新能源汽车用车载测试系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车道路试验是进行汽车研究开发的重要手段,要了解汽车各方面的性能特性,必须利用测试系统对汽车的各种运行数据进行采集。随着近年来新能源汽车的逐步发展完善,应用其上的车载测试系统的使用环境也更加复杂,从而对测试系统的设计开发提出了更高的要求。由此,本论文工作基于虚拟仪器技术,设计开发了一套新能源汽车用车载测试系统。
     道路试验的相关规范及测试方法是汽车道路试验的基础。本论文对道路试验的相关规范及测试方法进行了分析,并对需要检测的蓄电池电压和电流、转速、车速、油耗等重要参数的传感器的原理进行了分析,选择了适当的传感器并对其连接方式进行了总结。结合道路试验的相关规范的要求和传感器的特性,总结出车载测试系统的设计需求,为测试系统的实际开发奠定了基础。
     本文采用一体化虚拟仪器结构设计了车载测试系统。测试系统包括了利用系统总线、通讯总线、通讯接口或通讯卡的三种数据采集方式,实现了对不同信号的采集。以嵌入式PC为核心设计了测试系统的硬件,实现了模块化结构。在XPE操作系统与LabVIEW虚拟仪器软件开发环境下设计了测试系统的软件。
     本测试系统采用了模块化设计思路,即根据不同的传感器信号,设计不同的调理及测量单元。基于多周期同步测频法,设计了频率调理测量单元;针对多种模拟量信号,利用仪器运算放大器配合滤波整形电路设计了信号调理单元;分别采用了电桥原理与恒流源原理,设计了铂电阻温度传感器信号的调理电路,其中恒流源电路解决电桥电路的非线性问题。本文所设计的测试系统,可以根据不同的测量需求,选择不同的调理及测量单元,实现了测试系统的模块化设计。
     最后,在高低温试验箱进行了测试系统的环境性能试验,在发动机台架及转鼓试验台上对本测试系统进行了测量及标定,并在传统汽车与新能源汽车上进行了实车试验,试验结果表明,车载测试系统工作稳定,系统性能指标满足测量要求,能够适用于传统汽车与新能源汽车的道路试验。
Road test is an important method in the research and development of vehicles.In order to obtain the vehicle’s performance characteristics, an onboard measurementsystem is necessary to collect the operation data. The development of new energy ve-hicles increases the complexity of the environment of onboard measurement systemand bring forward further requirement of the measurement system. This thesis intro-duces the design of an onboard measurement system which bases on integrative virtualinstrument and can be used on both traditional and new energy vehicles.
     Relevant regulations and measurement method are the basis of vehicle road test.Relevant regulations and measurement method as well as the principle of sensors ofimportant parameters such as voltage and current of storage battery, rotating speed,vehicle speed and fuel consumption are analyzed in this thesis . Proper sensors arechosen and the connection modes are concluded. According to the requirement of rele-vant regulations and the characteristics of sensors, onboard measurement system designrequirement is summarized, which lays a foundation for the practical development ofthe measurement system.
     Integrative virtual instrument structure is adopted as the main design of the testsystem. Three data collecting methods are used in this measurement system whichinclude system bus, communication bus, communication interface or communicationcard. These methods could realize data collecting function of di?erent data types. Thehardware design bases on embedded PC while the modular software design runs onXPE operation system and LabVIEW.
     Modular design is also adopted in this onboard measurement system, with variableconditioning and measurement modules based on di?erent sensor signals. The designof the frequency acquisition module is based on synchronous multi-cycle frequencymeasurement while amplifiers and circuit of filter and shaping are adopted in the de-sign of the signal conditioning module. The signals from platinum resistance tem- perature sensors could be conditioned by bridge circuit and/or constant current sourcecircuit, while the latter solves the non-linear problem of bridge circuit. In result, ac-cording to di?erent demands of measurement, the corresponding condition modulesand measurement modules could be selected to realize the modular design of the on-board measurement system.
     Environmental performance of the measurement system is tested in incubator,while measurement and calibration are processed on the engine testbed and rollingdrum table. Experiments are also taken on traditional and new energy vehicles onthe real road. The result meets the requirements of the measurement. It shows thatthe onboard measurement system operates stably and can be used in road test on bothtraditional and new energy vehicles.
引文
[1] Mettlach H. Hybridizing the HydroGen Fuel Cell Vehicle. Monaco: EVS-21, 2005.
    [2]何仁.燃料电池汽车研究现状与发展前景.汽车工业研究, 2001, 2:29–34.
    [3]陈清泉,詹宜巨. 21世纪的绿色交通工具:电动车.北京:清华大学出版社, 2000.
    [4] Brusa E, Velardocchia M. Modelling Vehicle Dynamics for Virtual Experimentation, RoadTest Supporting and Dynamic Control. SAE, 2002.
    [5]国家技术监督局.汽车国家标准汇编综合卷.北京:中国标准出版社, 1999.
    [6]应怀樵.虚拟仪器与计算机采集测试分析仪器的发展和展望.测控技术, 2000, 8:4–6.
    [7]刘国忠,邓文怡,吕勇.基于PC总线的虚拟测控技术.北京机械工业学院学报, 2000,15(4):15–18.
    [8]于寒,周明光.测控总线技术的现状与特点.大众科技, 2006, 1:40–41.
    [9]杨公训.基于PC104工控机的嵌入式直流监控装置的设计.工矿自动化, 2002,2:25–27.
    [10]刘瀛.基于RS485通讯有关问题的分析.中国科技信息, 2005, 17:89.
    [11] VRTS-II Data Logger System Instruction Manual. ONO SOKKI CO., LTD, 2000.
    [12]国家技术监督局. GB/T 19752-2005混合动力电动汽车动力性能试验方法.北京:中国标准出版社, 2005.
    [13]国家技术监督局. GB/T 19753-2005轻型混合动力电动汽车能量消耗量试验方法.北京:中国标准出版社, 2005.
    [14]国家技术监督局. GB/T 19754-2005重型混合动力电动汽车能量消耗量试验方法.北京:中国标准出版社, 2005.
    [15]国家技术监督局. GB/T 18385-2005电动汽车动力性能试验方法.北京:中国标准出版社, 2005.
    [16]国家技术监督局. GB/T 18386-2005电动汽车能量消耗率和续驶里程试验方法.北京:中国标准出版社, 2005.
    [17]燃料电池城市客车项目总体组.燃料电池混合动力客车动力性能和能量消耗试验方法.内部资料, 2005.
    [18] Ding Y, Bradley J, Gady K. Hydrogen Consumption Measurement for Fuel Cell Vehicles.SAE, 2004, 1(1008).
    [19] Aoyagi S, Shirasaka T. Development of Fuel Economy Measurement Method for Fuel CellVehicle. SAE, 2004, 1(1305).
    [20]李泽勇,王文生.闭环霍尔电流传感器在逆变焊机中的应用.机械工人, 2006, 1:41–43.
    [21]宋执权,傅鹏,王林森.闭环霍尔传感器在极向场电源系统中的应用.仪表技术, 2006,1:85–86.
    [22] ONO SOKKI CO. L.转速相关测试仪器. http://www.onosokki.co.jp.
    [23]李令举,杜爱月.汽车传感器综述及非接触汽车传感器.云南交通科技, 1996, 2:30–44.
    [24]史国生,张为公.非接触光电式速度传感器的研究与应用.传感器技术, 2002, 10:37–39.
    [25]徐东.浮球式发动机油耗仪的开发与研究:[硕士学位论文].辽宁:辽宁工学院, 2007.
    [26] CDS-DFL-1A/CDS-DFL-WT Fuel Flow Meters for Fuel consumption measurement in mo-bile vehicle instrumentation user manual. CORRSYS-DATRON Sensorsysteme GmbH,2005.
    [27]滕云田,张炼,王彦. PC104嵌入式模块技术研究及在地学观测仪器设计中的应用.地震学报, 2002, 24(4):421–427.
    [28]邵昱,刘沿阳.工业控制微机选型.机电设备, 1995, 24(3):36–38.
    [29]罗从难,孙玉芳.嵌入式系统及其特点.信息系统工程, 2000, 10:32.
    [30]宋延昭.嵌入式操作系统介绍及选型原则.工业控制计算机, 2005, 18(7):41–42.
    [31]尚军. Windows XP Embedded及其开发过程.现代计算机, 2007, 10:80–81.
    [32]关旭,张春梅,王尚锦.虚拟仪器软件Labview和数据采集.微机发展, 2004, 14(3):77–79.
    [33]魏红军.基于嵌入式PC的车载数据采集及性能测试系统的研制:[硕士学位论文].北京:清华大学, 2007.
    [34]张杰,姚剑,叶林.频率测量的新方法.工业仪表与自动化装置, 2003, 1:63–66.
    [35]梁文海.用单片机实现双计数器多周期同步法频率测量.现代电子技术, 2007,7:137–139.
    [36]杨国田.摩托罗拉68HC12系列微控制器原理、应用与开发技术.北京:中国电力出版社, 2003.
    [37]赵开群.仪器放大器及其应用.电子技术, 1989, 4:15–18.
    [38]陈国杰,黄义清,谢嘉宁.线性非平衡电桥设计及应用.实验室研究与探索, 2006,25(5):588–590.