磁场下三电子原子体系的精密计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从发现在星体表面存在较强的磁场,原来自由场的研究计算数据不再适用于天文观测。近三十年来,随着天体物理学对光谱数据的需求,强磁场中原子和分子体系理论计算一直是计算物理中前沿课题。本文首次介绍利用Hylleraas基函数计算四体系统在磁场中任意束缚态能级。通过具体计算基态和低激发态在磁场中的锂原子再次证明Hylleraas基在描述系统之间的电子关联效应时较其他试探波函数表现出优越的性能。
     根据宇宙大爆炸的核聚变理论,宇宙中丰度最高的是一些最轻的元素—氢、氦、锂等等的少体系统。氢和氦作为其中结构较为简单的体系,加上在自由场对氢和氦研究方法比较成熟,精度也已经非常高。所以比较容易推广到磁场中的计算利用以前的方法。这些计算得到的数据在天文观测中提供了详细的依据。
     但是随着电子的增加,原子体系的计算难度越来越大。锂原子这种三电子原子体系在自由场中变分能量也是最近5年在精度上有所提高达到了14位有效数值。相对于自由场,磁场中三电子原子体系的数据精度就差很多,同时可用的数据也很少。正是这样,本文首次将目前在处理自由场中锂原子最精确的方法推广到磁场中,对提高磁场中三电子原子体系束缚态的变分能量的精度做出尝试。在方法上我们完成了磁场中三电子原子体系算符在Hylleraas基矢下积分公式的解析推导,给出可供计算的公式依据。随后具体计算了一些低激发态的变分能量值。比起已经公布的其他方法计算的结果,我们的结果极大的改进了三电子原子体系在强磁场下非相对论变分能量上限,与此同时我们改进了相应的锂原子跃迁振子。
Since the discovery of the existence of a strong magnetic field of dense stars surface, the original research data is not suitable for astronomical observation for atomic and molecular system without a magnetic field. In the past thirty years, along with the demand of the spectroscopic data in astrophysics, the theoretical calculation in a strong magnetic field has been the subject of computational physics for the atomic and molecular system theory. This paper first introduced that the arbitrary bound states of four-body atomic system were calculated based on the Hyllerass-type trial wave function.
     According to the standard theory of Big Bang Nucleosynthesis (BBN), some of the lightest elements-hydrogen, helium, lithium and other few-body systems are the highest abundance in Cosmos. Because hydrogen and helium have the relatively simple structure of the atomic system, the research method of them is already mature in free-field. The calculation accuracy is very high. Previous methods are easy extended to the calculation of these simple systems in a strong magnetic field. These calculated data provide a detailed basis in astronomy.
     With the number of electrons increasing, however, calculation of the atomic systems is getting more and more difficult. The accuracy of the variational energy for low-lying states of lithium in free-field increases to14effective numerical in recent5years. Compared to the situation without magnetic fields, the accuracy of the variational energies for low-lying states of lithium is much worse in a magnetic, and the available data are rare. For that reason, the most accurate method to handle three-electron atomic systems in free-field was first extended to calculate the non-relativistic energies for three-electron atomic systems in a magnetic field. The main work of this dissertation is to improve the accuracy of the non-relativistic energies for three-electron atomic systems in a magnetic field. In the method, we solve the integeral formula for the arbitrary bound states of three-electron atomic systems in Hylleraas coordinates with magnetic, and give the basis for practice calculation, and then calculate the variational energies for low-lying states of three-electron atomic systems. Our calculation greatly improved the accuracy of the non-relativistic energies for three-electron atomic systems atom in a magnetic fields compared with the results obtained by other methods. Meanwhile some improved values for the dipole-oscillator strengths are obtained for lithium atom.
引文
[1]H. Ruder, G. Wunner, H. Herold and F. Geyer, Atoms in Strong Magnetic Fields (Springer Verlag, Berlin), references there in.1994.
    [2]R. J. Elliott and L. R, Theory of the absorption edge in semiconductors in a high magnetic field. J. Phys. Chem. Solids,1960.15:p.196-207.
    [3]Y. Wan, G. Ortiz and P. P, Pair Tunneling in Semiconductor Quantum Dots. Physical Review Letters,1995.75(15):p.2879-2882.
    [4]J. Trumper, W. Pietsch, C. Reppin, W. Voges, R. Staubert and E. Kendziorra, Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-l. Astrophys, 1978.L105:p. J219.
    [5]K. K. Lange, E. I. Tellgren, M. R. Hoffmann and T. Helgaker, A Paramagnetic Bonding Mechanism for Diatomics in Strong Magnetic Fields. Science,2012.337(6092):p. 327-331.
    [6]D. Wintgen and H. Friedrich, Matching the low-field region and the high-field region for the hydrogen atom in a uniform magnetic field. J. Phys. B:At. Mol. Phys.,1986 19:p. 991.
    [7]P. Schmelcher and W. Schweizer, Atoms and Molecules in Strong External Fields 1998, New York:Plenum.
    [8]W. Rosner, G. Wunner, H. Herold and H. Ruder, Hydrogen atoms in arbitrary magnetic fields. I. Energy levels and wavefunctions. J. Phys. B:At. Mol. Phys.,1984.17:p.29.
    [9]Y. P. Kravchenko, M. A. Liberman and B. Johansson, Exact solution for a hydrogen atom in a magnetic field of arbitrary strength. Phys. Rev. A,1996.54(1):p.287.
    [10]M. V. Ivanov, The hydrogen atom in a magnetic field of intermediate strength. J. Phys. B: At. Mol. Opt. Phys.,1988.21:p.447.
    [11]H. Friedrich, Bound-state spectrum of the hydrogen atom in strong magnetic fields. Phys. Rev. A,1982.26(4):p.1827-1838.
    [12]S. Jordan, P. Schmelcher, W. Becken and W. Schweizer, Evidence for helium in the magnetic white dwarf GD229. Astron. Astrophys,1998.336:p. L33-6.
    [13]R. F. Green and J. Liebert, The ultraviolet spectrum of the magnetic degenerate star GD229. Publ. Astron. Soc. Pac,1981.93:p.105-109.
    [14]G. D. Schmidt, W. B. Latter and C. B. Foltz, On the spectrum and field strength of the magnetic white dwarf GD 229. Astrophys. J.,1990 350:p.758-762.
    [15]J. Virtamo, Hartree-Fock calculation of the ground state energies of two-electron atoms in an intense magnetic field Joumal of Physical B:Atomic, Molecular, and Optical Physics,1976.9(5):p.751-760.
    [16]Proschel, R. o. P, W. W, R. H. G and H. H, Hartree-Fock calculations for atoms in strong magnetic fields. I. Energy levels of two-electron systems, J. Phys. B:At. Mol. Phys.,1982.15:p.1959.
    [17]M. V. Ivanov, Calculation of the energy levels of a helium atom in a strong magnetic field by the Hartree-Fock net method Optics and Spectroscopy,1991.70:p.148.
    [18]M. V. Ivanov, Hartree-Fock mesh calculations of the energy levels of the helium atom in strong magnetic field. J. Phys. B:At. Mol. Opt. Phys.,1994.27(19):p.4513-4521.
    [19]G. Thurner, H. Korbel, M. Braun, H. Herold, H. Ruder and G. Wunner, Hartree-Fock calculations for excited states of two-electron systems in strong magnetic fields. J. Phys. B:At. Mol. Opt. Phys.,1993.26 p.4719.
    [20]M. D. Jones, G. Ortiz and D. M. Ceperley, Hartree-Fock studies of atoms in strong magnetic fields. Phys. Rev. A,1996.54(1):p.219-231.
    [21]R. O. Mueller, A. R. P. Rau and L. Spruch, Lowest energy levels of H-, He, and Li+in intense magnetic fields. Phys. Rev. A,1975.11(3):p.789-795.
    [22]M. Vincke and D. Baye, Variational study of H-and He in strong magnetic fields. J. Phys. B:At. Mol. Opt. Phys.,1989.22:p.2089.
    [23]D. M. Larsen, Variational studies of bound states of the H-ion in a magnetic field. Phys. Rev. B,1979.20(12):p.5217-5227.
    [24]C. H. Park and A. F. Starace, Hand He in a uniform magnetic field:Ground-state wave functions, energies, and binding energies for fields below 109 G. Phys. Rev. A,1984. 29(2):p.442-454.
    [25]M. D. Jones, G. Ortiz and D. M. Ceperley, Released-phase quantum Monte Carlo method Physical Review E,1997.55(5):p.6202-6210.
    [26]M. Braun, W. Schweizer and H. Elster, Hyperspherical close-coupling calculations for helium in a strong magnetic field Phys. Rev. A,1998.57(5):p.3739-3747.
    [27]H. X. Qiao and B. W. Li, Calculations of the helium atone in magnetic fields with B-spline-type functions. Physical Review A,1999.60(4):p.3134-3137.
    [28]H. X. Qiao, L. J. Liu, Z. H. Zhang and B. W. Li, A new method for calculations of two-electron systems in magnetic field Chinese Physics Letters,1999.16(9):p. 638-640.
    [29]H. X. Qiao, J. G. Rao and B. W. Li, Calculation of the ground states of H-ion and He atom in magnetic field with a modified configuration interaction method. Chinese Physics Letters,1999.16(2):p.101-103.
    [30]W. Becken and P. Schmelcher, Non-zero angular momentum states of the helium atom in a strong magnetic field Journal of Physics B-Atomic Molecular and Optical Physics, 2000.33(3):p.545-568.
    [31]W. Becken, P. Schmelcher and F. K. Diakonos, The helium atom in a strong magnetic field Journal of Physics B-Atomic Molecular and Optical Physics,1999.32(6):p. 1557-1584.
    [32]O. A. Al-Hujaj and P. Schmelcher, Electromagnetic transitions of the helium atom in superstrong magnetic fields. Physical Review A,2003.68(5).
    [33]O. A. Al-Hujaj and P. Schmelcher, Helium in superstrong magnetic fields. Physical Review A,2003.67(2).
    [34]A. Scrinzi, Accurate bound-state energies of helium in a strong magnetic field. Phys. Rev. A,1998.58(5):p.3879-3883.
    [35]X. F. Wang, J. J. Zhao and H. X. Qiao, Helium atom in strong magnetic fields:An application of the configuration-interaction method with Hylleraas-Gaussian basis. Physical Review A,2009.80(5).
    [36]X. F. Wang and H. X. Qiao, Configuration-interaction method with Hylleraas-Gaussian-type basis functions in cylindrical coordinates:Helium atom in a strong magnetic field. Physical Review A,2008.77(4).
    [37]J. J. Zhao, X. F. Wang and H. X. Qiao, Accurate calculations of the helium atom in magnetic fields. Chinese Physics B,2010.19(11).
    [38]G. D. Schmidt, S. Vennes, D. T. Wickramasinghe and L. Ferrario, Studies of magnetic and suspected-magnetic southern white dwarfs. Monthly Notices of the Royal Astronomical Society,2001.328(1):p.203-210.
    [39]D. T. Wickramasinghe and L. Ferrario, Magnetism in isolated and binary white dwarfs. Publications of the Astronomical Society of the Pacific,2000.112(773):p.873-924.
    [40]J. C. Howk, N. Lehner, B. D. Fields and G. J. Mathews, Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud. Nature,2012.489(7414):p. 121-123.
    [41]G. Israelian, COSMOLOGY The lithium problem. Nature,2012.489(7414):p.37-38.
    [42]M. Puchalski and K. Pachucki, Ground-state wave function and energy of the lithium atom. Physical Review A,2006.73(2).
    [43]L. M. Wang, Z. C. Yan, H. X. Qiao and G. W. F. Drake, Variational energies and the Fermi contact term for the low-lying states of lithium:Basis-set completeness. Physical Review A,2012.85(5).
    [44]L. M. Wang, Z. C. Yan, H. X. Qiao and G. W. F. Drake, Variational upper hounds for low-lying states of lithium. Physical Review A,2011.83(3).
    [45]M. Stanke, J. Komasa, D. Kedziera, S. Bubin and L. Adamowicz, Accuracy limits on the description of the lowest S excitation in the Li atom using explicitly correlated Gaussian basis functions. Physical Review A,2008.78(5).
    [46]M. Puchalski, D. Kedziera and K. Pachucki, Ionization potential for excited S states of the lithium atom. Physical Review A,2010.82(6).
    [47]Z. C. Yan and G. W. F. Drake, Eigenvalues and expectation values for the ls2s2s, Is22p 2P, and Is23d2D states of lithium. Phys. Rev. A 1995.52(5):p.3711-3717.
    [48]D. Neuhauser, S. E. Koonin and K. Langanke, Structure of matter in strong magnetic fields. Phys. Rev. A,1987.36(9):p.4163-4175.
    [49]M. Demeur, P.-H. Heenen and M. Godefroid, Hartree-Fock study of molecules in very intense magnetic fields. Phys. Rev. A 1994.49(1):p.176-183.
    [50]M. D. Jones, G. Ortiz and D. M. Ceperley, Hartree-Fock studies of atoms in strong magnetic fields. Phys. Rev. A,1996.54(1):p.219-231.
    [51]M. V. Ivanov and P. Schmelcher, Ground states ofH, He,..., Ne, and their singly positive ions in strong magnetic fields:The high-field regime. Physical Review A,2000. 61(2).
    [52]M. V. Ivanov and P. Schmelcher, Ground state of the lithium atom in strong magnetic fields. Phys. Rev. A,1998.57(5):p.3793-3800.
    [53]H. X. Qiao and B. W. Li, Calculations of lithium in magnetic fields with a modified freezing full-core method. Physical Review A,2000.62(3).
    [54]X. X. Guan and B. W. Li, Energies and oscillator strengths of lithium in a strong magnetic field. Physical Review A,2001.63(4).
    [55]X. F. Wang and H. X. Qiao, Full-core-plus-correlation method in cylindrical coordinates: Lithium atom in strong magnetic fields. Physical Review A,2007.75(3).
    [56]O. A. Al-Hujaj and P. Schmelcher, Lithium in strong magnetic fields. Physical Review A, 2004.70(3).
    [57]G. W. F. Drake, in Long-Range Casimir Forces:Theory and Recent Experiments on Atomic Systems F. S. Levin D. A. Micha ed1993, New York:Plenum.
    [58]G. W. F. Drake and Z. C. Yan, Energies andrelativistic corrections for the Rydberg states of helium:Variational results and asymptotic analysis. Phys. Rev. A,1992.46(5):p. 2378-2409.
    [59]G. W. F. Drake and Z. C. Yan, Variational eigenvalues for the S states of helium. Chem. Phys. Lett,1994.229(4-5):p.486-490.
    [60]F. W. King and V. Shoup, Calculations on the 2S ground state of the lithium atom. Phys. Rev. A,1986.33(5):p.2940-2948.
    [61]F. W. King, Calculations on the 2S ground state of Be ii. Phys. Rev. A,1988.38(12):p. 6017-6026.
    [62]F. W. King, Calculations on the 2S ground states of some members of the Li isoelectronic series. Phys. Rev. A 1989.40(4):p.1735-1747.
    [63]F. W. King, Calculations on the low-lying excited 2S states of some members of the Li isoelectronic series. Phys. Rev. A,1991.43(7):p.3285-3298.
    [64]D. K. McKenzie and G. W. F. Drake, Variational calculation for the ground state of lithium and the QED corrections for Li-like ions. Phys. Rev. A,1991.44(11):p. R6973-R6976.
    [65]D. K. McKenzie and G. W. F. Drake, Erratum:Variational calculation for the ground state of lithium and QED corrections for Li-like ions [Phys. Rev. A 44, R6973 (1991)]. Phys. Rev. A,1993.48(6):p.4803-4803.
    [66]J. Pipin and D. M. Bishop, Accurate variational calculations of energies of the 22S,22P, and 32D states and the dipole, quadrupole, and dipole-quadrupole polarizabilities and hyperpolarizability of the lithium atom. Phys. Rev. A,1992.45(5):p.2736-2743.
    [67]A. Luchow and H. Kleindienst, An efficient basis selection procedure for the reduction of the dimension in large Hylleraas-CI calculations. Chem. Phys. Lett,1992.197(1-2): p.105-107.
    [68]G. W. F. Drake and Z.-C. Yan, Asymptotic-expansion method for the evaluation of correlated three-electron integrals. Phys. Rev. A,1995.52(5):p.3681-3685.
    [69]F. W. King, Radial electronic density functions for selected low-lying excitedΛ{2}S states of the Li i isoelectronic series. Physical Review A,1991.44(5):p.3350-3353.
    [70]F. W. King, Analysis of some integrals arising in the atomic three-electron problem. Physical Review A,1991.44(11):p.7108-7133.
    [71]F. W. King, K. J. Dykema and A. D. Lund, Calculation of some integrals for the atomic three-electron problem. Physical Review A,1992.46(9):p.5406-5416.
    [72]I. Porras and F. W. King, Evaluation of some integrals for the atomic three-electron problem using convergence accelerators. Physical Review A,1994.49(3):p. 1637-1645.
    [73]F. W. King, Calculation of the hyperfine constants for the low-lying excitedΛ{2}S states of the lithium atom. Physical Review A,2007.76(4):p.042512.
    [74]P. J. Pelzl, G. J. Smethells and F. W. King, Improvements on the application of convergence accelerators for the evaluation of some three-electron atomic integrals. Physical Review E,2002.65(3):p.036707.
    [75]F. W. King, D. G. Ballegeer, D. J. Larson, P. J. Pelzl, S. A. Nelson, T. J. Prosa and B. M. Hinaus, Hylleraas-type calculations of the relativistic corrections for the ground state of the lithium atom. Physical Review A,1998.58(5):p.3597-3603.
    [76]P. J. Pelzl and F. W. King, Convergence accelerator approach for the high-precision evaluation of three-electron correlated integrals. Physical Review E,1998.57(6):p. 7268-7273.
    [77]A. Scrinzi and B. Piraux, Two-electron atoms in short intense laser pulses. Physical Review A,1998.58(2):p.1310-1321.
    [78]P. A. M. Dirac, Principles of Quantum Mechanics. Fourth Edition, ed. Clarendon Press1958, Oxford.
    [79]E. A. Hylleraas and B. Undheim, Numerische Berechnung der 2S-Terme von Ortho-und Par-Helium. Z. Phys.,1930.65(11-12):p.759-772.
    [80]J. K. L. MacDonald, Successive Approximations by the Rayleigh-Ritz Variation Method. Phys. Rev,1933.43(10):p.830-833.
    [81]J. K. L. MacDonald, On the Modified Ritz Variation Method. Physical Review,1934. 46(9):p.828-828.
    [82]E. A. Hylleraas, fiber den Grundzustand des Heliumatoms. Z. Phys.,1928.48(7-8):p. 469-494.
    [83]E. A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys,1929.54(5-6):p.347-366.
    [84]A. R. Edmonds, Angular Momentum in Quantum Mechanics, ed. P. University 1985, Princeton, NJ.
    [85]J. F. Perkins, Atomic Integrals Containing r23λ r3μ r12v. J. Chem. Phys,1986.48(5):p. 1985
    [86]D. M. Brink and G. R. Satcher, Angular Momentum 2nd edition1968, Oxford:Clarendon
    [87]C. A. Nicolaides, G. Aspromallis and D. R. Beck, Bound excited states of atomic negative ions. Journal of Molecular Structure:THEOCHEM,1989.199(283).
    [88]E. Hol(?)ien and J. Midtdal, On a Metastable Energy State of the Negative Helium Ion Proceedings of the Physical Society. Section A,1955.68(815).
    [89]E. Hol(?)ien and S. Geltman, Variational Calculations for Quartet States of Three-Electron Atomic Systems. Phys. Rev.,1967.153(81).
    [90]A. V. Bunge and C. F. Bunge, Improved calculation of the electron affinity of He Is 2s Λ{3}S. Phy. Rev. A,1984.30(5):p.2179-2182.
    [91]A. V. Bunge and C. F. Bunge, Electron affinity of helium (Is2s) 3S. Phy. Rev. A,1979.19: p.452.
    [92]B. F. Davis and K. T. Chung, Complex-rotation method for spin-induced autoionization. Phy. Rev. A,1987.36(1948).
    [93]H. P. Saha and R. N. Compton, Theoretical studies of the photophysics of He-(1s2s2p) 4P0. Phys. Rev. Lett.,1990.64:p.1510-1513.
    [94]G. Miecznik, T. Brage and C. F. Fischer, Autoionization studies of the Is2s2p 4P5/2 levels in He, Liⅳ and Beⅱ. Phy. Rev. A,1993.47(3718).
    [95]C. W. Walter, J. A. Seifert and J. R. Peterson, Reexamination of the He Is2p24Pe shape resonance:Details of its properties and a precise electron affinity for He 23S. Phys. Rev. A,1994.50:p.2257.
    [96]B. Brehm, M. A. Gusinow and J. L. Hall, Electron Affinity of Helium Via Laser Photodetachment of its Negative Ion. Phys. Rev. Lett.,1967.19:p.737-741.
    [97]J. R. Peterson, Y. K. Bae and D. L. Huestis, Threshold Behavior near an Electronic Shape Resonance:Analysis of the He(3P) Threshold in He- Photodetachment and Determination of the He(23S) Electron Affinity. Phys. Rev. Lett.,1985.55:p.692
    [98]T. Andersen, L. H. Andersen, P. Balling, H. K. Haugen, P. Hvelplund, W. W. Smith and K. Taulbjerg, Metastable-ion lifetime studies utilizing a heavy-ion storage ring: Measurements on He-. Phys. Rev. A 1993.47 p.890-896.
    [99]D. R. Beck and C. A. Nicolaides, How many bound states do H and H2- have? Chemical Physics Letters,1978.59(3):p.525-528.
    [100]K. T. Chung, Triply excited bound state of He-and the isoelectronic sequence. Physical Review A,1979.20(3):p.724-726.
    [101]C. A. Nicolaides and Y. Komninos, Possibility for VUV and x-ray tunable atomic lasers. Chemical Physics Letters,1981.80(3):p.463-468.
    [102]C. A. Nicolaides, Y. Komninos and D. R. Beck, Bound states and decay mechanisms of He. Phys. Rev. A,1981.24:p.1103-1106.
    [103]M. Agentoft, T. Andersen and K. T. Chung, Optical emission from the (2p2p2p) 4S0 states in three-electron systems. J. Phys. B:At. Mol. Opt. Phys.,1984.17:p. L433-L438.
    [104]B. F. Davis and K. T. Chung, Radiative decay of triply excited 2p2np 4,2S° states to the Is2pmp 4.2P states in lithiumlike ions. Phy. Rev. A,1990.42:p.5121.
    [105]E. Trabert, P. H. Heckmann, J. Doerfert and J. Granzow, Search for the spectrally narrow radiative decay of 2p3 4S°3/2 in He-J. Phys. B:At. Mol. Opt. Phys.,1992.25:p. L353
    [106]E. J. Knystautas, Observation of a triply excited state in He-. Physical review letters 1992.69(18):p.2635-2637.
    [107]P. Kristensen, U. V. Pedersen, V. V. Petrunin, T. Andersen and K. T. Chung, Binding energy of the metastable He-ion. Phys. Rev. A,1997.55:p.978.
    [108]M. L. Bylicki and G. Pestka, Bound states of He. J. Phys. B:At. Mol. Opt. Phys.,1996. 29:p. L353-L357.
    [109]J. M. Mercero, J. E. Fowler, C. Sarasola and J. M. Ugalde, Bound excited states of H and He-in the statically screened Coulomb potential. Phy. Rev. A,1997.57:p.2550.
    [110]K. T. Chung, Ionization potential of the lithiumlike Is22s states from lithium to neon. Phys. Rev. A,1979.44:p.5421-5433.
    [111]X. Guan, B. Li and L. Wu, Strong magnetic-field effects on the states of helium negative ion below the He(N=2) threshold. Phy. Rev. A,2001.64(4):p.043402.
    [112]K. T. Chung, Relativistic effects of the 1s 2s 2pΛ{4}P of HeΛ{-}. Phy. Rev. A,1984. 29(2):p.439-441.
    [113]J. W. Hiby, Massenspektrographische untersuchungen an wasserstoff-und heliumkanalstrahlen. Ann. Phys. (Leipzig),1939.34:p.473.
    [114]J. R. Peterson, M. J. Coggiola and Y. K. Bae, Measurement of the Is2p2p'4Pe Resonance in He- Photodetachment. Phys. Rev. Lett.,1983.50:p.664.
    [115]J. Xi and C. F. Fischer, Photodetachment cross section of He'(Is2s2p 4Po)in the region of the Is detachment threshold. Phy. Rev. A,1999.59:p.307.
    [116]O. Zatsarinny, T. W. Gorczyca and C. F. Fischer, Photodetachment of He- Is2s2p 4Po in the region of the Is threshold. J. Phys. B:At. Mol. Opt. Phys.,2002.35:p. 4161-4178.
    [117]N. Berrah, J. D. Bozek, G. Turri, G. Akerman, B. Rude, H. L. Zhou and S. T. Manson, K-Shell Photodetachment of He-:Experiment and Theory. Phys. Rev. Lett.,2002 88 (9):p.093001.
    [118]R. C. Bilodeau, J. D. Bozek, A. Aguilar, G. D. Ackerman, G. Turri and N. Berrah, Photoexcitation of He-Hollow-Ion Resonances:Observation of the 2s2p2 4P State. Phy. Rev. Lett,2004.93:p.193001.
    [119]D. J. Nicholas, C. W. Trowbridge and W. D. Allen, Lifetime of a Negative Helium Ion. Phy. Rev.,1968.167:p.38.
    [120]L. M. Blau, R. Novick and D. Weinflash, LIFETIMES AND FINE STRUCTURE OF THE METASTABLE AUTOIONIZING (1s2s2p)4PJ STATES OF THE NEGATIVE HELIUM ION. Phy. Rev. Lett.,1970.24:p.1268.
    [121]A. Wolf, K. G. Bhushan, I. Ben-Itzhak, N. Altstein, D. Zajfinan, O. Heber and M. L. Rappaport, Lifetime measurement of He-using an electrostatic ion trap. Phy. Rev. A, 1999.59:p.267.
    [122]P. Reinhed, A. Orban, J. Werner, S. Ros6n, R. D. Thomas, I. Kashperka, H. A. B. Johansson, D. Misra, L. Brannholm, M. Bjorkhage, H. Cederquist and H. T. Schmidt, Precision Lifetime Measurements of He-in a Cryogenic Electrostatic Ion-Beam Trap. Phy. Rev. Lett.,2009.103:p.213002.
    [123]D. L. Mader and R. Novick, Fine Structure of the Helium Negative Ion. Phy. Rev. Lett., 1972.29:p.199.
    [124]T. Andersen, H. K. Haugenc and H. Hotop, Binding Energies in Atomic Negative Ions: Ⅲ. J. Phys. Chem. Ref. Data,1999.28:p.1151.
    [125]T. Y. Wu, LⅩⅤⅢ. Estimation of electron affinities of He, Li, and F. Phil. Mag.,1936.22: p.837
    [126]B. Brehm, M. A. Gusinow and J. L. Hall, Electron Affinity of Helium Via Laser Photodetachment of its Negative Ion. Phys. Rev. Lett,1967.19:p.737-741.
    [127]V. A. Oparin, R. N. Ilin, I. T. Serenkov and E. S. Solovev, Negative ion excited states and determination of their energy by electron detachment by an electric field.Zh. Eksp. Teor. Fiz [Soviet Physics JETP],1974.66:p.2008.
    [128]K. T. Chung and X. W. Zhu, Improved nonrelativistic energies for Is22p systems using a restricted variation method Phys. Scr,1993.48:p.292.
    [129]G. W. F. Drake, Theoretical energies for the n= I and 2 states of the helium isoelectronic sequence up toZ= 100. Can. J. Phys,1988.66:p.586-611.
    [130]U. V. Pedersen, M. Hyde, S. P. Moller and T. Andersen, Lifetime measurement of He-utilizing an electrostatic ion storage ring. Phy. Rev. A,2001.64:p.012503.
    [131]V. V. Petrunin, M. H. Jacobsen, L. B. Madsen, S. A. Aseyev and T. Andersen, Photodetachment of He-in the Vicimty of the Two-Electron Escape Threshold. Phy. Rev. Lett.,2003.90:p.013002.
    [132]H. L. Zhou, S. T. Manson, L. V. Ky, A. Hibbert and N. Feautrier, Photodetachment of He- Is2s2p 4Po in the region of the Is threshold. Phy. Rev. A,2001.64:p.012714.
    [133]Z.C.Yan and G. W. F. Drake, Eigenvalues and expectation values for the Is22s2S, Is22p 2P, and Is23d2D states of lithium. Phy. Rev. A,1995.52:p.3711.
    [134]K. T. Chung, Channel coupling and exchange interaction in negative ions. Phy. Rev. A, 1998.589(4):p.2777.
    [135]Y. Accad, C. L. Pekeris and B. Schiff, S and P States of the Helium Isoelectronic Sequence up to Z=10. Phys. Rev. A 1971.4:p.516-536.
    [136]C. L. Pekeris, Ground State of Two-Electron Atoms. Phys. Rev.,1958.112:p. 1649-1658.