板栗糯性质地的物质基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
板栗(C. mollissima B1)糯性是人们最为关注的食用品质之一,但来自不同品种及产区板栗间的糯性质地存在较大差异,并缺乏客观的板栗糯性质地评价方法。本文选取3个不同品种群9个产区共24个主栽品种板栗为试材,比较了不同品种间糯性质地的差异;研究了板栗种仁组织形态结构、物质组成和理化性质与糯性的关系;通过观察不同糯性板栗淀粉形态特征,分析了淀粉特性与糯性质地的关系;应用主成份分析讨论了糯性质地各影响因素间的相关性,构建了板栗糯性评价方法,旨在通过板栗糯性质地构成物质建立板栗糯性质地评价体系,为板栗选种育种和深加工利用提供理论依据。主要研究结果如下
     1、板栗品种不同,种仁糯性水平不同,并具有一定的区域特性。板栗种仁糯性质地与品种密切相关,“北方品种群”板栗普遍有较高的糯性水平,来自安徽(“中间类型品种群”)和湖南(“南方品种群”)产:区的板栗糯性水平较低。
     2、板栗糯性水平与淀粉粒结构有关。板栗熟化后,种仁组织细胞内的淀粉粒膨胀糊化,呈蜂窝状结构,“高糯性”与“低糯性”板栗熟化后蜂窝状结构中的蜂窝孔致密程度不同,存在组织形态差异。其中“高糯性”板栗组织的蜂窝孔相对较少,组织粘连在一起;而“低糯性”板栗组织的蜂窝孔数量多,形成类似于立体网状结构。“低糯性”组织结构较为松散,“高糯性”板栗组织结构相对紧密。这种组织形态差异是不同品种板栗呈现不同糯性口感质地的。
     3、淀粉是板栗质地构成的最基本要素。淀粉膨胀势和糊化特征值与种仁糯性感官评分呈显著相关性表明,淀粉的膨胀特性和糊化特性与板栗糯性紧密相连。进一步研宄表明,淀粉膨胀势大小与淀粉结晶度显著负相关,与支链淀粉碘蓝值、淀粉碘结合力以及支链淀粉/直链淀粉含量比值显著正相关;其糊化特征值与支链淀粉碘蓝值、全淀粉碘蓝值以及支链/直链淀粉含量比值有显著相关性。表明淀粉中的直链淀粉与支链淀粉构成比例及其各自的分子结构特性(结晶度、支链淀粉分支链长和直链淀粉链长分布)使板栗具有了最本质的糯性质地特性。研究证实,“高糯性”板栗淀粉普遍具有较低的结晶度和支链淀粉碘蓝值、较高的全淀粉碘蓝值和支链/直链淀粉比例;“低糯性”板栗则相反。支链淀粉分支化程度越高、直链淀粉链长越短、结晶度越低,板栗的基本糯性越强。
     4、蛋白质和脂肪在很大程度上通过与淀粉形成复合物对淀粉的膨胀、糊化和回生特性产生影响,进而显著影响板栗种仁的糯性质地。
     (1)种仁中的蛋白质含量以及淀粉含量与蛋白质含量的比值均与板栗糯性显著相关,与淀粉结合的蛋白质种类和含量在不同糯性等级板栗之间存在明显差异;而淀粉结合脂中的脂肪酸组成与板栗糯性评分关系密切,其中C16:0脂肪酸、C18:2脂肪酸以及C16脂肪酸/C18脂肪峻/支链淀粉/直链淀粉的比值与种仁糯性的关系更为显著。
     (2)脱脂、脱蛋白处理后板栗粉和板栗淀粉的膨胀、糊化、回生特性都发生了显著变化,表现为膨胀势显著升高、“糊化温度”降低和糊化“峰值时间”提前,在很大程度上蛋白质和脂质的存在限制了淀粉的膨胀与糊化。这种变化与品种密切相关,并具有明显的地域分布特性。“北方品种群”板栗粉及板栗淀粉通常具有更高的膨胀势水平、较低的“糊化温度”和“峰值时间”,容易膨胀和糊化。进一步研究表明,脱脂、脱蛋白板栗粉和板栗淀粉膨胀势和糊化特征值的变化与蛋白质含量、淀粉结合脂含量、淀粉结合脂中C16/C18脂肪峻比例以及饱和/不饱和脂肪酸比例之间存在显著相关性。可见,板栗粉和板栗淀粉的膨胀、糊化、回生特性显著受到种仁物质组成及其性质的影响,是各物质组成对种仁糯性质地协同作用的综合反映。通过改变淀粉、蛋白质、脂肪的组成可以有目的地改善板栗种仁食用品质和加工性状。
     5、内在外在因素综合作用使板栗种仁具有不同的糯性质地特性。基于24个与种仁糯性相关因子的重要性排序,构建了板栗种仁糯性质地多元评价方法,该方法对24个品种板栗糯性检验表明,19个板栗品种的糯性与感官评价结果相吻合,正确率达79%以上。表明已建立的板栗糯性质地数字模型预测水平高,能够比较客观、真实地反映板栗种仁的糯性水平,有较好的实用价值。
     本文首次对板栗糯性质地的物质基础进行系统研究,初步揭示板栗糯性质地构成的物质,提出了板栗糯性质地等级划分依据,初步建立了以板栗内外在因素为基础的糯性质地多元评价方法,这些工作为板栗产业从品种选育到精深加工利用提供了理论支持。
Waxy property is one of the most important edible quality of Chinese chestnut(Castanea mollissima Blume), and varies greatly according to its varieties and cultivated areas. To date no good method for evaluating the waxy property in chestnut has been set up as while. In this study,24 varieties of Chinese chestnut from 3 cultivar groups collected at 9 different cultivated areas were sampled to deal with the waxy texture. The objectives of this present study were:(1) to study the relationship between the morphological structure and composition substance of chestnut seeds and its waxy property; (2) to analyze the contribution of chestnut starch properties to waxy quality; (3) to use PCA (Principal Component Analysis) to discuss the correlation among factors that influencing waxy texture of chestnut; (4) to establish a PCA-based system that evaluated the waxy quality of chestnut. This study was the first to integrate the external and internal factors that affect the waxy property of chestnut together, and attempted to provide theoretical guide for the breeding and fine processing of chestnut. The following are main results.
     1. Waxy quality of chestnut depended greatly on its cultivar and cultivated areas. North Cultivar Group (NVG) in chestnut showed high waxy quality, whereas these varieties from Anhui and Hunan areas have poor waxy quality.
     2. The waxy level of chestnut was affected by its starch granule structure. The curing treatment resulted in chestnut starch granules to gelatinize and then form a cellular texture adhered together. The cellular structures differed between High Waxy Quality (HWQ) chestnut and Low Waxy Quality (LWQ) chestnut after curing due to honeycomb densification. Normally, the chestnuts with HWQ less honeycombed and starch granules adhered strongly. The chestnuts with LWQ produced more honeycomb with three-dimensional net structure. Differences in the structure of starch granules cured cause different varieties to have specific waxy texture.
     3. Starch properties contributed largely to the waxy texture of chestnut. The swelling power and pasting character of chestnut starch affected the waxy property based on sensory evaluation score. The swelling power of starch negatively correlated with its crystallinity, and positively correlated with Iodine Blue Value (IBV) of amylopectin. Iodine Combining Power (ICP) of Starch and amylopectin/amylase content ratio (AP/AM ratio). The pasting characteristic value of starch correlated with IBV of amylopectin, IBV of starch and AP/AM ratio. Basically, AP/AM ratio and crystallinity, branch chain length of amylopectin and chain length distribution of amylose were factors affecting the waxy quality of chestnut. Unlike the chestnut starch with LWQ, the chestnut starch with HWQ has lower crystallinity and IBV of amylopectin, higher IBV of starch and AP/AM ratio. Higher branching degree of amylopectin, shorter chain length of amylase and lower crystallinity higher waxy property chestnut has.
     4. Protein and fat were proved to be main substances affecting the waxy quality of chestnut throughout forming starch-protein or starch-fat complex that influenced the swelling and pasting properties of starch.
     (1) Waxy property significantly related to protein content and starch/protein content ratio stored in nuts. The types and contents of starch-associated-protein were obviously different due to waxy quality among varieties. There was close relationship between Sensory Evaluation Score (SES) of waxy quality and fatty acid (FA) composition, especially for starch-lipid of C16:0 FA, C18:2 FA and the ratio of C16/C18 and AP/AM.
     (2) The swelling and pasting properties of chestnut powder and nuts greatly changed after de-fate and de-protein treatments. De-fat and de-protein treatments caused chestnut starch to increase its swelling power.'Pasting temperature'decreased and 'Peak time'was shorter. The swelling and pasting of starch was dependant on the presence of protein and lipid. Moreover, the change in swelling and pasting was subjected to chestnut varieties and its cultivated areas. Chestnut powder and starch from NVG had higher swelling power, lower'Pasting temperature'and shorter'Peak time', easily swelling and pasting. In additions, the changes in swelling power and pasting characteristic value was significantly subjected to protein content, starch-lipid content, C16/C18 FA ratio and SFA/UFA ratio in starch-lipid. Thus, the swelling and pasting properties comprehensively were influenced by composition and property of substance. Edible quality and processing character of chestnut might be improved on purpose throughout the adjust of its starch, protein and lipid.
     5.24 internal and external factors were recognized intergratedly to cause chestnut to have different waxy property among varieties. A PCA-based system was established for evaluating the waxy texture property of chestnut. The waxy quality of 19 chestnut's varieties according to the PCA-based system coincided with that from sensory evaluation method, and the accuracy rate was more than 79%.
     6. In summary, this study was the first time to prove various internal and external factors to cause Chinese chestnut to have diversity in waxy quality. The diversity in waxy quality suggests that PCA-based system should be promising for the evaluation of chestnut waxy texture.
引文
1. Dong soon Suh, Zihua Ao, Jay lin Jane.淀粉结构及应用[J].广西轻工业,2005,4:27-29
    2. Jane J L.支链淀粉的结构及其对淀粉性质的影响[J].木薯精细化工,2002,(1):19-21
    3. Kobayshi S,et al.不同小麦品种支链淀粉结构的比较[J].国外农学—科类作物,1990,4:36-38
    4. Mecormick K M.膨胀势在选择小麦面条品质方面的应用[J].国外农学一麦类作物,1992,6:28-30
    5. 蔡丽明,高群玉.淀粉一脂类复合物的研究现状及展望[J].粮油加工,2007,2:85-87
    6. 蔡一霞,王维,朱智伟,等.不同类型水稻支链淀粉理化特性及其与米粉糊化特征的关系[J].中国农业科学2006,39(6):1122-1129
    7.曹卫星,郭文善,王龙俊,等.小麦品质生理生态及调优技术[M].北京:中国农业出版社,p4-10
    8. 陈新民.糯小麦研究进展.麦类作物学报[J].2000,20(3):82-85
    9.陈毓荃.生物化学试验方法与技术[M].北京:科学出版社,2002
    10.陈在新,雷泽湘,刘会宁,等.板栗营养成分分析及其品质的模糊综合评判[J].果树学报,2000,17(4):286-289
    11.丁文平,王月慧,西霄霖.大米淀粉凝胶和回生机理的研究[J].粮食与饲料工业.2003(3):11-14
    12.恩卡洛·波努斯,柳鎏 译.欧洲栗子业[J].植物资源与环境,1995,4(2):53-60
    13.二国二郎编,王薇青等译.淀粉科学手册[M].北京:中国轻工业出版社,1990
    14.郭天财,夏来坤,朱云集,等.铜、镉胁迫对冬小麦籽粒淀粉含量和糊化特性影响的初步研究[ J].麦类作物学报2006,26(3):107-111
    15.韩文凤.陈放对大米淀粉特性及米粉凝胶品质影响的研究.[J]粮食加工,2008,33(2):28-29
    16.黄宏文.从世界栗属植物研究的现状看中国栗属资源保护的重要性[J].武汉植物学研究,1998,16(2):171-176
    17.姜培彦,马晓军.脂质与淀粉相互作用及其对淀粉性质影响[J].粮食与油脂,2007,11:7-9
    18.江美都,顾振宇,王强林.等.板栗淀粉加工特性的研究[J].中国粮油学报、2001,16(6):55-58.
    19.孔德军,刘庆香,王厂鹏.扳栗选育种进展及研究方向[C].板栗家论坛文集,2002,9
    20.李天真.大米食用品质及改良[J].粮食与饲料工业,1998,5:7-9
    21.李志西,张莉,李巨秀.板栗淀粉特性研究[J].西北农业大学学报,2002 28(4):21-27
    22.刘巧瑜,赵思明,熊善柏,等.稻米淀粉及其级分的凝胶色谱分析[J].中国粮油学报,2003,18(1):28-30,45
    23.刘弈,张其芳,程方民.蛋白质对稻米米粉热力学和黏滞特性的影响效应[J].中国粮油学报.2006,21(6):9-13
    24.刘奕,徐海明,程方民,等.稻米脱脂与未脱脂米粉的DSC热力曲线和RVA特征值比较[J].浙江大李李报(农业与生命科学版).2005,31(5):518-523
    25.陆国权,唐忠厚,郑遗凡.主要根茎类作物淀粉特性研究[J].中国食品学报,2006,6(4)67-71
    26.缪铭,张涛,江波.高效排阻色谱-多角度激光散射分析淀粉分子特征[J].食品科学,2009, 30(2),11-19
    27.孙秀萍,于九皋,刘延奇.DSC分析方法在淀粉凝胶化研究中的应用[J].化学通报,2003,66: 1-8
    28.王广鹏,孔德军,刘庆香.板栗支链淀粉含量与坚果糯性的定量关系研究[J].河北果树,2008,4: 6-7
    29.王光利,张薇,曹连甫,等.小麦淀粉的研究进展[J].种子,2006,25(6):51-54
    30.王化斌,刘钟栋,安红杰等.2004.小麦淀粉颗料结合蛋白质的研究[J].湘潭大学自然科学学报,26(1):64-67
    31.王风才.板栗苞、果成熟过程中淀粉、糖及氮、磷、钾含量的变化[J].落叶果树,1991,23(3):24-26
    32.吴雪辉,张加明.板栗淀粉的性质研究[J].食品科学,2003,24(6):38-41
    33.谢碧霞,谢涛.锥栗利茅栗淀粉颗粒的特性[J].,中南林学院学报,2003 23(2):22-25
    34.谢黎虹,陈能,段彬伍,等.稻米中蛋白质对淀粉RVA特征谱的影响[J].中国水稻科学,2006,20(5):524-528
    35.谢涛,谢碧霞.石栎属植物淀粉粒特性研究[J].湖南农业大学学报(自然科学版,2003,29(1) : 32-34
    36.谢新华,李晓方,肖听,等.醇溶蛋白对大米淀粉粘滞性和质构性的影响[J].农业机械学报,2007,38(9):196-198.191
    37.熊善柏,赵思明,姚克等.稻米淀粉糊化进程研究[J].粮食与饲料加工,2001,(5):14-16
    38.闫清平,朱永义.大米淀粉、蛋白质与其食用品质关系[J].粮食与油脂,2001,5:29-32
    39.阎清平,朱永义.大米淀粉与其食用品质关系[J].粮食与油脂,2000,(5):2-4
    40.姚大年,司洪芳,张文明,等.糯小麦及部分普通小麦品种主要淀粉性状的研究[J].安徽农业大学学报,2004,31(4):389-391
    41.姚远,丁霄霖.米饭回生研究(Ⅲ).米饭同生抑制的原理与工艺[J].中国粮油学报,2000,15(1):4-9
    42.叶兴乾,张贵平,苏平,陈健初.栗粉的理化与功能特性研究[J].中国粮油学报,2001,16(4):43-46.
    43.于修烛,李志西,杜双全.板栗油脂肪酸组成的分析[J].中国油脂,2003,28(7):54-55
    44.张本山,刘培玲.儿种淀粉颗粒的结构与形貌特征[J].华南理工大学学报(自然科学版),2005,33(6):68-73
    45.张传辉,姜东,戴廷波,等.小麦籽粒淀粉粒粒级分布特征及其淀粉理化特性关系研究进展[J].麦类作物学报2005,25(6):130-133
    46.张军杰,胡育峰,黄玉碧.玉米籽粒淀粉结合蛋白分离纯化研究[J].中国农学通报,2007,23(10):234-237
    47.张长贵,董加宝,王祯旭.糯性小麦淀粉特性和利用[J].粮食与油脂,2006,2:17-19
    48.章继华,何永进.国内外板栗科学研究进展及其发展趋势[J].世界林业研究,1999,12(2):7-12
    49.张继亮,孙海伟,马玉敏等.板栗品质的模糊综合评价[J].山东农业大学学报(自然科学版),2001,32(4):475-478
    50.张袖丽,胡颖蕙,檀华榕.板栗品质的化学成分分析利评价[J].安徽农业科学,1996,24(4) 330-331,334
    51.张宇和,柳鎏,梁维坚,等.中国果树志·板栗:榛子卷[M].北京:中国林业出板社,2005:63-68
    52.赵凯,张守文,方桂珍,等.湿热处理对马铃薯淀粉颗粒特性的影响[J].食品与发酵工业,2006,32(6): 8-10
    53.赵学伟,卞科,干金水,等.蛋白质与淀粉的相互作用对陈化大米质构特性的影响[J].郑州粮食学院学报,1998,19(3):23-28
    54.钟连进,程万民,张国平,孙宗修.灌浆结实期不同温度下早稻米淀粉链长分布与结构特征筹异分析[J].中国农业科学,2005,38(2):272-276
    55. Araki E. Miura H and Sawada S. Differential effects of the null alleles at the three Wx loci on the starch-pasting properties of wheat [J]. Theoretical and Applied Genetics.2000,100(7):1113-1120
    56. Baga M, Nair R B, Repellin A, et al. Isolation of a cDN A encoding a granule-bound 152-kilo dalton starch-branching enzyme in wheat[J]. Plant Physiol,2000,124:253-263.
    57. Becker A., Hill S.E and Mitchell J. R. Relevance of amylase-lipid complexes to the behaviour of thermally processed starches [J]. Starch,2001,53:121-130
    58. Bello-perze L.A.. Paredes-lopze O., Roger P., et al. Molecular Characterization of some Amylopectins [J]. Cereal Chem.,1996,73(1):12-17
    59. Berry G C.Thermodynamic and conformational properties of polystyrene.I.light-scattering studies on dilute solutions of linear polystyrenes [J].J Chem Physics,1966,44:4550-4564
    60. B O Juliano. Structure chemistry and function of the rice grain and its fraction. Cereal Foods World. [J] 1992,37(10):774-784
    61. B R Hamaker, V K Griffin. Effect of disulfide bond containing protein on rice starch gelatinization and pasting [J]. Cereal Chem.1999,70 (4):377-385
    62. Brian P. Mooney, Jay J. Thelen. High-throughput peptide mass fingerprinting of soybean seed protein:automated workflow and utility of UniGene expressed sequence tag databases for protein identification [J]. Phytochemistry.2004,65:1733-1744
    63. Cai R G, Yin Y P, Zhao F M, et al. Size distribution ofstarch granules in strong--gluten wheat endosperm under low light environment[J]. Sci Agric Sin,2008,41(5):1308-1316 (in Chinese with English abstract)
    64. Champagne E T, Bett K L, Vinyard B T, et al. Correlation between cooked rice texture and rapid Visco analyzer measurements [J]. Cereal Chemistry,1999,76(5):764-771
    65. Chen J., Jane J. Preparation granular cold-water-soluble starches prepared by alcoholic-alkaline treatment [J]. Cereal Chem,1994,71(6):618-626
    66. Chiou H, Fellows C M.Gilbert R G,et al. Study of rice-starch structure by dynamic light scattering in aqueous solution [J]. Carbohydrate Polymers,2005,61(1):61-71
    67. Choudhury N H, Juliano B. Lipids in developing and mature rice grain[J].Phytochemistry, 1980.19:1063-1069
    68. Chrastil J, Zarins zM. Influence of storage on peptide subunit composition of rice oryzenin [J]. J Agric Food Chem,1992,40(6):927-930
    69. Cooke D, Gidley M J. Loss of crystalline and molecular order during starch gelatinization origin of the enthalpic transition [J]. Carbohydrate Research.1992,227:103-112
    70. Dai Z M, Yin Y-P, Zhang M, et al. Starch granule size distribution in wheat grains under irrigated and rainfed conditions. Acta Agron Sin,2008,34(5):795-802 (in Chinese with English abstract)
    71. David S. Jackson, Lincoln N E. Solubility Behavior of Granular Corn Starches in Methyl Sulfoxide (DMSO) as Measured by High Performance Size Exclusion Chromatography [J]. starch/starke (1991) 43 Nr.1 I, S.422-427
    72. Debye P. Molecular-weight determination by light scattering [J]. J Phys Colloid Chem,1947, 51:18-32
    73. Fishman M L, Rodriguez L, Chau H K. Molar masses and sizes of starches by high-performance size exclusion chromatography with on-line multi-angle laser light scattering detection [J]. J. of Agriculture and Food Chemistry,1996,44:3182-3188
    74. Florent Grimaud, Helene Rogniaux, et al. Myers and Veronique Planchot. Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis [J]. J Exp Bot.2008 September; 59(12):3395-3406
    75. Fredriksson H., Silverrio J., Andersson R., et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches [J]. Carbohydrate Polymers,1998,35:119-134
    76. Fujita S. Morita T, Fujiyama G. The study of melting temperature and enthalpy of starch from rice, barley, wheat, fortail-and proso-millets [J]. Starch,1993,45:436-441
    77. Fujita,N., Taira,T.1998. A 56kDa protein is a novel granule-bound starch synthase existing in the pericarps, aleurone layer, and embryos of immature seed in diploid wheat (Triticum monococcumL.) [J].Planta,207:125-132
    78. Gabriela Galinsky, Wahher Burchard. Starch Fractions as Examples for Nonrandomly Branched Macromolecules.3. Anglllar Dependence in Static Light Scattering [J]. Macromolecules 1997, 30:4445-4453
    79. Gabriela Galinsky, Wahher Burchard. Starch Fractions as Examples for Nonrandomly Branched Macromolecules.1. Dimensional Properties [J]. Macromolecules 1995,28:2363-2370
    80. Gale K.R., Blundell M.J., Hill A.S. Development of a simple, antibody-based test for granule-bound starch synthase Wx-Blb (Null-4A) wheat varieties [J]. Journal of Cereal Science,2004,40:85-92
    81. Gidley M J,Bulpin P V. Crystallization of malto-oligosaccharides as models of the crystalline forms of starch:Minimum chain-length requirement for the formation of double helices [J]. Carbohydrate Research,1987,161:301-304
    82. Golag A, et al. Effect of trestation. an amylose inhibitor and incorporated into bread on glycemic responses in normal and diabetic pations[J]. American J. of Clinical Nutrition,1991,53(1): 61-65
    83. Hamaker B R, Griffin V K. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting [J]. Cereal Chemistry,1993,70(1):377-380
    84. Hanashiro I., Abe J., Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography [J]. Carbohydrate Research,1996, 283:151-159
    85. Hanashiro I, Takeda Y. Examination of number-average degree of polymerization an d molar-based distribution of amylose by fuorescent labeling with 2-aminopyridine [J]. Carbohydrate Research, 1998,306:421-426
    86. Hizukuri S, Takeda Y, Maruta N, et al. Molecular structural characteristics of starch [J]. Carbohydrate Res.1989,189:227-235
    87. Holm J and I Bjorck. Bioavailaity of starch in various wheat-based bread products [J]. American J. of Clinical Nutrition.1992,65(2):402-409
    88. Huang C, Lin M, Wang C. Changes in morphological, thermal and pasting properties of yam (Dioscorea alata)starch during growth[J]. CarbohydPolym,2006,64:524-531
    89. Huang J J, White P J. Waxy corn starch:monoglyceride interaction in amodel system[J]. Cereal Chem.,1993,70:4247.
    90. Hu P S, Zhai H Q, Tang S Q, et al. Rice quality improvement in China [J]. Chinese Rice Research Newsletter,2002,10(1):13-15
    91. Igrejas G, Faucher B, Bertrand D, et al. Genetic analysis of the size of endosperm starch granules in a mapped segregating wheat population [J]. J. Cereal Sei.,2002,35:103-107
    92. Imberty A, Buleon A, Tran V'Perez S. Recent advances in knowledge of starch structure [J]. Starch,1991,43:375-384
    93. Jane L, Kasemsuwan T, Leas S, et al. Anthology of starch granule morphology by scanning [J]. 2007,11:7-9
    94. Jane J, Kasemsuwan T, Chen L F. Phosphorus in rice and other starches [J]. Cereal Food World, 1996,41:827-832
    95. J Chrastil. Protein starch interactions in rice grains Influence of storage on oryzenin and starch [J]. J Agric Food Chem.1990,38 (9):1804-1811
    96. Jideani I., Takeda Y., Hizukuri S. Structures and Physicochemical Properties of Starches from Aeha(Digitaria Exilis), Iburu(D. 1bonla), and Tamba(Elensine Coracana) [J]. Cereal Chem.,1996, 73(6):677-685
    97. Juliano B O, Villareal R M, Perez C M. et al. Varieties differ ences in properties among high amylose rice starches [J]. Starch,1987,39:390-398
    98. Kalichevsky, M.T., Orford, et al. The Retrogradation and Gelation of Amylopectins from Various Botanical Sources [J]. Carbohydr. Res.,1990,198:49-55
    99. Keetels J. A. M., Vliet T. V., Walstra P. Gelation and retrogradation of concentrated starch systems:1. Gelation [J]. Food Hydrocolloids,1996,10:343-353
    100. Khalil N F, Duncan H J. The silica content of plant polysaccharidea [J]. Journal of the Science of Food and Agriculture,1981(32):415-418
    101. K R Bhattachorya, et al. Importance of insoluble amylose as a determinant of rice quality [J]. J sci. Fd Agric.,1978,29:359-367
    102. Lai V M F. Shen M C, Yeh A I, et al. Molecular and gelatinization properties of rice starches from IR24 and Sinandomeng cultivars[J]. Cereal Chemistry,2001,78:596-602
    103. Lee M R, Swanson B G, Baik B K. Influence of amylose content on properties of wheat starch and bread making quality of starch and gluten blends[J]. Cereal Chemistry,2001,78(6):701-706.
    104. Liang X., King J. M, et al. Pasting property differences of commercial and isolated rice starch with added lipids and α-cyclodextrin[J]. Cereal Chem.,2002,79:812-818
    105. Lic C, Tsai M Tseng K. Effect of Amylose Content on the RheologicalPropertise of Starch [J]. CerealChem,1996,73(4):415-420
    106. Lim S T, Kasemsuwan T. Jane J. Characterization of phosphorus in starch by 31P-nuclear magnetic resonance spectroscopy [J]. Cereal Chem.,1994,71:488-496
    107. Lin J H, Lee S Y, Chang Y H. Effect of acid-alcohol treatment on the molecular structure and physicochemicall properties of maize and potato starches [J]. Carbohydrate Polymers,2003,53: 475-482
    108. Lu Chen J, Lin C-Chang Y Properties of starches from cocoyam (Xanthosoma sagittifolium)tubers planted in different seasons[J]. Food Chem,2005,91:69-77
    109. MacLeod L C, Dufus C M. Temperature effects on starch granules in developing barley grains [J]. Journal of Cereal Science,1988,8:29-37.
    110. Manners D J. Recent developments in our understanding of amylopectin structure [J]. Carbohydr Polym.1989,11:87-112
    111. Marshall L. Fishman, Libaniel Rodriguez, et al. Molar Masses and Sizes of Starches by High-Performance Size-Exclusion Chromatography with On-Line Multi-Angle Laser Light Scattering Detection [J]. J. Agric. Food Chem.1996,44,3182-3188
    112. Mason-Gamer R.J., Weil C.F., kellog E.A. Granule bound starch synthase:structure, function, and phylogenetic utility [J]. Molecular Biology and Evolution.1998.15:1658-1673
    113. Mats Boren, Hakan Larsson, Anders Falk, et al. The barley starch granule proteome-internalized granule polypeptides of the mature endosperm [J]. Plant Science,2004,166:617-626
    114. McCormick K. M, Panozzo J F, Hong S H. A swelling power test for selecting potential noodle quality wheat[J]. Australian Journal of Agricultural Research,1991,42:317-323
    115. McDonald F D and Preiss J. Partial purification and characterization of granule-bound starch syntheses from normal and waxy maize [J]. Plant Physical.1985,78:849-852
    116. Miles M.J., Morris W R. Gelation of Amylose[J]. Carbohydr. Res.,1985,135:257-269
    117. Miura H, Tanii S. Endosperm starch properties in several wheat cultivars preferred for Japanese noodles [J], Euphytica,1994,72(3):171-175
    118. Miura H, Tarui S, Araki E, et al. Production of Wx-protein deficient lines in wheat cv. Chinese spring. Proceeding of the 9 International Wheat Genetics Symposiuml [C],1998,4:208-210
    119. Morrison W R, Milligan T P, Azudin. A relationship between the amylase and lipid contents of starches from diploid cereals [J]. J. Cereal Sci,1984,2:257-260
    120. Morrison W R, Azudin M N. Variation in the amylase and lipid contents and some physical properties of rice starches [J]. J. Cereal Sci,1987,5:35-39
    121. Morrison W. R.. Lipid in cereal starches:a view [J]. Cereal Sci.,1988,8:1-15
    122. Morrison W.R. Starch lipids and how they relate to starch granule structure and functionality [J]. Cereal Food World,1995,40:437-446
    123. Morrison W.R, Tester R.F, Snape C.E, et al. Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylase and free amylase in waxy and normal barley starches [J]. Cereal Chem.,1993,70:385-391
    124. Myers A M, Morell M K, James M Q, etal. Recent progress toward understanding biosynthesis of the amylopectin crystal [J]. Plant Physiology,2000,122:989-997
    125.Nakamura, T, Vrinten, P., Hayakawa, K., et al.1998. Characterisation of a granule-bound starch synthase isoform found in the pericarp of wheat [J]. Plant Physiology,118:451-459
    126. Nakamura T,Yamamori M,Hirano H, et al. Decrease of Waxy (Wx) protein in two common wheat cultivars with low amylose content [J]. Plant Breed,1993,111:99-105
    127. Nakazawa Y, Wang Y J. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins[J]. Carbohydrate Research,2003,338:2871-2882
    128. Ong M H, Blanshard J M V. Texture determinants in cooked, parboiled rice.Ⅰ:rice starch amylase and the fine structure of amylopectin [J]. J. of Cereal Sci,1995,21:251-260
    129. Paul M B. Starch Granule-Associated Proteins and Polypeptides:A Review [J]. Starch/Starke,2001, 53:475-503
    130. Peng M, Gao M. Separation and characterization of A and B type starch granules in wheat endosperm[J]. Cereal Chemistry,1999,76:375-379.
    131. Racker M O, Gaines C S, Finney P L, Donelson T. Granule size distribution and chemical composition of starches from 12 soft wheat cuhivars[J]. Cereal Chemistry,1998,75:721-728
    132. Radhika R K, Ali S Z, Bhattacharya K R. The fine structure of rice starch amylopectins and its relation to the texture of cooked rice [J]. Carbohydrate Polymers,1993,22:267-275
    133. Ramesh M, Ali S Z, Bhattacharya K R. Structure of rice starch and its relation to cooked-rice texture [J]. Carbohydrate polymers,1999,38:337-347
    134. Rani MRS, Bhattacharya K R. Rheology of rice-flour pastes:Relationship of paste breakdown to rice quality and a simplified Brabender viscograph test [J]. Journal of Texture Studies,1995,26:587-598
    135. Reddy K R, Subramanian R, Ali S Z, et al. Viscoelastic properties of rice flour pastes and their relationship to amylase content an d rice quality [J]. Cereal Chemistry,1994,71:548-552
    136. RingS. G.. Some studies on starch gelation [J]. Starch,1985,37:80-83
    137. Sadequr Rahman, Behjat Kosar-Hashemi, Michael S. Samuel, et al. The Major Proteins of Wheat Endosperm Starch Granules [J]. Aust. J. Plant Physiol.,1995,22.793-803
    138. S Hizukuri. Y Takeda, N Maruta, B O Juhans. Molecular structures of rice sharch [J]. Carbohydr. Res. 1989,189:227
    139. Skerritt J. H, Frend A.J, Robson L G, eL al. Immunological homologies between wheat gluten and starch granule proteins [J].J. Cereal Sci.,1990(12):123-126
    140. Sowbhagya C M, Ramesh B S, Bhattacharya K R. The relationship between coked-rice texture and physicochemical properties of rice [J]. Journal of Cereal Science,1987.5:287-297
    141. Suortti L Gorenstein M V, Roger E. Determination of the molecular mass ofamylose [J]. Journal of Chroma tographyA,1998,828:515-521
    142. Svihus B, Uhlen A K, Harstad O M. Efect of starch granule structure, associated components and processing on nutritive value of cereal starch:a review [J]. Animal Feed Science and Technology, 2005,122(3-4):303-320
    143. Swikels J J M. Composition and properties of commercial and native starches [J]. Starch/Starke, 1985(37):1-5
    144. Takeda Y, Maruta N, Hizukuri S, et al. Structures of indica rice starches (IR48 and IR64)having intermediate affinities for iodine [J]. Carbohydrate Res,1989,187:287-294
    145. Takeda Y, Maruta N and Hizukuri S. Structures of amylose subfractions with different molecular sizes [J]. Carbohydr Res,1992,226:279-285
    146. Tan Y. Corke H. Factor analysis of physicochemical properties of 63 rice varieties [J]. Journal of the Science of Food and Agriculture,2002,82:745-752
    147. Tang H, Ando H, Watanade K. Some physiological properties of small, medium and large granule starches in fractions of waxy barley grain[J]. Cereal Chemistry,2000,77:27-31.
    148. Turnbull K M, Rahman S. Endosperm texture in wheat[J]. Journal of Cereal Science,2002,36: 327-337.
    149. Vasanthem. T., Bhatty R. S. Physicochemical Properties of Small-and-Long-Granule Starches of Waxy, Regular, and High-Amyoles Barleys [J]. Cereal Chem.1996,73(2):199-207
    150. Vandeputte G E, Vermeylen R, Geeroms J, et al. Rice starches, I. Structural aspects provide insight into crystallinity characteristics and gelatinization behaviour of granular starch [J]. J. Cereal Sci,2003, 38:43-52
    151. WangL Z, White P J. Structure and Physicochemical Properties of starches from Oat with Different Lipid Contents[J]. Cereal Chem,1990,17(5):443-450
    152. Wang L Z, White P J. Structure and Propertise of Amylose on Intermediate Material of Oat Starch [J]. Cereal Chem.1994,71(3):263-268
    153. Waniska R D, Graybosch R A, Adams J L. Effect of partial waxy wheat on processing and quality of wheat flour tortillas[J]. Cereal Chemistry,2002,79(2):210-214.
    154. Wong K. S, Kubo A, Jane J L,, et al. Structures and properties of amylopectine and phytoglycogen in the endosperm of suger-1 mutant of rice [J]. J. Cereal Sci.,2003,37:139-149
    155. Xian-Zhong Han. Osvaldo H. Campanellab. et al. Keelingc and Bruce R. Hamaker. Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part Ⅰ. Large deformation measurements of paste properties [J]. Carbohydrate Polymers,2002a.49:315-321
    156.X. Zh. Han, B.R. Hamaker.2002b. Location of starch Granule-associated Proteins Revealed by Confocal Laser Scanning Microscopy [J]. Journal of Cereal Science,35:109-116
    157. Xian-Zhong Han, Osvaldo H. Campanellab, Hanping Guanc, et al. Keelingc and Bruce R. Hamaker. Influence of maize starch granule-associated protein on the rheological properties of starch pastes. Part Ⅰ. Large deformation measurements of paste properties [J]. Carbohydrate polymers,2002,49(3): 323-330
    158. Yao D N, Li B Y, Liang R Q, et al. Effects of wheat genotypes and environments to starch properties and noodle quality[J]. Journal of China Agncultural University.2000,5(1):63-68.
    159. Yasui T. Maatsuki J. Sasaki T., et al. Amylose and lipid contents, amylopectin structure and gelatinization properties of waxy wheat (Triticum aestivum) starch[J]. J. Cereal Sci.,1996,24:131-137
    160. Yoo S H, Jane J L. Molecular weights and gyration radii of amylopectins determined by high-performance size exclusion chromatography equipped with multi-angle laser light scattering and refractive index detectors [J]. Carbohydrate Polymer,2002,49:307-414
    161. Yoo S H, Jane J L. Structural and physical characteristics of waxy and other wheat starches [J]. Carbohydrate Polymers,2002,49:297-305
    162. Yoshimoto Y, Egashira L Hanashiro I, Ohinata H, et al. Molecular structure and some physicochemical properties of buckwheat starches [J]. Cereal Chemistry,2004,81:515-520
    163. You S G Izydorczyk M S. Molecular characteristics of barley starches with variable amylose content [J]. Carbohydrate Polymers,2002,49(1):33-42
    164. Yuan Yao, Mark J. Guiltinan and Donald B. Thompson. High-performance size-exclusion chromatography (HPSEC) and fluorophore-assisted carbohydrate electrophoresis (FACE) to describe the chain-length distribution of debranched starch [J]. Carbohydrate Research,2005,340:701-710
    165.Zeng M, Morris CF, Batey IL, et al. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat [J]. Cereal Chem,1997,74(1):63-71
    166. Zhou Z K, Blanchard C, Helliwell S. Fatty acid composition of three rice varieties following storage [J].Journal of Cereal Science,2003,37:327-335