Ti、Ce对Zn-22Al钎料及Cu/Al钎焊接头性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu/Al异种金属钎焊接头已经逐渐在装备制造过程中得以推广应用。相对于其他组分用于铜铝钎焊的Zn-Al合金钎料,Zn-22Al的熔化区间与CsF-AlF3钎剂具有更好的工艺适配性,因此更适合用于Cu/Al异种金属的自动火焰钎焊过程。然而目前应用于Cu/Al火焰钎焊的Zn-22Al钎料仍存在极易氧化、在Cu母材上润湿性较差、特别是易与Cu生成脆性金属间化合物等问题。另外,目前仍缺乏对Zn-22Al钎料抗蠕变性能、Cu/Al钎焊接头服役时界面化合物演变规律、Cu/Al钎焊接头耐腐蚀性能等方面的研究数据。本研究针对Zn-22Al钎料和Cu/Al自动火焰钎焊接头的不足,系统地研究了微量Ti、Ce的添加对Zn-22Al钎料组织、性能以及Cu/Al钎焊接头性能的影响,并对其在钎料和接头中的作用机理进行了探讨。
     通过对不同钎料进行电阻率和熔化特性测试发现,钎料电阻率随Ti含量增加升高,随Ce含量增加先降低然后逐渐趋于稳定;Ti的添加可以提高钎料的固液相线并增大其熔化区间,而Ce对Zn-22Al钎料的熔化特性影响甚微。钎料的热重分析结果则表明,0.03wt.%的Ti或0.05wt.%的Ce可以提高钎料的抗氧化能力,分析是因为两种元素在钎料表面形成了比ZnO更致密的氧化膜所致,而当Ti、Ce的添加量分别达到1wt.%和0.5wt.%时则会显著恶化钎料的抗氧化能力。
     微量Ti、Ce的添加可以显著细化Zn-22Al钎料显微组织,分析认为Ti会与钎料中的Al原子结合形成TiAl3化合物颗粒,该颗粒在钎料凝固过程中优先析出为η-Zn提供形核质点从而使其由树枝状转变为“雪花状”;Ce同样会与Al、Zn原子结合形成Ce-(Al, Zn)化合物相,该相不仅可以为钎料提供形核质点,还会聚集在η-Zn枝晶臂间阻碍其生长,从而达到细化钎料组织的目的,但是当Ce含量超过0.15wt.%时,钎料中会形成大量含Ce硬质相,该相的大量出现会降低钎料的力学性能。另外,0.01~1wt.%的Ti或0.03~0.15wt.%的Ce的添加可以显著增大钎料在Cu和Al母材上的铺展面积。
     通过纳米压痕技术对Zn-22Al、Zn-22Al-0.03Ti、Zn-22Al-1Ti、Zn-22Al-0.05Ce、Zn-22Al-0.5Ce五种钎料的弹性模量、压痕硬度和室温蠕变应力指数进行了测量和计算。测量结果显示,钎料的弹性模量和压痕硬度均随Ti、Ce含量的增加而提高,从而使该钎料更适合应用于火焰钎焊的自动添丝设备。当加载载荷为50mN、加载速率分别为0.5、1、2.5、5、10mN/s时,五种钎料的室温蠕变应力指数n的变化范围分别为:24.72~27.10、33.11~38.14、28.17~33.21、32.63~36.70和28.31~32.32;而当加载速率为2.5mN/s,载荷分别为50、80、100、200、300mN时,五种钎料的蠕变应力指数n分别为:25.69~28.35、32.45~38.45、29.47~34.64、34.07~37.09和29.67~32.09,表明Ti或Ce的添加可以增强钎料在室温时的抗蠕变能力。分析认为,钎料弹性模量、压痕硬度及室温抗蠕变能力的提高主要是由于Ti、Ce的添加使钎料中出现了TiAl3或Ce-(Al, Zn)等化合物颗粒,这些强化相的出现提高了基体的抗变形能力。
     钎料中Ti、Ce的添加可以显著改善Cu/Al火焰钎焊接头力学性能和显微组织,Zn-22Al-0.03Ti和Zn-22Al-0.05Ce所得Cu/Al接头剪切强度较Zn-22Al接头分别提高了17.4%和23.6%;钎焊过程中Cu侧界面处先后发生两个反应: Cu Zn CuZn和9Cu+4Al Cu9Al4,Ti、Ce的添加促使钎缝中条块状Cu9Al4相转变为颗粒状,从而提高了Cu/Al接头的剪切强度;Cu/Al钎焊接头断裂形式为韧性断裂,接头断面处有明显的韧窝和化合物颗粒,Ti、Ce的添加可以使韧窝的分布更细小均匀,并促使断裂位置由靠近界面化合物处转移至钎缝处。
     采用高温时效试验模拟了Cu/Al钎焊接头的老化过程,研究了该过程中接头力学性能和显微组织的演化过程。时效过程中,接头剪切强度随时效时间的延长逐渐降低,但Zn-22Al-0.03Ti和Zn-22Al-0.05Ce接头的剪切强度始终高于Zn-22Al接头;期间还伴随着Cu侧界面化合物厚度的逐渐增加,其结构逐渐由Cu9Al4/CuZn转变为Cu9Al4/CuAl/CuZn,并最终转变为ε/Cu9Al4/CuAl/CuZn;Ti、Ce的添加降低了界面化合物的生长速率,并使Cu9Al4相的扩散激活能由76.9kJ/mol分别升高至83.9kJ/mol和87.6kJ/mol,同时还降低了其粗化通量,有利于接头性能的保持;时效时,钎缝处Cu9Al4相颗粒逐渐长大,分析认为是由于颗粒体积不同所导致的Cu原子浓度差异所致;时效后期,接头的断裂形式逐渐由韧性断裂转变为脆性断裂。
     研究了Ti、Ce的添加对Zn-22Al钎料在中性3.5wt.%NaCl溶液中腐蚀速率的影响,采用动电位扫描法和交流阻抗法对不同钎料的电化学腐蚀行为进行了研究。结果表明,Ti、Ce的添加有效降低了Zn-22Al钎料的腐蚀速率;当Ti、Ce的含量分别为1wt.%和0.5wt.%时,钎料的腐蚀电流密度由28.82μA cm-2分别减少至1.09μA cm-2和9.06μA cm-2,其交流阻抗也有明显增加;Ti、Ce的添加可以提高钎料表面腐蚀形貌的完整程度,而Cu/Al钎焊接头的中性盐雾试验则表明Ti、Ce的添加可以有效延缓其力学性能的衰减速率。
The Cu/Al brazed joint is increasingly used to the equipment manufacturing. Zn-22Al fillermetal is more suitable for the Cu/Al automatic torch brazing than some other kinds of Zn-Al fillermetals, because the melt range of Zn-22Al is compatible with CsF-AlF3flux. However, there aresome problems when Zn-22Al alloy is applied to Cu/Al aotumatic torch brazing, such as the poorspreadability on the Cu substrate and the great tendency to form intermetllic compounds (IMCs) withCu atom. Moreover, there are few reports about the creep deformation resistance of the Zn-22Al fillermetal, the IMC evolution law of the aged Cu/Al brazed joint as well as the corrosion resistance of theCu/Al joint. In order to improve the brazability of Zn-22Al filler metal and the properties of Cu/Albrazed joint, trace element Ti or Ce was added into the Zn-22Al alloy. The effect of adding elementson the properties and microstructures of Zn-22Al filler metal and Cu/Al brazed joints was studied inthis dissertation. The action mechanisms of two elements were also discussed in this study.
     The reisistance test indicated that the resistivity of Zn-22Al filler metal increased with the Ticontent increased but decreased with the addition of Ce. The differential scanning calorimetry testrevealed that adding Ti increased the solidus and liquidus temperature as well as the melting range.The antioxidant capacity of Zn-22Al alloy increased significantly with0.03wt.%Ti or0.05wt.%Ceaddition, but the excessive addition of Ti or Ce deteriorated the oxidation resistance of filler metal.
     The Zn-22Al alloy showed finer and more uniform microstructure with trace element Ti or Ceaddition. Ti atoms preferentially reacted with Al atoms to form TiAl3compound during thesolidification. The primary TiAl3compounds played a role as the nucleation sites of η-Zn phases,which translated the dendritic η-Zn to snowflake; Ce combined with Al, Zn to form Ce-(Al, Zn)compounds, which not only played a role as the nucleation sites but also existed in the dendrite arm torestrain the growth of η-Zn. However, excessive Ce-(Al, Zn) compound was found in the filler metalwhen Ce was added up to0.15wt.%. The spread area of Zn-22Al filler metal on Cu and Al substratescan be significantly improved when the addition amount of Ti or Ce was0.01~1wt.%and0.03~0.15wt.%respectively.
     The elastic modulus, indentation hardness, and creep stress exponent n of Zn-22Al,Zn-22Al-0.03Ti, Zn-22Al-1Ti, Zn-22Al-0.05Ce, and Zn-22Al-0.5Ce filler metals were measured bynanoindentation at room temperature. The results indicated that the elastic modulus and indentationhardness of alloys increased when increased the content of Ti or Ce. The creep stress exponent n of Zn-22Al, Zn-22Al-0.03Ti, Zn-22Al-1Ti, Zn-22Al-0.05Ce, and Zn-22Al-0.5Ce is in the range of24.72~27.10,33.11~38.14,28.17~33.21,32.63~36.70, and28.31~32.32respectively when theloading rate is0.5,1,2.5,5,10mN/s with a constant load50mN. Moreover, the creep stress exponentn is in the range of25.69~28.35,32.45~38.45,29.47~34.64,34.07~37.09, and29.67~32.09when theload is50,80,100,200,300mN with a constant loading rate2.5mN/s. These reinforced propertieswere attributed to the strengthen effect of TiAl3or Ce-(Al, Zn) IMC particles.
     The Cu/Al brazed joints showed higher shear strength and more refined microstructure with theappropriate addition of Ti or Ce. The shear strength of Cu/Al joints brazed with Zn-22Al-0.03Ti,Zn-22A-0.05Ce were81.0MPa and85.3MPa, which improved17.4%and23.6%respectivelycompared with the joint brazed with Zn-22Al alloy. During brazing, Cu substrate reacted with fillermetal as Cu Zn CuZnand followed by9Cu+4Al Cu9Al4at the interface. Themorphology of Cu9Al4phase changed from bulk to granule due to the addition of Ti or Ce. Thefracture type of Cu/Al brazed joint was ductile fracture, and some IMC particles were found at thebottom of dimples. These dimples became narrower and without contained any IMC particles with theTi or Ce addition, which implied that the fracture sites changed from the interface layer to brazingseam.
     Accelerated aging test was carried out at200℃, the mechanical properties and microstructures ofthe Cu/Al joints at isothermal aging were studied in this research. The shear strength of all Cu/Albrazed joints decreased with increasing the aging time, the joints brazed with Zn-22Al-0.03Ti andZn-22Al-0.05Ce constantly possessed higher shear strength than those joints brazed with Zn-22Alfiller metal throughout the aging treatment. The thickness of the intermetallic compounds layerincreased as the aging time, and the interface structure changed from Cu9Al4/CuZn toCu9Al4/CuAl/CuZn and finally to ε/Cu9Al4/CuAl/CuZn. The addition of Ti or Ce can reduce thegrowth rate of IMC layer as well as the ripening flux of Cu9Al4phase. Moreover, the diffusionactivation energy of Cu9Al4phase increased from76.9kJ/mol to83.9kJ/mol and87.6kJ/mol with the0.03wt.%Ti and0.05wt.%Ce addition respectively. It is found that the coarsening of Cu9Al4existedin the brazing seam was dominated by the concentration gradient of Cu atom which caused by thevolume difference among Cu9Al4particles. The fracture type changed from ductile fracture to brittlefracture during later aging.
     The effect of Ti or Ce on the corrosion rate of Zn-22Al in the neutral3.5wt.%NaCl solution wasstudied in this research. Potentiodynamic method and electrochemical impedance spectroscopy werecarried out to study the electrochemical corrosion behaviors of filler metals in3.5wt.%NaCl solution. The results showed that the corrosion rate of Zn-22Al alloy significantly reduced with the Ti or Ceaddition. The corrosion current density decreased from28.82μA cm-2to1.09μA cm-2and9.06μA cm-2when the content of Ti or Ce increased from0wt.%to1wt.%and0.5wt.%respectively.The electrochemical impedance spectroscopy and the integrity of corrosion morphology of Zn-22Alfiller metal significantly increased with the Ti or Ce addition. The salt spray test indicated that thedecay rate of Cu/Al joints shear strength reduced when the Zn-22Al-xTi or Zn-22Al-xCe was appliedto brazing Cu and Al.
引文
[1]林尚扬,关桥.我国制造业焊接生产现状与发展战略研究[J].机械工人,2004,9(10):16~20.
    [2]刘会杰,沈俊军.铝/铜异种材料的焊接研究[J].焊接,2009,3:14~18.
    [3]夏春智,李亚江,王娟. Cu/Al异种金属连接的研究现状[J].焊接,2008,1:17~20.
    [4]黄伯云.我国有色金属材料现状及发展战略[J].中国有色金属学报,2004,14S1(5):122~127.
    [5]中国机械工程学会焊接学会.焊接手册[M].北京:机械工业出版社,2008
    [6]赵丽敏.镁合金AZ31/铝合金6061异种金属接触反应钎焊研究,[博士学位论文].大连:大连理工大学,2010.
    [7] Mai T A, Spowage A C. Characterisation of dissimilar joints in laser welding of steel-kovalcopper steel and copper-aluminium[J]. Materials Science and Engineering A,2004,374(1-2):224~233.
    [8] Rajan K, Wallach E R. A transmission electron microscopy study of intermetallic formation inaluminium-copper thin-film couples [J]. Journal of Crystal Growth,1980,49(2):297~302.
    [9]里亚博夫B P.铝及铝合金与其他金属的焊接[M].北京:宇航出版社,1990.
    [10]董丰波.铝/铜异种材料的搅拌摩擦焊工艺研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [11] Baker H. ASM Handbook Volume3: Alloy Phase Diagrams[M]. ASM International,1992.
    [12] Xue P, Xiao B L, Ni D R, et al. Enhanced mechanical properties of friction stir weldeddissimilar Al-Cu joint by intermetallic compounds[J]. Materials Science and Engineering,2010,(A527):5723~5727.
    [13] Yilba B S, Sahin A Z, Kahraman N, et al. Friction welding of St-A1and A1-Cu materials[J].Journal of Materials Processing Technology,1995,49(3-4):431-443.
    [14] Sahin M. Joining of aluminium and copper materials with friction welding[J]. InternationalJournal of Advanced Manufacturing Technology,2010,49(5-8):527~534.
    [15] Ochi H, Ogawa K, Yamamoto Y, et al. Formation of Intermetallic Compounds inFriction-Welded Joint of Aluminum Alloys to Copper and its Influence on Joint Efficiency[J].Quarterly Journal of the Japan Welding Society,2003,21(3):381~388.
    [16] Toshio E, Kenji I, Naofumi A. Diffusion Welding of Copper to Aluminum[J]. Transactions ofJoining and Welding Research Institute,1979,8(1):77~84.
    [17]孟胶东,曲文卿,庄鸿寿. Al-Cu双金属复合结构的扩散连接试验研究[J].材料工程,2003,1:34~37.
    [18] Cheng X, Bai B, Gao Y, et al. Microstructural characterization of the Al/Cu/steel diffusionbonded joint[J]. Rare Metals,2009,28(5):478~481.
    [19]李亚江,吴会强,陈茂爱,等. Cu/Al真空扩散焊接头显微组织分析[J].中国有色金属学报,2001,11(3):424~427.
    [20] Li Y J, Wu H Q, Chen M A, et al. Numeric simulation of thickness of intermetallic compoundsin interface zone of diffusion bonding for Cu and Al[J]. Transactions of Nonferrous MetalsSociety of China,2001,11(6):908~911.
    [21] Murr L E, Li Y, Trillo E A, et al. Fundamental issues and industrial applications of friction-stirwelding[J]. Emerald journals,2000,5:37~47.
    [22] Nandan R, Debroy T, Bhadeshiab H K D H. Recent advances in friction-stir welding Process,weldment structure and properties[J]. Progress in Materials Science,2008,53(6),980~1203.
    [23] Ouyang J H, Yarrapareddy E, Kovacevic R. Microstructural evolution in the friction stir welded6061aluminum alloy (T6-temper condition) to copper[J]. Journal of Materials ProcessingTechnology,2006,172(1):110~122.
    [24] Genvois C, Girard M, Huneau B, et al. Interfacial Reaction during Friction Stir Welding of Aland Cu[J]. Metallurgical and Materials Transactions A,2011,42(8):2290~2295.
    [25] Liu H J, Shen J J, Zhou L, et al. Microstructural characterisation and mechanical properties offriction stir welded joints of aluminium alloy to copper[J]. Science and Technology of Weldingand Joining,2011,16(1):92~99.
    [26] Abdollah-Zadeh A, Saeid T, Sazgari B. Microstructural and mechanical properties of frictionstir welded aluminum/copper lap joints[J]. Journal of Alloys and Compounds,2008,460(1-2):535~538.
    [27] Saeid T, Abdollah-Zadeh A, Sazgari B. Weldability and mechanical properties of dissimilaraluminum–copper lap joints made by friction stir welding[J]. Journal of Alloys and Compounds,2010,490(1-2):652~655.
    [28] Elrefaey A, Gouda M, Takahashi M, et al. Characterization of aluminum/steel lap joint byfriction stir welding[J]. Journal of Materials Engineering and Performance,2005,14(1):10~17.
    [29] Marya M, Marya S. Interfacial microstructures and temperatures in aluminium–copperelectromagnetic pulse welds[J]. Science and Technology of Welding and Joining,2004,9(6):541~547.
    [30] Watanabe M, Kumai S, Aizawa T. Interfacial Microstructure of Magnetic Pressure SeamWelded Al-Fe, Al-Ni and Al-Cu Lap Joints[J]. Materials Science Forum,2006,519-521:1145~1150.
    [31] Gulenc B. Investigation of interface properties and weldability of aluminum and copper platesby explosive welding method[J]. Materials and Design,2008,29(1):275~278.
    [32] Abbasi M, Karimi-taheri A, Salehi M T. Growth rate of intermetallic compounds in Al/Cubimetal produced by cold roll welding process[J]. Journal of Alloys and Compounds,2001,319(1-2):233~241.
    [33] Naka M, Hafez K M. Applying of ultrasonic waves on brazing of alumina to copper usingZn-Al filler alloy[J]. Journal of Materials Science,2003,38(16):3491~3494.
    [34] Hamilton N R, Wood J, Galloway A, et al. The metallurgy, mechanics, modelling andassessment of dissimilar material brazed joints[J]. Journal of Nuclear Materials,2013,432(1-3):42~51.
    [35]邹禧.钎焊[M].北京:机械工业出版社,1989.
    [36]刘晓英. Sn基无铅复合钎料的研究,[博士学位论文].大连:大连理工大学,2010.
    [37]孙德超,胡伟. Al-Cu接头钎焊研究[J].焊接技术,2002,31(2):18~19.
    [38]夏春智,李亚江,王娟.基于Sn-Pb钎料的Cu/Al钎焊接头组织结构分析[J].焊接,2009,3:38~41.
    [39]赵越,邹增大,王岩.冰箱制冷系统铜铝管的连接方法[J].焊接,2003,9:5~8.
    [40] Xia C Z, Li Y J, Wang J, et al. Microstructure and phase constitution near interface of Cu/Alvacuum brazing[J]. Materials Science and Technology,2007,23(7):815~818.
    [41]康宁.铝铜钎焊用Sn-Zn基无铅钎料的研究,[硕士学位论文].大连:大连理工大学,2012.
    [42] Kang N, Huang M L, Zhou Q, et al. Mechanical Properties and Electrochemical CorrosionBehavior of Al-Cu Solder Joint with Sn-Zn Based Solder[C].2010International Conference onElectronic Packaging Technology and High Density Packaging,2010:422~428.
    [43] Huang M L, Kang N, Zhou Q, et al. Efect of Ni Content on Mechanical Properties andCorrosion Behavior of Al/Sn–9Zn–xNi/Cu Joints[J]. Journal of Materials Science andTechnology,2012,28(9):844~852.
    [44]何鹏,周世明,冯吉才.铜-铝合金CPU散热器钎焊技术研究[J].材料科学与工艺,2006,14(5):543~546.
    [45] Xia C Z, Li Y J, Puchkov U A. Microstructure and phase constitution near the interface ofCu/Al vacuum brazing using Al–Si filler metal[J]. Vacuum,2008,82(8):799~804.
    [46] Xia C Z, Li Y J, Puchkov U A. Crack analysis near vacuum brazing interface of Cu/Aldissimilar materials using Al–Si brazing alloy[J]. Materials Science and Technology,2009,25(3):383~387.
    [47] Shinozaki K, Koyama K. Development of Al/Cu dissimilar brazing joint controlled form ofintermetallic compound[J]. Materials Science Forum,2007,539-543:4075~4080.
    [48]薛松柏,董健,吕晓春. Al/Cu管异种材料火焰钎焊连接[J].焊接,2003,12:23~25.
    [49]薛松柏,陈文华,吕晓春. LY12铝合金氧化膜与钎剂的反应机制[J].中国有色金属学报,2004,14(4):543~547.
    [50]张满. Al、Ag对Zn-Al钎料性能的影响及相关机理研究,[博士学位论文].南京:南京航空航天大学,2012.
    [51]刘正林.铝铜钎焊用Zn-Al钎料及其焊接工艺研究,[硕士学位论文].长沙:中南大学,2009.
    [52]刘正林,杨凯珍,尹登峰.铝铜钎焊用Zn-Al钎料的研究[J].热加工工艺,2009,38(11):123~128.
    [53] Ber L B. Accelerated artificial ageing regimes of commercial aluminum alloys. II: Al–Cu,Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys[J]. Materials Science and Engineering: A,2000,280(1):91~96.
    [54] Tana C W, Dauda A R, Yarmob M A. Corrosion study at Cu–Al interface in microelectronicspackaging[J]. Applied Surface Science,2002,191(1-4):67~73.
    [55] Chen C Y, Chen H L, Hwang W S. Influence of Interfacial Structure Development on theFracture Mechanism and Bond Strength of Aluminum/Copper Bimetal Plate[J]. MaterialsTransactions,2006,47(4):1232~1239.
    [56] Chen C Y, Hwang W S. Efect of Annealing on the Interfacial Structure of Aluminum-CopperJoints[J]. Materials Transactions,2007,48(7):1938~1947.
    [57] Braunovi M. Evaluation of Different Platings for Aluminum-to-Copper Connections[J]. IeeeTransactions on Components, Hybrids, and Manufacturing Tecnology,1992,15(2):204~215.
    [58] Braunovi M, Aleksandrov N. Intermetallic Compounds at Aluminum-to-Copper ElectricalInterfaces: Effect of Temperature and Electric Current[J]. Ieee Transactions on Components,Packaging, and Manufacturing Technology-Part A,1994,17(1):78~85.
    [59] Lee W B, Bang K S J, Seung B. Effects of intermetallic compound on the electrical andmechanical properties of friction welded Cu/Al bimetallic joints during annealing[J]. Journal ofAlloys and Compounds,2005,390(1-2):212~219.
    [60] Kim H J, Lee J Y, Paik K W, et al. Effects of Cu/Al Intermetallic Compound (IMC) on CopperWire and Aluminum Pad Bondability[J]. Ieee Transactions on Components and PackagingTechnologies,2003,26(2):367~374.
    [61] Hang C J, Wang C Q, Mayer M, et al. Growth behavior of Cu/Al intermetallic compounds andcracks in copper ball bonds during isothermal aging[J]. Microelectronics Reliability,2008,48(3):416~424.
    [62]张玉明.薄壁铜铝管电阻压力焊界面的微观结构及耐腐蚀性能研究,[硕士学位论文].青岛:中国海洋大学,2009.
    [63] Farrell A J, Norton B, Kennedy D M. Corrosive effects of salt hydrate phase change materialsused with aluminium and copper[J]. Journal of Materials Processing Technology,2006,175(1-3):198~205.
    [64] Mathieu A, Shabadi R, Deschamps A. Dissimilar material joining using laser (aluminum tosteel using zinc-based filler wire)[J], Optics and Laser Technology,2007,39(3):652~661.
    [65] Xu Z W, Yan J C, Zhang B Y. Behaviors of oxide film at the ultrasonic aided interactioninterface of Zn–Al alloy and Al2O3p/6061Al composites in air[J]. Materials Science andEngineering A,2006,415(1-2):80~86.
    [66] Liu L M, Tan J H, Liu X J. Reactive brazing of Al alloy to Mg alloy using zinc-based brazingalloy[J]. Materials Letters,2007,61(11-12):2373~2377.
    [67] Urena A L, Gil E, Escriche J M, et al. High temperature soldering of SiC particulate aluminiummatrix composites (series2000) using Zn–Al filler alloys[J]. Science and Technology ofWelding and Joining,2001,6(1):1~11.
    [68] Xu Z W, Yan J C, Wang C, et al. Substrate oxide undermining by a Zn–Al alloy during wettingof alumina reinforced6061Al matrix composite[J]. Materials Chemistry and Physics,2008,112(3):831~837.
    [69] Moshier W C, Ahearn J S, Cooke D C. Interaction of AI-Si, AI-Ge, and Zn-Al eutectic alloyswith SiC/AI discontinuously reinforced metal matrix composites[J]. Journal of MaterialsScience,1987,22(1):115~122.
    [70]张启运,吴轮中.中温铝钎焊[J].热处理,1996,4:60~64.
    [71]安百刚,张学元,韩恩厚.铝和铝合金的大气腐蚀研究现状[J].中国有色金属学报,2001,11(2):11~15.
    [72]韩万书,林千善,刘玉生,等.少量金属元素对Al-Zn共晶合金钎料抗腐蚀性能的影响[J].中国腐蚀与防护学报,1982,2(2):59~63.
    [73]彭智辉,余旭凡,韦家弘.铜对Zn-Al基软钎料性能的影响[J].中南工业大学学报,1998,29(3):259~261.
    [74]虞觉奇,陈永. Y-2型中温锌基铝钎料的研究[J].焊接,1997(8):11~13.
    [75]张满,薛松柏,戴玮,等. Ag元素含量对Zn-Al钎料性能影响[J].焊接学报,2010,31(10):73~76.
    [76]张满,薛松柏,戴玮,等. Al元素含量对Zn-Al钎料性能影响[J].焊接学报,2010,31(9):93~96.
    [77]慕东,魏晓伟. Zn-Al-Cu-Mg钎料对碳钢钎焊润湿性研究[J].焊接,2005,2:31~33.
    [78]鲍俊娟,高志广,李川,等.2A50铝合金钎焊钎料与钎剂的选择[J].机械工程材料,2006,30(12):40~43.
    [79]庞绍平,石云宝,李军,等.铈对Zn-22%Al减振合金组织和力学性能的影响[J].中国稀土学报,2000,18(4):344~346.
    [80]庞绍平,黄元峰,石云宝,等.镧对Zn-22%Al减振合金组织和力学性能的影响[J].中国有色金属学报,2001,11(1):68~71.
    [81] Liu G L, Li R D. Influence of RE and Impurity Elements on the Intergranular Corrosion ofZA27Alloys[J]. Chinese Journal of Chemical Physics,2004,17(5):649~651.
    [82]逯允海,赵品,沈焕祥.添加Mn、Ni对ZA27合金组织与性能的影响[J].中国有色金属学报,2005,15(12):1960~1966.
    [83] Li Y Y, Leo-Ngai T W, Wei X, et al. Effects of Mn content on the tribological behaviors ofZn-27%Al-2%Cu alloy[J]. Wear,1996,198(1-2):129~135.
    [84]张得宇.高机械压力和Ti对锌铝二元合金凝固的影响,[硕士学位论文].沈阳:沈阳工业大学,2012.
    [85]任明星.微米尺度构件金属型铸造成形规律研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [86]任明星,李邦盛,杨闯,等.纳米压痕法测定微铸件室温蠕变速率敏感指数[J].金属学报.2008,44(3):272-276.
    [87] Li B S, Ren M X, Yang C, et al. Microstructure of Zn-Al4alloy microcastings by microprecision casting based on metal mold[J]. Transactions of Nonferrous Metals Society of China,2008,18(2):327~332.
    [88]李邦盛,任明星,王振龙,等.微尺度铸件室温蠕变性能的微尺度效应[J].机械工程学报,2009,45(2):178~183.
    [89] Chinh N Q, Csanádi T, Gy ri T, et al. Strain rate sensitivity studies in an ultrafine-grainedAl-30wt.%Zn alloy using micro-and nano-indentation[J]. Materials Science and Engineering A,2012,543(2):117-120.
    [90]刘茜,陈伟,刘庆锋,等.组合材料芯片技术应用及Zn-Al合金镀层材料优选[J].空间科学学报,2009,29(1):10-16.
    [91] Huang Y, Langdon T G. Characterization of deformation processes in a Zn-22%Al alloy usingatomic force microscopy[J]. Journal of Materials Science,2002,37(23):4993~4998.
    [92]国家技术监督局, GB/T351,金属材料电阻系数测量方法.北京:中国标准出版社,1995.
    [93] Wang H, Xue S B, Chen W X. Effects of Ga-Ag, Ga-Al and Al-Ag additions on the wettingCharacteristics of Sn-9Zn-X-Y lead-free solders[J]. Journal of Materials Science: Materials inElectronics.2009,20(12):1239-1246.
    [94] Chen X, Hu A M, Li M, et al. Study on the properties of Sn–9Zn–xCr lead-free solder[J].Journal of Alloys and Compounds,2008,460(1-2):478~484.
    [95]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T11364-2008,钎料润湿性试验方法.北京:中国标准出版社,2008.
    [96] Huang, M L, Wu C M L, Wang L. Creep resistance of tin-based lead-free solder alloys[J].Journal of Electronic Materials,2005,34(11):1373~1377.
    [97] Mayo M J, Nix W D. A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38wt%Pb[J]. Acta Metallurgica Sinica,1988,36(8):2183~2192.
    [98] Lucas B N, Oliver W C. Indentation power-law creep of high-purity indium[J]. Metallurgicaland Materials Transactions A,1999,30(3):601~610.
    [99]陈吉,汪伟,卢磊,等.纳米压痕法测量Cu的室温蠕变速率敏感指数[J].金属学报,2001,37(11):1179~1183.
    [100]谭孟曦.利用纳米压痕加载曲线计算硬度-压人深度关系及弹性模量[J].金属学报,2005,41(10):1020~1024.
    [101]王飞,徐可为.晶粒尺寸与保载载荷对Cu膜纳米压入蠕变性能的影响[J].金属学报,2004,40(10):1032~1036.
    [102]王俭辛.稀土Ce对Sn-Ag-Cu和Sn-Cu-Ni钎料性能及焊点可靠性影响的研究,[博士学位论文].南京:南京航空航天大学,2009.
    [103]中华人民共和国冶金工业部. GB10124-88,金属材料实验室均匀腐蚀全浸试验方法.北京:中国标准出版社,1988.
    [104]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T24196-2009,金属和合金的腐蚀电化学试验方法恒电位和动电位极化测量导则.北京:中国标准出版社,2009.
    [105]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,2008.
    [106]薛松柏,顾文华.钎焊技术问答[M].北京:机械工业出版社,2007.
    [107]国家标准化管理委员会. GB/T11363-2008,钎焊接头强度试验方法.北京:中国标准出版社,2008.
    [108] Kang S, Shih D Y, Leonard D, et al. Controlling Ag3Sn Plate Formation InNear-Ternary-Eutectic Sn-Ag-Cu Solder by Minor Zn Alloying[J]. JOM: Journal of TheMinerals, Metals and Materials Society,2004,56(6):34~38.
    [109] Wang M C, Yu S P, Chang T C, et al. Kinetics of intermetallic compound formation at91Sn-8.55Zn-0.45Al lead-free solder alloy/Cu interface[J]. Journal of Alloys and Compounds,2004,381(1~2):162~167.
    [110]国家技术监督局. GB/T10125-1997,人造气氛腐蚀试验盐雾试验.北京:中国标准出版社,1997.
    [111] Kanibolotsky D S, Bieloborodova O A, Kotova N V, et al. Thermodynamic Properties of LiquidAl–Si and Al–Cu Alloys[J]. Journal of Thermal Analysis and Calorimetry,2002,70(3):975~983.
    [112] Zhou X W, Hsu T Y. Thermodynamics of the martensitic transformation in Cu-Al alloys[J].Acta Metallurgica et Materialia,1991,39(6):1041-1044.
    [113]冯瑞.金属物理学第四卷[M].北京:科学出版社,1998.
    [114] Tsao L C, M.J. Chiang, W.H. Lin, et al. Effects of zinc additions on the microstructure andmelting temperatures of Al–Si–Cu filler metals[J]. Materials Characterization,2002,48(4):341-346.
    [115] Kim K S, Huh S H, Suganuma K. Effects of Fourth Alloying Additive on Microstructures andTensile Properties of Sn-Ag-Cu Alloy and Joints With Cu[J]. Microelectronics Reliability,2003,43(2):259~267.
    [116] Lin L W, Song J M, Lai Y S, et al. Alloying Modification of Sn-Ag-Cu Solders by Manganeseand Titanium[J]. Microelectronics Reliability,2009,49(3):235~241.
    [117]皋利利.稀土Pr和Nd对SnAgCu无铅钎料组织与性能影响研究,[博士学位论文].南京:南京航空航天大学,2012.
    [118] Wang H, Xue S B, Chen W X. Effects of Ga, Al, Ag, and Ce multi-additions on the wettingcharacteristics of Sn-9Zn lead-free solder[J]. Rare Metals.2009,28(6):1~6.
    [119] Cho S W, Yi Y J, Kang S J, et al. Thermal oxidation study on lead-free solders of Sn-Ag-Cu andSn-Ag-Cu-Ge [J]. Advanced Engineering Materials,2006,8(1-2):111~114.
    [120] Wang J X, Xue S B, Han Z J, et al. Effects of rare earth Ce on microstructures, solderability ofSn-Ag-Cu and Sn-Cu-Ni solders as well as mechanical properties of soldered joints [J]. Journalof alloys and compounds,2009,467(1-2):219~226.
    [121] Zhang L, Xue S B, Gao L L, et al. Microstructure and creep properties of Sn-Ag-Cu lead-freesolders bearing minor amount of rare earth Cerium[J]. Soldering and Surface MountTechnology,2010,22(2):30~36.
    [122]孙泉胜.微量元素Bi、Ti对Zn合金组织与性能的影响,[硕士学位论文].长沙:中南大学,2011.
    [123] Krajewski W. The Effect of Ti Addition on Properties of Selected Zn-A1Alloys[J]. Physicastatus Solidi (a),1995,147(2):389~399.
    [124]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,2007.
    [125]陈念贻.键参数函数及其应用[M].北京:科学出版社,1976.
    [126]尚晶.镁/铝异种金属焊接金属间化合物产生与性能控制研究,[博士学位论文].南京:南京理工大学,2013.
    [127] Chen C M, Chen C H. Interfacial Reactions between Eutectic SnZn Solder and Bulk orThin-Film Cu Substrates[J]. Journal of Electronic Materials,2007,36(10):1363~1371.
    [128] Ma D, Wang W D, Lahiri S K. Scallop formation and dissolution of Cu-Sn intermetalliccompound during solder reflow[J]. Journal of applied physics,2002,91(5):3312~3317.
    [129] Sharif A, Chan Y C. Effect of substrate metallization on interfacial reactions and reliability ofSn-Zn-Bi solder joints[J]. Microelectronic Engineering,2007,84(2):328~335.
    [130] Wang H Q, Gao F, Ma Xin, et al. Reactive wetting of solders on Cu and Cu6Sn5/Cu3Sn/Cusubstrates using wetting balance[J]. Scripta Materialia,2006,55(9):823~826.
    [131]刘汉城,汪正平,李宁成,等.电子制造技术[M].北京:化学工业出版社,2005.
    [132] Zhang L, Xue S B, Gao L L, et al. Development of Sn-Zn lead-free solders bearing alloyingelements[J]. Journal of Materials Science: Materials in Electronics,2010,21(1):1~15.
    [133] Chen Z G, Shi Y W, Xia Z D. Constitutive Relations on Creep For SnAgCuRE Lead-FreeSolder Joints[J]. Journal of Electronic Materials,2004,33(9):964~971.
    [134] Che F X, Zhu W H, Poh E S W, et al. Creep Properties of Sn-1.0Ag-0.5Cu Lead-Free SolderWith Ni Addition[J]. Journal of Electronic Materials,2011,40(3):344~354.
    [135] Zhang N, Yang F Q, Shi Y W, et al. Compression Creep of63Sn37Pb Solder Balls[J]. ActaMaterialia,2011,59(8):3156~3163.
    [136] Mayo M J, Siegel R W, Liao Y X, et al. Nanoindentation of nanocrystalline ZnO[J]. Journal ofMaterials Research,1992,7(4):973~979.
    [137] Liu C Z, Chen J. Nanoindentation of lead-free solders in microelectronic packaging[J].Materials Science and Engineering A,2007,448(1-2):340~344.
    [138] Han Y D, Jing H Y, Nai S M L, et al. Temperature Dependence of Creep and Hardness ofSn-Ag-Cu Lead-Free Solder[J]. Journal of Electronic Materials,2010,39(2):223~229.
    [139] Oliver W C, Pharr G M, An improved technique for determining hardness and elastic modulususing load and displacement sensing indentation experiments[J]. Journal of Materials Research,1992,7(6):1564~1583.
    [140]张国尚.80Au/20Sn钎料合金力学性能研究,[博士学位论文].天津:天津大学,2010.
    [141] Zhang L, Xue S B, Han Z J, et al. Mechanical properties of fine pitch devices soldered jointsbased on creep model[J]. Chinese Journal of Mechanical Engineering,2008,21(6):82~85.
    [142] Han Y D, Jing H Y, Nai S M L, et al. A modified constitutive model for creep ofSn–3.5Ag–0.7Cu solder joints[J]. Journal of Physics D: Applied Physics,2009,42(12):1~8.
    [143]韩永典. Ni涂层碳纳米管增强Sn-Ag-Cu无铅钎料的可靠性研究,[博士学位论文].天津:天津大学,2009.
    [144] Chudoba T, Richter F. Investigation of creep behaviour under load during indentationexperiments and its influence on hardness and modulus results[J]. Surface and CoatingsTechnology,2001,148(2-3):191~198.
    [145] Zhang G S, Jing H Y, Xu L Y, et al. Creep behavior of eutectic80Au/20Sn solder alloy[J].Journal of Alloys and Compounds,2009,476(1-2):138~141.
    [146]王飞,徐可为.加载速率对Al膜纳米压人蠕变性能的影响[J].金属学报,2004,40(11):1138~1142.
    [147]任明星,李邦盛,杨闯,等.纳米压痕法测定微铸件硬度及弹性模量[J].中国有色金属学报,2008,18(2):231~236.
    [148]林三宝,宋建岭,杨春利,等.铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析[J].金属学报,2009,45(10):1211~1219.
    [149] Lin S B, Song J L, Yang C L, et al. Brazability of dissimilar metals tungsten inert gas buttwelding–brazing between aluminum alloy and stainless steel with Al–Cu filler metal[J].Materials and Design,2010,31(5):2637~2642.
    [150] Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders andCu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys andCompounds,2012,510(1):38~45.
    [151]刁慧,王春青,赵振清,等. SnCu钎料镀层与Cu/Ni镀层钎焊接头的界面反应[J].中国有色金属学报,2007,17(3):410~416.
    [152]肖纪美.合金能量学[M].上海:上海科学技术出版社,1985.
    [153]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社,1996.
    [154]章小鸽.锌和锌合金的腐蚀(一)[J].腐蚀与防护,2006,27(1):41~47.
    [155]章小鸽.锌和锌合金的腐蚀(二)[J].腐蚀与防护,2006,27(2):98~108.
    [156] Bobica B, Bajatb J, Acimovic-Pavlovic Z, et al. The effect of T4heat treatment on themicrostructure and corrosion behaviour of Zn27Al1.5Cu0.02Mg alloy[J]. Corrosion Science,2011,53(1):409~417.
    [157] Osório W R, Freire C M A, Garcia A. Dendritic solidification microstructure affectingmechanical and corrosion properties of a Zn-4Al alloy[J]. Journal of Materials Science,2005,40(17),4493~4499.
    [158] Choudhury P, Das S. Effect of microstructure on the corrosion behavior of a zinc–aluminiumalloy[J]. Journal of Materials Science,2005,40(3):805~807.
    [159] Boshkov N. Galvanic Zn-Mn alloys-electrodeposition, phase composition, corrosion behaviourand protective ability[J]. Surface and Coatings Technology,2003,172(2-3):217~226.
    [160] Rosalbinoa F, Macci D. Influence of rare earths addition on the corrosion behaviour ofZn-5%Al (Galfan) alloy in neutral aerated sodium sulphate solution[J]. Electrochimica Acta,2007,52(24):7107~7114.
    [161]袁传军.铝、锌、镁合金电化学性能及机理研究,[博士学位论文].大连:大连理工大学,2009.
    [162]刘贵立,李荣德,郭玉福.稀土对ZA27合金晶间腐蚀影响的电子理论研究[J].化学学报,2006,64(16):1631~1634.
    [163] Wislei R, Amauri G. Secondary dendrite arm spacing and solute redistribution effects on thecorrosion resistance of Al-10wt%Sn and Al-20wt%Zn alloys[J]. Materials Science andEngineering,2006,420(1-2):179~186.