B, Com B. News and trends by the industrial application of water hydraulics[C]. Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland,1999: 651-674.
    47 Haugen G K, Conrad F, Grahl-Madsen M. Innovative new ROV technology utilizing water hydraulics[C]. Proceedings of the Sixth JFPS International Symposium on Fluid Power, Tsukuba, Japan, 2005:473-478.
    48 Siuko M, Pitkaaho M, Raneda A, et al. Water hydraulic actuators for iter maintenance devices[J]. Fusion Engineering and Design,2003,69(1-4):141-145.
    49 Siuko M, Kemppainen T. Development of Water Hydraulic Extractor Tool for Iter[C]. Proceedings of the Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland,1999:687-696.
    50 Per Sorensen. Water Hydraulic Systems In The Food Processing Industry [C]. Proceeding of International Workshop on Water Hydraulic Systems and Applications, Lyngby, Denmark.1998:129-134.
    51 Mika Hyvone. Water Cutting In Paper Machines[C], Proceeding of International Workshop on Water Hydraulic Systems and Applications, Lyngby, Denmark.1998:212-218.
    52 赵昱东.水液压传动技术及其在矿山机械中应用展望[J].矿山机械,2004,(9):90-93.
    53 卢义敏,周华.纯水液压技术在食品机械中的应用[J].液压与气动,2004,(4):49-50.
    54 贺小峰,黄国勤,朱碧海等.海水液压动力驱动的水下作业工具系统[J].液压与气动,2004,(8):49-51.
    55 刘银水,王晓斌,吴德发等.移动式海水液压水下作业工具系统[J].机床与液压,2008,36(10):14-17.
    56 陈国琳,黄亚农,刘义庆等.潜艇海水液压系统研究[J].液压与气动,2001(1):8-10.
    57 Liu Z, Kim Ak. A review of the research and application of water mist fire suppression systems-fundamental srudies[J]. Journal of fire protection engineering,2000,10(3):32-50.
    58 Wang X. R., Gong Y. J., Yi Z. Y, et al. A study on ultra-high pressure water jet wall climbing robot for removal rust in vessels[C]. Proceedings of the 7th JFPS International Symposium on Fluid Power, September 15-18,2008, Toyama, Japan:403-408.
    59 范明豪,邓东,周华,杨华勇.纯水液压高压细水雾灭火技术及其应用探讨[J].液压与气动,2005,(6):52-54.
    60刘银水,杨友胜,李壮云等.水压技术在木材干燥窑湿度调节中的应用[J].机床与液压,2005,33(8):67-69.
    61 Ivantysyn J, Ivantysynova M. Hydrostatic pumps and motors[M]. New Delhi:Tech Books International, 2003.
    62 翟培祥.斜盘式轴向柱塞泵设计[M].北京:煤炭工业出版社.1978.
    63 徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985.
    64 杨曙东.基于海水润滑的中高压海水液压泵研究[D].华中科技大学,2005.
    65 Hicks D. C, Pleass C. M.. Development and testing of a composite/plastic high pressure seawater pump[C], Proceedings of 1st Bath International Fluid Power Workshop. Bath, United Kingdoms,1988: 69-78.
    66 Hicks D. C, Fearn W A., Pleass C. M., et al Development, Testing And The Economics Of A Composite/Plastic Seawater Reverse Osmosis Pump[J], Desalination,1989,73:95-109.
    67 周华,杨华勇.轴向柱塞式纯水液压泵的研究分析[J].机床与液压,1999(1):28-30.
    68 杨曙东,李壮云.介绍几种中高压海水液压泵[J].液压与气动,2000(4):40-42.
    69 C. A. Brookes. The Development of Water Hydraulic Pump Using Advanced Engineering Ceramics[C]. Proceedings of 4th Scandinavian International Conference on Fluid Power, Tampere, Finland, 1995:171-180.
    70 J. A. Currie. The Development of Raw Water Hydraulics[C]. Proceedings of 1st Bath International Fluid Power Workshop. Bath, United Kingdoms,1988:126-130.
    71 Ulrich Samland. The Use of New Materials in Water Hydraulics[C]. Proceedings of 4th Scandinavian International Conference on Fluid Power, Tampere, Finland,1995:181-186.
    72 J. Terava. Development of Sea Water Hydraulic Power Pack[C]. Proceedings of 4th Scandinavian International Conference on Fluid Power, Tampere, Finland,1995:166-170.
    73 Kim Sung-Dong, Ham Young-Bog. Experiments On Performance of the Rodtype Piston For A Water Hydraulic Pump[C]. Proceedings of 50th National Conference on Fluid Power, Las Vegas, USA.2005, 577-583.
    74 Ham Young-Bog, Park Kyung-Min, Kwang-Young Kim. Tribological Consideration of Plasticcoated Sliding Components for Water Hydraulic Piston Pump[C]. Proceedings of 50th National Conference on Fluid Power, Las Vegas, USA.2005,301-306.
    75 Stryczek J, Biernacki K. Gerotor Pump with Plastic Gears[C]. Proceedings of 7th International Fluid Power Conference, Archen, Germany.2010.
    76 Biernacki K, Stryczek J. Analysis of stress and deformation in plastic gears used in gerotor pumps[J]. Journal Of Strain Analysis For Engineering Design,2010,45(7):465-479.
    77 周华.海水液压泵及其基础理论研究[D].武汉:华中理工大学.1997.
    78 Zhou Hua, Yang Shudong, Han Jinhua, et al. Development of a Seawater Hydralic Piston Punp[C]. Proceedings of the 5th International Symposium on Fluid Power Transmission and Control, Hangzhou, China,1997:109-112.
    79 Wang Dong, Li Zhuangyun, Zhu Yuquan. Lubrication and tribology in seawater hydraulic piston pump[J]. Journal of Marine Science and Application,2003,1:35-40.
    80 Huang Guoqin, Zhu Yuquan, Li Xiaohui. Novel seawater hydraulic axial piston pump and its experiment[C]. Proceedings of 7th International Conference on Fluid Power Transmission and Control, Hangzhou, China,2009:494-497.
    81 周华.水液压介质、柱塞泵及试验系统的研究[R].杭州:浙江大学.2000.
    82 焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究[D].杭州:浙江大学.2004.
    83 邓斌.水压轴向柱塞泵的特性研究与分析[D].成都:西南交通大学,2004.
    84 刘桓龙.水压柱塞泵的润滑基础研究[D].成都:西南交通大学,2008.
    85 唐向阳.纯水液压试验系统的设计及动态特性研究[D].昆明:昆明理工大学,2001.
    86 刘谦,阮俊,陈磊,等.斜轴式海水柱塞泵的研制[J].机床与液压,2011(5):62-63.
    87 B. Bhushan, S. Gray. Investigation of material combinations under high load and speed in synthetic seawater[J]. Lubrication Engineering.35(11),1978,628-639.
    89 J. K. Lancaster. A review of the influence of environmental humidity and water on friction,lubrication and water[J]. Tribology international.1990,23(6):371-389.
    90 P. Andersson. Water-lubricated pin-on-disc tests with ceramics[J]. Wear,1992,154:37-47.
    91 J. W. M. Mens, A. W. J. Gee de. Friction and wear behaviour of 18 polymers in contact with steel in environments of air and water[J]. Wear,149(1-2):255-268.
    92刘银水,余祖耀,唐群国等.表面工程技术在水压元件中的应用[J].中国机械工程,2003,(21):56-59.
    93 Kennedy, Francis E., Jr.Espinoza, Beda M. Pepper, Susanne M. Pepper. Thermo-cracking and Wear of Ceramic-coated Face Seals for Water Applications[J]. Lubrication Engineering,1990,46(10):663-671.
    94 贺小峰,张铁华,余祖耀,等.水压柱塞泵摩擦副的试验研究.机械设计与制造,2000,(2):49-50.
    95 贺小峰,张铁华,杨曙东.水压柱塞泵柱塞副的试验研究方法.液压气动与密封,2001,(2):7-8.
    96 Nie S L, Huang G H, Li Y P. Tribological study on hydrostatic slipper bearing with annular orifice damper for water hydraulic axial piston motor[J]. Tribology International,2006,39(11):1342-1354.
    97 Liu Y S, Wu D F, He X F, et al. Materials screening of matching pairs in a water hydraulic piston pump[J]. Industrial Lubrication And Tribology,2009,61(2-3):173-178.
    98 唐群国,陈晶申,金文浩.氧化锆陶瓷/碳纤增强聚醚醚酮在水润滑下的摩擦磨损特性研究[J].摩擦学学报,2010,(6):601-606.
    99 唐群国,陈晶田,金文浩,等.Ti(C,N)基金属陶瓷在海水润滑下的摩擦磨损特性研究[J].润滑与密封,2011,(1):1-3.
    100唐群国,余祖耀,贺晓峰,等.等离子喷涂陶瓷水压元件磨损特性的试验研究[J].机械科学与技术,2003,(6):991-993.
    101 Yang H, Yang J, Zhou H. Research on materials of piston and cylinder of water hydraulic pump[J]. Industrial Lubrication and Tribology,2003,55(1):38-43.
    102焦素娟,周华,杨华勇,等.填充聚醚醚酮复合材料在水润滑下的摩擦学特性研究[J].摩擦学学报,2003,(5):385-389.
    103焦素娟,周华,杨华勇,等.水润滑条件下等离子陶瓷涂层的磨损机理研究[J].中国机械工程,2003,(6):70-72.
    104周华,杨华勇.纯水液压元件中陶瓷涂层零件的腐蚀失效机理分析[J].液压气动与密封,1999,(6):1-3.
    105焦素娟,李佳鑫,杨俭,等.不锈钢作为水压元件材料的盐雾实验研究[J].液压与气动,2002,(2):11-13.
    106 Webster J., Mcgee J. A. An investigation into a modified port-plate seal of an axial piston water pump[J]. Wear,1988,127(1):85-99.
    107 Li K. Y., Hooke C. J. A note the lubrication of composite slippers in water-based axial piston pumps and motors[J]. Wear,1991,147(2):431-437.
    108 Wang X, Yamaguchi A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. Part 1:Experiment and theory[J]. Tribology International,2002,35(7):425-433.
    109 Wang X, Yamaguchi A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. Part 2:On eccentric loading and power losses[J]. Tribology International,2002,35(7):435-442.
    110 Rokala M, Calonius O, Koskinen K T, et al. Study of lubrication conditions in slipper-swashplate contact in water hydraulic axial piston pump test rig[C], Proceedings of the 7th JFPS International Symposium on Fluid Power. Toyama, Japan,2008:91-94.
    111聂松林,焦启民,余祖耀,等.一种新型滑靴静压支承在水压马达中的应用研究[J].机械科学与技术,2004,(7):777-779.
    112余祖耀,聂松林,杨曙东,等.新型静压平衡滑靴副及其在水液压泵中的应用研究[J].液压与气动,2002,(10):54-56.
    113余祖耀,李壮云,杨曙东,等.水液压柱塞泵中静压支承设计方法的理论研究[J].机械工程师,2002,(12):27-29.
    114余祖耀,李壮云,杨曙东等.水液压柱塞泵滑靴球头副存在的问题和改进设计[J].工程设计学报.2002,(3):116-118.
    115吴德发,李斌,陈经跃,等.水润滑超高压海水泵斜盘/滑靴副摩擦学特性仿真研究[J].液压与气动,2010(9).
    116刘桓龙,柯坚,王国志,等.水压轴向桩塞泵滑靴静压支承中的惯性影响[J].机械工程学报,2002,(4):141-143.
    117刘桓龙,柯坚,王国志,等.水压滑靴副的润滑特性[J].机械工程学报,2006,(3):36-39.
    118刘桓龙,柯坚,王国志,等.水压柱塞摩擦副的润滑特性研究[J].中国机械工程,2007(4):434-439.
    119 Liu H. L, Ke J, K., Wang G. Z., et al. Research on the lubrication characteristics of water hydraulic slipper friction pairs[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science.2006,220(10):1559-1567.
    120邓斌,柯坚,王瑛,等.水压轴向柱塞泵配流盘静压支承的理论分析和计算[J].机床与液压,2002(3):46-48.
    121 Chen H. X., Chua P S K, Lim G H. Adaptive wavelet transform for vibration signal modelling and application in fault diagnosis of water hydraulic motor[J]. Mechanical Systems and Signal Processing, 2006,20(8):2022-2045.
    122 Chen H X, Chua P S K, Lim G H. Fault degradation assessment of water hydraulic motor by impulse vibration signal with Wavelet Packet Analysis and Kolmogorov-Smirnov Test[J]. Mechanical Systems and Signal Processing,2008,22(7):1670-1684.
    123 Chen H. X., Chua P S K, Lim G H. Dynamic vibration analysis of a swash-plate type water hydraulic motor Mechanism and Machine Theory,2006,41(5):487-504.
    124周华,杨华勇,李壮云.海水液压泵气蚀初生特征的识别[J].机械工程学报,1999,(6):52-55.
    125聂松林,李壮云.水压柱塞泵(马达)配流盘的研究与仿真[J].机械科学与技术,2001,(3):407-409.
    126 Nie S L, Li Z Y, Yang S D. Investigation of valve plate in water hydraulic axial piston motor[J]. Journal of Shanghai University (English Edition)[J],2002,6(1):73-78.
    127贺小峰,曾伟,王学兵,等.水压柱塞泵噪声特性的试验研究[J].中国机械工程,2008(2):160-162.
    128黄国勤,李晓晖,朱玉泉.阀配流式水压柱塞泵降噪技术研究[J].噪声与振动控制,2009(1):157-159.
    129黄国勤,贺小峰,朱玉泉.水压泵柱塞摩擦副间隙优化及影响因素分析[J].中国机械工程, 2011(14):1668-1672.
    130邓斌,王金诺,安维胜,等.水压柱塞泵的噪声及影响因素分析[J].机床与液压,2003(1):150-151.
    131马吉恩.轴向柱塞泵流量脉动及配流盘优化设计研究[D].杭州:浙江大学,2009.
    132 Edge K A, Darling J. The pumping dynamics of swash plate piston pumps [J]. ASME Journal of Dynamic System Measurement and Control.1986,111(2):307-312.
    133 G. L. Berta, P. Casoli, A. Vacca, et al. Simulation model of an axial piston pumps inclusive of cavitation, ASME International Mechanical Engineering Congress and Exposition, New Orleans, Lousiana, USA, November 17-22,2002.
    134 Casoli P, Vacca A, Franzoni G, et al. Modelling of fluid properties in hydraulic positive displacement machines[J]. Simulation Modelling Practice and Theory,2006,14(8):1059-1072.
    135那成烈.轴向柱塞泵可压缩流体配流原理[M].北京:兵器工业出版社,2003.
    136郭卫东,王占林.斜盘式轴向柱塞泵实际流量的分析研究[J].北京航空航天大学学报,1996,22(2):223-227.
    137马吉恩,徐兵,杨华勇.轴向柱塞泵流动特性理论建模与试验分析[J].农业机械学报,2010,41(1):188-194.
    138许耀铭.油膜理论与液压泵和马达的摩擦副设计[M].北京:机械工业出版社,1987.
    139盛敬超.液压流体力学[M].北京:机械工业出版社,1980.
    140裘信国.端面配流径向柱塞式液压泵特性的研究[D].杭州:浙江工业大学,2009.
    141 Pijush K. Kundu, Ira M. Cohen, Fluid Mechanics[M]. New York:Elsevier Inc.,2004.
    142 W霍夫曼.液压元件及系统的动态仿真[M].杭州:浙江大学出版社,1988.
    143吴江航,朱怀球.计算流体力学、CFD软件与工程服务[C].中国土木工程学会计算机应用分会第七届年会,1999,88-92.
    144 Dheeraj Saxena. CFD Modeling of Cavitation in An Axial Piston Pump [D], Purdue University,2008.
    145 Norman Bugener, S. Helduser. Analysis of the suction performance of axial piston pumps by means of computational fluid dynamics (CFD)[C]. The 7th International Fluid Power Conference, Mar.22-24, 2010. Aachen, Germany.
    146 Matthias Heinz, Ridley Fidler, Werner Dittrich, Mainz-Kastel, Michael Kratschmer. Axial piston pump and Motor optimization by Means of CFD[C]. The 7th International Fluid Power Conference, Mar. 22-24,2010. Aachen, Germany.
    147邓斌,刘晓红,王金诺,柯坚.水压轴向柱塞泵流量脉动动态仿真[J].液压与气动,2004(1):31-34.
    148林静,孙明智.轴向柱塞泵配流盘结构对流量脉动的影响[J].流体传动与控制,2007(3):32-35.
    149刘晓红,于兰英,刘桓龙,柯坚.液压轴向柱塞泵配流盘气蚀机理[J].机械工程学报,2008,44(11):203-208.
    150李静,徐兵,马吉恩.可压缩流体介质轴向柱塞泵流量脉动仿真研究[J].机床与液压,2008,36(5):154-155.
    151黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991.
    152李忠,轴流泵内部空化流动的研究[D].镇江:江苏大学,2011.
    153江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    154吴小俊,袁亚雄,张小兵,等.两相流体力学的一种新模型——连续介质—动力学混合模型[J].工程热物理学报.1996,17(S1):236-240.
    155 T. Cebeci, J. Rshao, F. Kafyeke, E. Laurendeau. Computational fluid dynamics for engineers[M], Long Beach CA:Horizons Publishing Inc.,2005:88-89.
    156 C. E. Brennen. Cavitation and bubble dynamics[M], Oxford:Oxford University Press.1995.47-50.
    157 W. Yuan, J. Sauer, G. H. Schnerr. Modeling and computation of unsteady cavitation flows in injection nozzles[J]. Mecanique & industrie,2001(2):383-394.
    158周桂如等.流体润滑理论[M].杭州:浙江大学出版社,1990.
    159杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    160陈远玲,周华,杨华勇.纯水轴向柱塞泵滑履的静压支承设计[J].工程设计学报,2002(3):168-170.
    161林建兴,刘鸿文,曹曼玲.高等材料力学[M].北京:高等教育出版社,1985.
    162熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117.
    163 A. Peter, P. Martin. Simulation of a hydraulic variable axial piston double pump of bent axis design with subsystems[C]. The 1st MSC.ADAMS European User Conference, London,2002:10-17.
    164 M. Deeken, Using modern CAE tools to simulate hydrostatic displacement units[J]. Olhydraulik und Pneumatik (O+P),2002,46:6-12.
    165 H Zhang, L Kasper, K Rich. Development of a virtual prototype of piston pump for hydrostatic transmission[C]. Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou, China,2005:485-489.
    166 Roccatello A, Manco S, Nervegna N. Modelling a variable displacement axial piston pump in a multibody simulation environment[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME.2007,129(4):456-468.
    167 Zhang B, Xu B, Xia C, et al. Modeling and simulation on axial piston pump based on virtual prototype technology [J]. Chinese Journal of Mechanical Engineering,2009,22(1):84-90.
    168张斌.轴向柱塞泵的虚拟样机及油膜压力特性研究[D].杭州:浙江大学,2009.
    169杨智炜.轴向柱塞泵虚拟样机仿真技术研究[D].杭州:浙江大学,2006.
    170何存兴.液压元件[M].北京:机械工业出版社,1982.
    171陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    172李增刚ADAMS入门详解与实例[M].北京:国防工业出版社,2006.
    173倪礼忠,陈麒.复合材料科学与工程[M].北京:科学出版社,2002.
    174赵纯,张玉龙.聚醚醚酮[M].北京:化学工业出版社,2008.
    175天华化工机械及自动化研究设计院.腐蚀与防护手册第2卷(耐蚀金属材料及防蚀技术)[M].北京:化学工业出版社,2008.
    176钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998.
    177中国机械工程学会热处理学会.热处理手册(第1卷:工艺基础)(第4版)[M].北京:机械工业出版社,2008.
    178 GB 3960-83塑料滑动摩擦磨损试验方法[S].北京:中国标准出版社,1983.
    179 GB 12444.1-90金属磨损试验方法MM型磨损试验[S].北京:中国标准出版社,1990.
    180 GB 12444.2-90金属磨损试验方法环块型磨损试验[S].北京:中国标准出版社,1990.
    181 GB 12444-2006金属材料磨损试验方法试环-试块滑动磨损试验[S].北京:中国标准出版社,2006.
    182李成.不锈钢实用手册[M].北京:中国科学技术出版社,2003.
    183曾正明.机械工程材料手册(金属材料)(第6版)[M].北京:机械工业出版社,2003.
    184王先逵.机械加工工艺手册第2卷(加工技术卷)[M].北京:机械工业出版社,2007.
    185陈宏钧.实用机械加工工艺手册(第2版)[M].北京:机械工业出版社,2004.
    186雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    187杨叔子.机械加工工艺师手册(第2版)[M].北京:机械工业出版社,2011.
    188王贵宾,姜振华,于闯,等.特种工程塑料PES、PEEK的成型加工特性[J].化工科技,2001(2).44-48.
    189卢义敏.纯水液压轴向柱塞泵的研制[D].杭州:浙江大学,2005.
    190 GB 7936-87液压泵、马达空载排量测定方法[S].北京:中国标准出版社,1987.
    191 JB/T 7043-2006液压轴向柱塞泵[S].北京:中国标准出版社,2006.
    192 GB/T 17483-1998液压泵空气传声噪声级测定规范[S].北京:中国标准出版社,1998.
    193任家富,庹先国,陶永莉.数据采集与总线技术[M].北京:北京航空航天大学出版社,2008.
    194 ASTM D 1141-1998 Standard Practice for the Preparation of Substitute Ocean Water[S]., American Society for Testing and Materials,1998.