能量回收型水源热泵系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国能源形式非常紧张,建筑能耗在能耗中占有相当大的比重,据统计2000年的建筑能耗占总能耗比例为27.7%。随着人民生活水平的提高,对居住环境的舒适性提出了更高的要求,导致了建筑能耗的加剧。建筑节能首当其冲,而地表水源热泵技术以其节能环保性和可持续发展的特点在建筑供暖空调领域得到了逐渐的重视和应用,本文正是针对应用于重庆地区的地表水源热泵系统进行研究。
     本文首先回顾了国内外地表水源热泵的研究应用现状、使用特点,并介绍了水轮泵的国内外发展现状。从水量、水质、水温等方面分析了重庆地区水资源条件,研究表明水源热泵技术在重庆地区是可行的;但重庆地区应用水源热泵技术的特殊性——机房与江面水位之间的大高差,会制约地表水源热泵技术在重庆地区的应用。本文分析了重庆某水源热泵工程的取水系统形式,闭式管路会使得冷却水系统中存在很大的负压,以致取水系统无法正常运行;而开式管路会增大取水系统水泵扬程;取水能耗的增加成为制约江水源热泵技术在重庆地区发展的瓶颈。若能回收大高差形成的重力势能将使水源热泵技术在重庆有更广泛的应用。
     本文提出了解决重庆地区应用地表水源热泵的局限性的方法,采用能量回收型水源热泵系统,即利用水轮泵回收冷却水排水系统的重力势能。本文介绍了能量回收型水源热泵系统的系统形式、水轮泵的应用特性、变频泵与水轮泵的匹配问题以及相关辅助设施的设计等,解决了回收冷却水排水重力势能的核心问题。针对某地表水源热泵工程,确定了变频泵的变频控制方式和整个系统的开启台数控制,并以变频泵能耗最小为目标函数,建立了优化模型,利用Matlab软件编程求解。
     本文最后对能量回收型水源热泵系统进行了经济性分析。利用Dest能耗模拟软件模拟建筑的能耗,并在此基础上分析了常规空调系统和能量回收型水源热泵系统的能耗,结果表明能量回收型水源热泵系统相对于常规空调系统的节能率为20.8%,每年可节约标准煤291.1吨。提出了冷水机组综合能效比的概念,即制冷(热)量除以热泵机组和冷却水泵的总功率,并对该系统与常规空调系统的综合能效比进行比较,结果表明该系统的能效比明显高于常规空调系统。
At present our country energy form extremely is intense, the construction energy consumption holds the quite great proportion in the energy consumption, According to the statistics 2000 construction energy consumption accounted for the total energy consumption proportion is 27.7%.Along with lives of the people level enhancement,set a higher request to the environment comfortableness,has caused the construction energy consumption aggravating.The construction energy conservation bears the brunt,while the surface water source heat pump technology obtained the gradual value and the application by its energy conservation environment-protective and the sustainable development characteristic in the construction heating air conditioning domain.
     This article first reviewed the domestic and foreign surface water source heat pump research application present situation, the handling characteristics, and briefed the turbine pump domestic and foreign development present situation.From aspects and so on water volume, water quality, water temperature analyzed the Chongqing area water resources condition, the research had indicated the water source heat pump technology in the Chongqing area was feasible;But, Chongqing area applies the big discrepancy in elevation between water source heat pump technology particularity machine room and river water level,will be able to restrict the earth's surface source of water fever pump technology application in Chongqing area. This paper analyzes the water source heat pump project system form in Chongqing, the closed pipeline can enable in the cooling aqueous system to have the very big negative pressure,so that takes the aqueous system to be unable the normal operation;while the open channel road can increase takes the aqueous system lift of pump;Increasing by taking water energy consumption becomes restraint river source of water fever pump technology bottleneck developing in Chongqing area.If will be able to recycle the gravitational potential energy which the great elevation difference will form enable the water source heat pump technology in Chongqing to have a more widespread application.
     This article proposed solving the Chongqing area of surface water-source heat pump application of the limitations of the method, energy recycling water source heat pump system, namely use turbine pump recycling cooling water drainage system gravitational potential energy.In this paper,introduced the system form of energy recovery systems for water-source heat pump system, the characteristics of the pump-Water Turbine, and the matching problem, as well as water tanks,and the design of pumping station structures,solving the core issues in recycling cooling system energy. Analysis of the variable flow of cooling water, pump frequency control methods, such as the frequency range, and fitting pump performance curves by Matlab, making the optimization model of variable frequency pump and water turbine pump.
     This article finally has carried on the efficient analysis to the energy recycling water source heat pump system. Using Dest energy consumption simulation software simulation construction energy consumption,and has analyzed the convention air-conditioning system and the energy recycling water source heat pump system energy consumption in this foundation.The result indicated the energy recycling water source heat pump system is opposite in the convention air-conditioning system fractional energy savings is 20.8%, may save the standard coal 291.1 tons every year.Putting forward the idea of comprehensive energy efficiency ratio for the system,that is the cooling(heating) load of the airconditioning system divided by the total power, by comparing with conventional air conditioning system, the results showed that comprehensive energy efficiency ratio of energy recovery systems is higher ,the system is more energy saving.
引文
[1]杨子江,郭波.建筑节能势在必行[J].山西建筑. 2003, 29(8):164-165.
    [2]张红,曹亚楠.浅谈建筑能耗的现状和节能的重要性[J].林业科技情报. 2005, 37(2):31.
    [3]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调HV&AC. 2005, 35(5):30-40.
    [4] Wen Cheng Liu, Shin Yi Liu, Ming His Hsu et al. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers. Journal of Environmental Management[J] 2005, 76 (4): 293-308.
    [5]刘婧,王建厅,张为华等.温室效应对淡水生态系统的影响[J].北京水利, 2004, 1:14-16.
    [6]潘洁,刘传聚.地表水源热泵应用中的热污染隐患[J].上海节能, 2007, 3:27-31.
    [7]张文宇.上海世博园大型地表水源热泵对黄浦江水环境的影响分析:[D].上海.同济大学. 2007.
    [8] Hongli Fan, David J. Sailor. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia:a comparison of implementations in two PBL shemes[J]. Atmospheric Environment, 2005, 39: 73– 84.
    [9] S. W. Lang, W. Xu, T. S. Feng, Issues of design and application of the centralized air conditioning system with water source heat pump units[J], J. HVAC 26 (1) (1996) 15-19.
    [10] Hanneke V. Large energy systems-an international overview[J]. IEA Heat Pump Centre Newsletter, 1998, 16(1):10-15.
    [11]赵云鹏,韩涛.新型地表水源热泵的应用及发展状况[J].中国新技术新产品. 2008. 8:30.
    [12] C. Yvuzturk, A. D. Chiasson. Performnce Analysis of U-Tube Concentric Tube, and Standing Column Well Ground Heat Exchangers Using a System Simulation Approach[J]. ASHRAE Trans. 2002, 108(1):925-938.
    [13] JARN Ltd. A new river water source heat pump project [J] . Japan Air Conditioning,Heating & Refrigeration News . 1996. 8-25.
    [14]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调, 2004, 23 (3 ) : 24– 29.
    [15] Tim Peer, P E. Lake-source cooling[J]. ASHRAE Journal 2002, 4(44): 37-39.
    [16]陈晓.地表水源热泵系统的运行特性与运行优化研究:[D].长沙.湖南大学. 2006
    [17] T. Davey. Deep lake water cooling a matter of degrees [J]. Environmental Science Engineering, 2003 (9): 121-133.
    [18] Bttyttkalaca O, Ekinci F, Yilmaz T. Experimental investigation of Seyhan River and dam lake as heat source (sink) for a heat pump[J]. Enemy, 2003, 28: 157-169.
    [19] F. Ekinci, T. Yilmaz. Experimental investigation of Seyhan River and dam lake as heatsource-sink for a heat pump[J]. Energy 2003, (28):157-160.
    [20] JARN Ltd. A new river water source heat pump project. Japan Air Conditioning[J], Heating&Refrigeration News, 1996-08-25.
    [21] Kavanaugh S P. Design considerations for ground and water source heat pumps in southern climates[J]. ASHRAE Transactions, 1989, 95(1): 1139-1149.
    [22] KaVanaugh S P, Pezent M C. Lake water applications of water-to-air heat pumps[J]. ASHRAE Transactions, 1990, 96(1):813-820.
    [23] ASHRAE. American Inc, 1992 Systems and equipment handbook Society of Heating, Refrigerating, and173-176.
    [24]陈金华,刘勇,丁勇等.重庆开县人民医院湖水源热泵空调系统实测分析[J].暖通空调HV&AC. 2008, 38(8):111—114.
    [25]徐建求.湖南省水轮泵站更新改造对策研究:[D].武汉.武汉大学. 2004.
    [26]邹石林.要巩固和发展水轮泵[J].水利水电技术. 1981, (5):65.
    [27]虞兵. XBC型消防水轮泵的研制[J].通用机械. 2003:24-25.
    [28]肖冠英.管型水轮泵及其综合利用[J].水轮泵. 1995, 2:11-16.
    [29]徐在民.抽水蓄能发电新模式-水轮泵抽水蓄能电站[J].水利科技. 2004, (2).
    [30]董孟能,姜涵,霍建辉等.重庆江水水源热泵应用关键技术-取水水质及技术探讨[J].建设科技. 2007, (17):84-85.
    [31]张韵辉,吕震中,张小松.冷水机组的优化运行[J].暖通空调HV&AC. 2004, 34(3):13-17.
    [32]张湘隆,孙坚,张小军.大变幅水位水源泵站取水方式及机组选型研究[J].中国农村水利水电. 2006, (5):97-101.
    [33]黄忠,刘宪英,霍建辉等.重庆某江水源热泵空调工程[J].暖通空调HV&AC. 2008, 38(2):101-104.
    [34]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社, 1999.
    [35]孟民.水轮泵的汽蚀与安装高度[J].机电技术. 1987, (1):97-101.
    [36]袁昌立.有关IPLV参数的几个问题探讨[J].节能, 2007年第1期:21-23.
    [37]申小中. WSHP系统水源的常见问题探讨[J].无锡商业职业技术学院学报. 2004, 4(1):13-15.
    [38]陶耕田.荆山水厂取水构筑物形式的确定[J].中国农村水利水电, 2000, 8: 44-45.
    [39]崔海成.地表水水源热泵系统在工程中的应用[J].工程建设与设计, 2008, 4: 1-2.
    [40]杨自雄,肖睿书,张涛.建筑空调系统水源热泵取水工程设计[J].中国给水排水. 2008, 24(2): 40-43.
    [41] Thomas B Hartman. design issues of variable chilled-water flow through chillers[J]. ASHRAE Trans, 1996, 102:679-683.
    [42]孙一坚.空调水系统变流量节能控制[J].暖通空调HV&AC. 2001, 36:5-7.
    [43]刘光大,欧阳焱.空调冷却水变流量系统的特点及综合分析[J].湖南暖通空调. 2002, 1:31-33.
    [44]孙一坚.空调水系统变流量节能控制[J].暖通空调HV&AC. 2001, 36:5-7.
    [45]徐菱虹,王凌云.集中空调冷却水系统的节能运行[J].暖通空调HV&AC. 2000, 30(3):82-84.
    [46]孙一坚.关于集中空调冷却水系统节能运行-评《节能不能因小失大》[J].暖通空调HV&AC. 2003, 33(2):39.
    [47]杨东娟,张召伟.变频调速给水技术的原理及应用[J].中华建设. 2007, 10:58-59.
    [48]孙一坚,潘尤贵.空调水系统变流量节能控制(2)变频调速水泵的合理应用[J].暖通空调HV&AC. 2005, 35(10):90—92.
    [49]田胜元,萧日嵘.试验设计与数据处理[M].北京:中国建筑工业出版社, 1988.
    [50]付祥钊,王岳人,王元等.流体输配管网[M].北京:中国建筑工业出版社, 2001.
    [51]常魏. MATLABR2007基础与提高[M].北京:电子工业出版社, 2007.
    [52] Hong Tianzhen. Chou S. K. , Bong T. Y Building simulation: an overview of developments and information sources [J]. Building and Environment. 2000, 35 (4), 347-361.
    [53]清华大学建筑技术科学系DeST开发小组. DeST用户使用手册. 2004. 4.
    [54]洪丽娟,刘传聚.空调冷负荷时间频数及其应用.制冷与空调[J]. 2004, 4(6):63-64.
    [55]李永安,常静,徐广利.封闭式冷却塔供冷系统气象条件分析[J].暖通空调HV&AC. 2006, 35(6):107-108.
    [56]张谋雄.冷水机组变流量的性能.制冷与空调[J].暖通空调HV&AC. 2006, 6:56-58.