消防炮射流轨迹的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断发展,大空间建筑的不断涌现,以及各种超大规格的油码头和石油储罐区等大型消防场所的不断出现,对于消防炮的研究提出了新的要求。目前国内外对于消防炮射流轨迹的研究还停留在试验研究上,缺乏系统的理论研究。本论文主要研究消防炮的射流轨迹。从理想状态下和实体消防炮两个方面着手,对射流进行理论分析,并借助Simulink软件建立射流轨迹的仿真模型,然后利用试验数据校核仿真模型,最后借助模型分析解决一些射流性能方面的问题。
     (1)从破碎理论出发,研究消防水炮射流的结构和稳定性问题。首先分析射流的破碎方式,以及相关概念和破碎理论,然后分别用K-H(Kelvin-Helmholtz)不稳定理论以及R-T(Rayleigh-Taylor)不稳定性理论来描述消防炮射流破碎过程。
     由于破碎存在的原因,消防炮射流与诸如炮弹等固体的飞行有本质的区别,不能用质点运动轨迹方法对其进行研究。
     (2)消防炮射流的影响因素可分为三类:输入能量,内部结构参数,和外界因素。先讨论理想状态下消防炮射流轨迹(即只受输入能量的影响在静止的大气中运动的射流)问题。对射流进行受力分析,得到消防炮射流运动的微分方程,进而研究射流初始条件和空气阻力问题。由于建立完毕的射流运动微分方程很难直接求解,因此借助Matlab软件中的Simulink仿真环境对理想状态下消防炮射流轨迹进行仿真建模。
     (3)把消防炮内部结构参数加入到考察对象中,即研究实体消防炮射流轨迹问题。先分析实体消防炮射流的影响因素定义和产生原因,然后对于消防炮结构进行分析和优化试验,确定最优化的消防炮结构,并利用Fluent流体计算软件对优化后的消防炮进行内部流场分析,求得轴向速度矢量效率。接着把轴向速度矢量效率带入理想状态下射流轨迹仿真模型的运动模块中,并运用多元线性回归模型分析确定射流截面积公式,建立射流截面积仿真模块,完成实体消防炮射流轨迹仿真模型。最后借助射流试验数据对模型进行校核,确定其正确性。
     (4)利用建立完毕的实体消防炮射流轨迹仿真模型研究与消防炮射流性能有关的问题。首先把三个主要工况参数(压力、流量和仰角)中一个参数为变量,另两个参数为定值,考察此工况参数变化时,消防炮水平射程的变化情况,从而确定其对于消防炮射流轨迹的影响。
     然后研究外界因素(风力)对消防炮射流的影响,通过理论分析和修订实体消防炮射流轨迹仿真模型,考察其对于射流轨迹的影响。最后引入“有效灭火半径”这一概念。从定义和现实意义的角度,分析提出“有效灭火半径”的合理性和必要性,并提出它的研究方法的初步设想。这些提出为以后的进一步研究提出了方向和依据。
Following the economy increase and social development, more and more large space building, large scale oil jetties and oil storage tank farms are built, which raise new requirements for fire-fighting monitor’s research. At present, in China the study of fire-fighting monitor’s trajectory is in the stage of test research, lack of systemic theoretic research. This thesis focuses on the fire-fighting monitor’s trajectory. Theoretical analysis the trajectory of ideal condition and actual fire-fighting monitor’s jet, establish the simulated model with the software of Simulink, and then inspect the model’s result with test date to check its veracity, at last analysis and solve some problems about jet’s performance with using the model.
     1. Use the breakup theory to research the problems of fire-fighting monitor’s jet’s structure and stability,. At first, anaylisis the jet’s breakup type and related conception and breakup theory, and then descript the fire-fighting monitor’s breakup procedure with K-H theory and R-T theory.
     2. There are three types of factors for fire-fighting monitor’s jet, input energy, internal structure parameters and environment factors. Discuss the problems about idea contion firefighting monitor jet’s trajectory firstly, the ideal condition means that the jet is in still gas and only effected by input energy. Give the differential equation of the jet’s trajectory through force analysis, and then research the problems of initial condition and air force.
     Because the differential equation of the jet’s trajectory is hard to be solved directly, we build the simulated model of ideal condition fire-fighting monitor’s jet’s trajectory with the software of Siumlink.
     3. Study the factor of internal structure parameters, namely the problem of the actual fire-fighting monitor’s jet’s trajectory. Analysis the concepts and reasons of the factors, analysis the structure of monitor and do optimization test to get the most optimized structure, and then analysis the fluid field using the software of Fluent to get the efficiency of axis velocity vector. Take the efficiency the velocity model of the simulate model of ideal condition jet’s trajectory, and analysis and establish the jet’s cross-sectional area model using the multivariate linear regression model, the new model is actual fire-fighting monitor’s jet’s trajectory simulated model. At last validate the model’s veracity through comparing the results of the model with that of test.
     4. Research some problems about fire-fighting monitor’s jet with using the simulated model. At first, research the influence of the three main parameters (pressure, flow and angle), the method is setting one parameter as constant and the other two parameters as variables to review the change of horizontal range of fire-fighting monitor’s jet’s trajectory. The second, research the influence of environment factors (wind) through theory analysis and changing the jet’s trajectory simulated model. At last, introduce the concept of effective diameter of putting out of fire. Analysis the rationality and necessity, and advance the research method.
引文
[1]杨庆.大空间展览建筑性能化防火设计研究[M] .重庆大学.2005
    [2]史兴堂等. GB 19156-2003.消防炮通用技术条件.中华人民共和国国家质量监督检验检疫总局. 2003
    [3]闵永林,佟慧.消防炮国内外发展现状和趋势[J].公安部上海消防研究所. 2004
    [4]杨林,唐川林,张凤华.高压水射流技术的发展及应用[J].清洗技术. 2004.1:9-15
    [5]赵春红,秦现生.高压水射流切割技术及其应用[J].机床与液压. 2006.12:1-3
    [6]张宝珍.针型喷嘴结构对射流特性影响的实验研究[J].天津科技大学. 2003
    [7]王永福等.消防车用泡沫、水两用炮性能的研究[M].公安部上海消防炮研究所. 1984.3
    [8]史兴堂.消防炮射程及影响因素研究[M].上海交通大学. 2001
    [9]邵国平.消防泡沫炮的效率研究[M].上海交通大学. 2001
    [10]吴海卫.消防水炮的水力性能研究[M].上海交通大学. 2001年
    [11] A. P. Hatton, M. J. Osbornet. The Trajectories of Large Fire Fighting Jets [J]. International Journal of Heat and Fluid Flow. 1979.1[1]: 37-41
    [12] A. P. Hatton, C. M. Leech, M. J. Osbornet. Computer simulation of the Trajectories of Large Water Jets [J]. International Journal of Heat and Fluid Flow. 1985.2[6]: 137-141
    [13]袁鸿儒.消防炮_枪_喷嘴性能参数的计算[J].专用汽车. 2006.6:16-17
    [14]芮强,徐凤.自动消防水炮灭火系统设计初探[J].给水排水. 2006.7[32]:69-72
    [15]马丽,金秀芬,李树林.浅析大空间智能灭火系统[J].消防科学与技术. 2006.3[25]:37-38
    [16]疏学明,赵建华,袁宏永等.小型智能消防水炮的研究[J]. 19-21
    [17]刘申友,袁宏永,苏国锋等.定点灭火智能消防水炮[J].中国安全科学学报. 2001.2[11]:37-41
    [18] Ali Setork. Mathematical models and their numerical solution for the flow field of high velocity water jets [M]. Southern Illnois University. 1983.6
    [19] Li, Zheng. Improvement of water jet and abrasive water jet nozzle [M]. New Jersey Institute of Technology. 1994
    [20] Christopher Omokhowa Iyogun. Trajectory of liquid jets exposed to a low subsonic cross airflow [M]. University of Manitoba. 2005
    [21]万峰.消防水炮射流轨迹及定位性能研究[M].上海大学. 2008
    [22]王志亮.感受性问题以及射流二次破碎界面问题并行数值模拟[M].上海大学.2003
    [23] K.A. Sallam, Z. Dai, G.M. Faeth. Liquid breakup at the surface of turbulent round liquid jets in still gases [J]. International Journal of Multiphase Flow 2002 (28): 427–449
    [24]万云霞,黄勇,朱英.液体圆柱射流破碎过程的实验[J].航空动力学报. 2008.2 (23):208-214
    [25]金志明,栗保明,杨涛.液体射流破碎机理及其在再生式液体发射药火炮中的应用[J].弹道学报. 1992.1 (11): 1-9
    [26] T. Funada, D.D. Joseph, S. Yamashita. Stability of a liquid jet into incom- pressible gases and liquids. International Journal of Multiphase Flow 2004 (30) : 1279–1310
    [27] T. Funada, D.D. Joseph, M. Saitoh. Liquid jet in a high Mach number air stream [J]. International Journal of Multiphase Flow 2006 (32): 20–50
    [28] C. Mata, E. Pereyra, J.L. Trallero. Stability of stratified gas–liquid flows [J]. International Journal of Multiphase Flow 2002 (28): 1249–1268
    [29] B. E. Gelfand. Droplet breakup phenomena in flows with velocity lag [J]. Prog. Energy Combust. Sci. 1996(22): 201-265
    [30]蒋勇,范维澄,廖光煊.喷雾过程中液滴不稳定破碎的研究[J].火灾科学. 2007.3(9):1-5
    [31] K.A. Sallam, Z. Dai, G.M. Faeth. Drop formation at the surface of plane turbulent liquid[J]. International Journal of Multiphase Flow. 1999 (25) : 1161-1180
    [32]浦发.外弹道学[M].国防工业出版社. 1980.7.
    [33]罗惕乾.流体力学[J].机械工业出版社,1999
    [34]求是科技. MATLAB7.0丛入门到精通[M].人民邮电出版社. 2006年
    [35]辛长范.基于Simulink中3DOF运动方程模块的外弹道仿真模型[J].弹箭与制导学. 2004.1[25]:179-180
    [36]王少昆,买瑞敏,周俊祥.基于Simulink的简易控制单兵火箭弹弹道仿真[J].先进制造与管理. 2007.6(26):34-36
    [37] Aerospace Blockset? 3 User’s Guide. The MathWorks, Inc.
    [38]郭训华,邵世煌. Simulink建模与仿真系统设计方法及应用[J].计算机工程. 2005.22(31):127-130
    [39]刘萍,张东速.基于FLUENT的小流量射流流场中的可视化研究[J].安徽理工大学学报(自然科学版). 2006.2(26):26-29
    [40]节流装置如何面对ISO5167新标准
    [41] GB 2624.1-2006-T用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求
    [42]韩占忠王敬兰小平Fluent流体工程仿真计算实例与应用[M].北京理工大学出版社2004年
    [43]苏琳消防水枪内外流场的数值模拟研究[J]公安部上海消防研究所. 2008年
    [44]曲延鹏,陈颂英,李春峰等.低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J].山东大学学报(工学版). 2006.4(36): 16-21
    [45]李兆敏,李松岩,尚朝晖等.泡沫流体层流射流的数值模拟[J].钻井液和完井液. 2007.1(24):58-61
    [46]严春吉,解茂昭殷佩海.粘性气体中粘性液体射流分裂与雾化机理研究[J].空气动力学学报. 2004.4(22):422-426
    [47]李冬青黄镇宇崔彦栋等.黏性液体射流雾化粒径的分析及预测[J].电站系统工程Vol.23 No.4 2007.7
    [48]王松佳,陈敏.线性统计模型[M].北京:高等教育出版社,1999.5
    [49] GB50338-2003《固定消防炮灭火系统设计规范》
    [50] GB50016—2006建筑设计防火规范