汽车电磁制动器设计关键技术研究及集成平台构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁制动器在国外已普遍应用于拖挂式车辆制动系统中,作为关系汽车安全的关键部件之一,其性能的好坏将直接影响汽车整车的安全性能。当前,汽车技术的发展对电磁制动器的设计提出了高性能、低成本和短周期的要求,迫切需要借助计算机辅助设计技术为电磁制动器的设计提供支撑。
     本文针对电磁制动器设计的关键技术进行研究,以建立电磁制动器集成设计平台为目标,主要开展了以下几个方面的研究内容:
     对汽车列车制动力匹配技术进行了研究,确定了牵引车和房车的制动力分配系数,依据相关标准运用制动器与整车性能相匹配的理论,建立了房车所需制动力矩的数学模型,用以对制动器进行选型设计,并给出了集成设计平台中整车匹配模块的算法流程图。
     通过对鼓式电磁制动器力学性能的分析和研究,提出了一种实用的鼓式制动器制动效能因数的计算方法,并给出了相关的计算公式。基于鼓式电磁制动器结构参数对制动效能因数的敏感性分析,以制动效能为优化目标,建立了制动器优化设计数学模型,确定了鼓式电磁制动器优化设计的主要结构参数。通过分析优化设计的约束条件,给出了基于Matlab的Fmincon函数的程序优化算法和实现方法。建立了基于ADAMS的电磁制动器虚拟样机模型,通过试验和仿真,比较优化前后制动器的性能,验证了优化设计方法的有效性及虚拟样机模型的正确性。
     从研究电磁制动器的工作机理出发,分析了电磁体制动时的工作姿态及其表面磨损的情况,为实现电磁体表面均匀磨损和抗旋转趋势,提出了电磁体的优化设计方案。基于电磁体表面内侧开槽的非对称设计构想,计算了理论开槽面积。利用三维电磁场分析软件Maxwell 3D对非对称结构电磁体进行了仿真分析,以仿真结果对理论分析及设计作出了合理修正,从而得到了最佳的开槽结构。通过将对称结构和自制非对称结构的电磁体做耐久性磨损试验对比,验证了非对称结构电磁体的磨损均匀性明显提高及电磁体优化设计的合理性。
     通过对稳健优化设计原理与方法的研究,将基于损失模型的稳健设计方法应用于制动器的设计,将影响制动器输出特性的因素划分为可控因素和噪声因素,并应用传统优化思想,确定了各因素的中心值及波动。通过正交试验,计算出试验结果,进行直观分析或方差分析,获取每个因素对试验结果影响的重要程度,最终得出了各因素对产品质量的贡献率;将基于响应面模型的稳健设计方法应用于电磁体的设计,通过试验获得电磁体相关数据,并运用回归的方法建立了响应面模型。将传统的稳健设计方法与现代计算方法相结合,运用Matlab中相关的优化函数,获得了电磁体稳健点以及电磁体所应具有的输出特性。
     通过分析电磁制动器设计过程及其影响因素,研究并分析了电磁制动器集成设计平台的内涵,提出了基于集成设计平台的电磁制动器设计过程,建立了集成设计平台的运作体系和系统体系,分析了集成设计平台的体系结构特征;通过分析电磁制动器设计过程中的基本数据元素和模型,建立了由组织、过程和产品三个视图组成的多视图集成数据模型,提出了基于数据库的主模型数据一致性管理方法,实现了平台的数据集成;提出了基于组件技术思想建立集成设计平台应用集成的方法,给出了组件形式化定义及集成设计平台中应用组件接口,提出了集成平台中组件的分类方法和原则,给出了组件互操作的实现方案,并详细论述了相关应用软件的集成方法。最后,通过集成设计平台的开发及相关功能模块的建立,验证了研究成果的可行性、有效性和实用性。
Electromagnetic brake has been widely used in the tractor/trailer braking system abroad, as one of critical parts in automobile, the performance of it influences the safety performance of automobile directly. In nowadays, with the development of automobile, higher performance, lower cost, and shorter lifecycle have become new requirements for the designing of electromagnetic brake. Consequently, the computer aided design technology is an instant need to provide the technical support.
     With a purpose to establish an integrated design environment for the designing of electromagnetic brake, the key technologies related are researched in this paper. The main contents and contributions of the paper are summarized as follows:
     The matching technology between drum electromagnetic brake and vehicle is studied and the braking force distribution coefficient of the tractor and trailer is confirmed. According to the related standard, the mathematic model of the braking moment which the electromagnetic brake should provide has been ascertained using the matching theory. The matching technology of trailer train brake system has been introduced in the type selection and analysis of the brakes. The algorithm flow of the vehicle matching module of the intergated design environment has been given.
     Based on the study and analysis of mechanical theory of electromagnetic brake, an applied formula of brake factor is provided in this paper. Based on the analysis of sensibility about drum electromagnetic brake to brake factor, the structure parameters for optimization and mathematic model of the drum brake are ascertained taking the braking efficiency as optimum goal. The optimization algorithm of the structure parameters based on the tools of Matlab is also presented. The virtual prototype of electromagnetic brake is built using ADAMS. The effectiveness of optimum design method and the validity of virtual prototype are verified by comparing the braking performance around optimization.
     Based on the study of the brake mechanism, the work posture and wear performance of the electromagnet are analyzed, and the optimum design plan of electromagnet is proposed to realize the even wear of the electromagnet surface and decrease the revolving tendency. Based on the unsymmetrical design of magnetic circuit by means of slotting inside, the theory slot area is calculated. As the complex shape of the magnetic circuit, by using the electromagnetic analysis software Maxwell 3D for the simulation analysis, the simulation results amend the theoretical analysis to achieve the best unsymmetrical structures. By wearing comparison of the symmetrical and unsymmetrical electromagnet, the testing result indicates that the unsymmetrical electromagnet obviously surpasses the symmetrical structure and optimum design plan is reasonable.
     For the brake, based on going deep into analyze robust design on losing model, this paper founds mathematic model on brake, and separates all factors which can influent the quality of output into under-control factors and noise factors, then confirms the center values and fluctuations of each factor. Thereafter, via orthogonal test, works out the test results. At last, through intuitionist analyses or differential analyses, the significant degree of each factor in influent the test result and the contribute ratio of each factor in influent the quality of output can be known. For the electromagnet, based on going deep into analyze robust design on response surface model, this paper gets test results about electromagnet through orthogonal test, and gained response surface model with regressive method. Combining traditional robust design methods with modern calculate methods; this article gets robust points and output of electromagnet under correlative optimization functions in Matlab.
     An analysis on the electromagnetic brake design process and its influence factors are given and it is followed by an intense study on the connotation of the integrated design environment; on the basis of which this paper demonstrates the electromagnetic brake design process in the integrated design environment. In addition, the operation architecture and the system architecture of the integrated design environment are further build with an analysis of the architecture features.
     By analyzing the basic data elements and models of electromagnetic brake design process, this paper presents a multi-view integrated data model consisting of organization, process and product views. Meanwhile, a data consistency management method based on the databased master model is addressed. The method of the application integration based on component technology thought and the formalization definition of software components are presented. The component interface developing criterion is proposed as well. Taxonomic approach, principle of the component and implementation of component's interoperability are introduced. The technology of the integration of related software has also been discussed. At last, by applying the theories and methods studied above to practice, the research offers an integrated design environment of electromagnetic brake, the effectiveness and practicality of the research result are verified.
引文
[1]WILLIAM F P,IRV1NGTON N J.Assignor to empire electric brake corporation,a corporation of Delaware electromagnetically controlled apparatus and method:US,2273065[P].1942-02-17
    [2]何仁,李强.汽车线控转向技术的现状与发展趋势[J].交通运输工程学报,2005第6期:69-70
    [3]吴伟仁.军工制造业数字化[M].北京:原子能出版社,2005
    [4]Dwyer M J.The braking performance of tractor-trailer combinations.Journal of Agricultural Engineering Research,(1970),15(2),148-162
    [5]Hoffmann H;Breuer B.Uber die Bremssicherheit landwirtscaflicher Zuge auf der Stra e und im Gelande.Grtmdlagen der Landtechnik,(1983),33(6),178-183
    [6]Jukka Ahokas,Simo Kosonen.Dynamic Behaviour of a Tractor-trailer Combination during Braking.Biosystems Engineering(2003) 85(1),29-39.
    [7]Feetenby,Paul,Hurst.Trailer brake control[P].U.S Patent:6273522,2001-08-14
    [8]F.W.Kienhofer,D.Cebon.An investigation of ABS strategies of articulated vehicles.(2004),8th International Symposium on Heavy Vehicle Weights and Dimensions,Midrand,South Africa.
    [9]李源孰.用线性回归方法计算半挂汽车列车制动力分配和同步附着系数[J].公路交通科技,1991第3期,36-42
    [10]侯建章.双挂式汽车列车制动系设计及制动稳定性初探[J].汽车研究与开发.1994第1期,35-39
    [11]徐达,吴伟蔚.半挂汽车列车轴间制动力分配的优化设计[J].武汉汽车工业大学学报,1996第1期,1-5
    [12]夏长高.半挂汽车列车转弯制动性能的模拟计算[J].江苏理工大学学报,1997年第1期,50-55
    [13]姜丰,洪岩,王铁光等.半挂汽车列车高速行驶转弯制动特性分析[J].东北大学学报(自然科学版),1998第6期,652-655
    [14]Sebastien E.Gay,Mehrdad Ehsani.Optimized design of an integrated eddy-current and friction brake for automotive applications.Vehicle Power and Propulsion,2005 IEEE Conference,On page(s):290-294
    [15]Dr.Ralf Meske,FE-DESIGN GmbH.Parametric Optimization of a Brake Assembly Regarding NVH using OPTIMUS and ABAQUS(2006)
    [16]Dr.Himanshu Misra,Dr.Wayne Nack,etc.Brake Analysis and NVH Optimization Using MSC.NASTRAN.
    [17]杨晓明,邱清盈,冯培恩等.盘式制动器的全性能优化设计[J].中国机械工程,2005第16卷第7期,630-633
    [18]成林,张文明.矿用汽车钳盘式制动器优化设计[J].矿业研究与开发,2008第28卷第1期,41-43
    [19]姜平,黄文娟.基于MATLAB的盘式制动器优化设计[J].机械工程自动化,2007第6期,160-161
    [20]吴军,李为吉.基于改进粒子群算法的盘式制动器优化设计[J].机械设计与制造,2007第4期,18-20
    [21]张义民,贺向东.钳式盘形制动器的多目标可靠性优化设计[J].中国机械工程,2004第15卷第2期,175-177
    [22]米洁,吴欲龙.多目标优化方法在汽车盘式制动器设计中的应用[J].机械传动,2007第31卷第5期,71-73
    [23]高瞩.遗传算法在盘式制动器优化设计中的应用[J].机床与液压,2003 N o.5,132-133 196
    [24]黄其柏,周明刚,王勇.基于遗传算法的鼓式制动器结构参数优化设计[J],机械制造.2006第44卷第507期,24-26
    [25]米洁,吴欲龙.汽车鼓式制动器多目标优化设计[J].机械设计与制造,2007第1期,25-26
    [26]田口玄一著,魏锡禄、王世芳译.实验设计法[M].北京:机械工业出版社,1987.12
    [27]王忠铭编著.产品设计开发的质量管理[M.上海:上海科学技术出版社,1984.9
    [28]中国现场统计研究会三次设计组、全国总工会电教中心编.正交法和三次设计[M].北京:科学出版社,1985.12
    [29]中国现场统计研究会三次设计组编著.可计算性项目的三次设计法[M].北京:科学出版社,1985.3
    [30]栾军编著.试验设计的技术与方法[M].上海:上海交通大学出版社,1987.10
    [31]陈魁著.实验设计与分析[M].北京:清华大学出版社,1996.8
    [32]姬振豫编著.正交设计[M].天津:天津翻译出版公司,1994.4
    [33]韩之俊主编.三次设计[M].北京:机械工业出版社,1992.1
    [34]李泳鲜、曹健.汽车主减速器双面齿轮的参数设计法[J].世界汽车,1995第6期,18-20
    [35]李泳鲜、张和平、韩桂林.准双曲面齿轮的三次模糊设计[J].工程设计,1998第2期,26-29
    [36]陈立周、翁海珊.工程稳健优化设计[J].机械设计,1998第8期,6-9
    [37]陈立周.工程稳健设计的发展现状与趋势[J].中国机械工程,1998年第6期,59-62
    [38]张蕾、卢玉明、石军.高速、中载圆柱齿轮减速器的稳健设计[J].机械设计,1998第10期,10-12
    [39]常亮明.稳健设计的双响应面法[J].中国机械工程,1998第8期,32-35
    [40]李永华,宋彦明.基于物理规划的起重机主梁稳健优化设计[J].机械设计与研究,2006第5期,78-81
    [41]于成祥,何志刚,瞿晓彬等.轻型货车车架的多目标稳健优化设计[J].机械设计与制造,2007第8期,56-58
    [42]窦毅芳,王中伟,张为华.稳健优化设计及其在固体火箭发动机装药设计中的应用[J].固体火箭技术,2007第6期,478-481
    [43]张志红,何桢,郭伟.望目特性稳健参数设计优化标准的构建[J].机械工程学报,2008第4期,133-137
    [44]张瑞红.基于数学模型的现代稳健优化设计[D].河北工业大学,硕士学位论文,2001
    [45]陈建江.现代稳健优化设计理论及其工程应用[D].武汉理工大学,硕士学位论文,2001
    [46]赵小山.稳健设计及其在工业中的应用[D].西北工业大学,硕士学位论文,2001
    [47]何伟.稳健设计理论在液体动压滑动轴承中的应用研究[D].贵州工业大学,硕士学位论文,2002
    [48]William F,Penrose,Irvington.Electromagnetically Controlled Apparatus and Method Therefor [P].U.SPatent:2273065,1942-02-17
    [49]Grove,Leroy K.Electromagnet for brakes and clutches[P].U.S Patent:3760909,1973-02-28
    [50]Grove,Leroy K.Electromagnet for providing balanced friction face pressures on an armature in a vehicle electric brake system[P].U.S Patent:4004262,1977-01-18
    [51]Prokop.Electric Brake Magnet[P].U.S Patent:4386684,1983-06-07
    [52]李建辉,林德民,周毅坚.电磁式汽车制动器[zL].中国专利:01269710.9,2002.
    [53]D.S.Harrison.Electronic CAD Framework[C].Proceeding of the IEEE,1990,78(2):393-436
    [54]Peter J.ROhl,Raymond M.Kolonay,et al.A Federated Intelligent Product Environment [C].AIAA 2000-4902
    [55]Phillip H.Robidoux,Stephen H.Rousseau,James R.Stuble,et al.Integrated Design and Manufacturing for Navy FBM Program[R].ADA318777
    [56]Jeffrey V.Zweber,Hanee Kabis,William W.Follett,et al.Towards an Integrated Modling Environgment for Hypersonic Vehicle Design and Sythesis[C].AIAA 2002-5172
    [57]S Muller,M.Heise,O.Wagner.An Integrated Design Tool for Parafoil Systems[C].AIAA 2005-1674
    [58]Hart-Humphrey T.Engineering and Tool Integration[C].Proceeding of Computer Future in Engineering Design,Harvey Mudd College,1997
    [59]罗年猛,王启富,陈立平.飞航导弹方案设计系统集成平台的研究与实现[J].机械科学与技术,2006第1期,86-90
    [60]解红雨,张为华,王中伟.基于WEB的同体火箭发动机集成设计平台[J].推进技术,2007第1期,108-112
    [61]吴小国.基于CAD_CAE_PDM系统集成的液压支架设计平台研究[D].郑州大学,硕士学位论文,2007
    [62]张晓东,杨育,李国龙等.网络化协同设计环境下4C集成服务模型与平台研究[J].中国机械工程,2006第10期,1031-1035
    [63]A.Dewey.The Impact of NIIIP Virtual Enterprise Technology on Next Generation Manufacturing[C].Proceedings of Conference on Agile and Intelligent Manufacturing Systems,Troy,NY,October 2-3,1996
    [64]McQuay,W K.A Collaborative Engineering Environment for 21st Century Aviotronics.Aerospace Conference[C].1998,IEEE
    [65]李伯虎,柴旭东,朱文海等.复杂产品虚拟样机支撑平台的初步研究与开发[J].计算机仿真,2003第1期:4-8
    [66]李伯虎,柴旭东,熊光愣等.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报,2003第3期:336-341
    [67]李伯虎,柴旭东,朱文海等.复杂产品协同制造支撑环境技术的研究[J].计算机集成制造系统-CIMS,2003第8期:691-697
    [68]王云莉,肖田元,杨楠等.协同产品开发平台的研究与实现[J].计算机集成制造系统,2002第8期:640-644
    [69]解红雨.固体火箭发动机分布式集成设计平台及其关键技术研究[D].国防科技大学,博士学位论文,2006
    [70]G.Brunetti,B.Golob.A Feature-based Approach Towards an Integrated Product Modeling Including Conceptual Design Information[J].Computer-aided design,2000,32(11):877-887
    [71]Nicolaas Stuurstraas,Frits Tolman.A Product Modeling Approach to Building Knowledge Integration[J].Automation in Construction,1999,8(3):269-275
    [72]严隽琪,蒋祖华,马登哲.基于全息产品模型的虚拟加工[J].计算机集成制造系统,2000第5期:18-22
    [73]江丽君,文贵华.全息产品模型研究[J].计算机辅助工程,1999第11期:7-11
    [74]戴顺安,赵永顺,邓家褆.“多视图”全局集成产品模型研究[J].计算机集成制造系统,1997第6期:21-23
    [75]舒斌.中小型制造企业信息化协同产品开发原理与实施方法[D].四川大学,博士学位论文,2002
    [76]余军合.面向全生命周期虚拟产品模型的研究与应用[D].浙江大学,博士学位论文,2002
    [77]P GU,Kam Chan.Prodcut Modeling using STEP[J].Computer-Aided Design,1995,27(3):163-179
    [78]谢鹏寿,康永平.基于广义CAD系统集成的产品信息模型研究[J].中国机械工程,2006第17卷增刊,233-237
    [79]杜娟,田锡天,朱名铨等.基于STEP和STEP-NC的CAD/CAPP/CAM/CNC系统集成技术研究[J].计算机集成制造系统,2005第4期,487-491
    [80]Smasaharu Yoshiokaa,Yasushi Umedab,Hideaki Takedac,et al.Physical Concept Ontology for the Knowledge Intensive Engineering Framework[J].Advanced Engineering Informatics,2004,18(2):95-113
    [81]毛媛,刘杰,李伯虎.基于元模型的复杂系统建模方法研究[J].系统仿真学报,2002第4期:411-414
    [82]袁清珂,张道林,曹岩等.产品主模型技术的研究[J].中国机械工程,1999第1期:12-15
    [83]C.M.Hoffman,R.Joan-Arinyo.CAD and the Product Master Model[J].Computer-Aided Design,1999,30(11):905-918
    [84]C.M.Hoffman,R.Joan-Arinyo Distributed Maintenance of Multiple Product Views[J].Computer-AidedDesign,2000,32:421-431
    [85]Jenkins Bruce.Process Integration and Design Optimization Amplifying Competitive Advantage[EB/OL].2002 http://www.daratech.com/isight
    [86]郭忠全,赵勇,胡凌云等.基于XML的产品主模型技术研究[J].航天器工程,2007第4期:41-45
    [87]Mitchell M.Tseng,Jianxin Jiao,et al.A Framework of Virtual Design for Product Customization[C].Proceedings of IEEE International Conference on emerging technologies and factory automation,1997,7-14
    [88]赵文辉.电子产品并行设计方法及虚拟原型仿真环境研究[D].博士学位论文,国防科技大学,2002
    [89]胡锦敏,张申生.产品开发过程管理系统[J].高技术通讯,2002第2期:69-72
    [90]卢正鼎,汪涛,曹化工等.面向并行工程的产品设计过程管理的抽象模型[J].计算机辅助设计与图形学学报,2000第2期:121-126
    [91]谢列卫,潘松柏,祈国宁.面向对象的产品和过程集成研究[J].高技术通讯,1999第10期:6-9
    [92]侯俊杰,杨海成,袁娜等.面向对象的产品与过程开发建模研究[J].机械科学与技术,2001第5期:790-792
    [93]Yeh Raymond,Mittermeir R T.A commonsense management model[J].IEEE Software,1991,11:23-33
    [94]曹健,张申生,胡锦敏.面向并行工程的集成化产品开发过程管理系统研究[J].中国机械工程,2002第1期:80-83
    [95]檀润华,王庆禹.产品设计过程模型、策略与方法综述[J].机械设计,2000第11期:1-4
    [96]张莉,周伯生.崔德刚等.飞机全生命期过程建模技术及支持环境[J].北京航空航天大学学报,2001第4期:417-420
    [97]Khndakaram Salimifard,Mike Wright.Petri Net-based Modeling of Workflow Systems:an Overview[J].Euro.Journal of Operational Research,2001,134(3):664-676
    [98]M.Voorhoeve.Modeling and Verification of Workflow Nets[C].Proceeding of the Workshop on Workflow Management Net-Based Concepts,Models,techniques and tools,1998
    [99]Selma LIMAM,Pierre LADET.Towards a Communicating Petri Net Tool for Modeling Production Processes[C].Proceedings of the 24th International Conference on Computers and Industrial Engineering 2004.
    [100]Dongsheng Liu,Jianmin Wang,Stephen C.F.Chan,et al Modeling Workflow Processes with Colored Petri Nets[J].Computers in Industry,2002,49(5):267-281
    [101]Jongkun Lee,Ouajdi Korbaa.Modeling and Scheduling of Ratio-Driven FMS Using Unfolding Timed Petri Nets[J].Computers & Industrial Engineering,2004,46(2):639-653
    [102]陈禹六.IDEF建模分析与设计方法[M].清华大学出版社.1999
    [103]Ying Daisy Wang,Weiming Shen,Hamada Ghenniwa.WebBlow:a Web/agent-based Multidisciplinary Design Optimization Environment[J].Computers in Industry,2003,52(1):17-28
    [104]张和明,熊光愣.Web的多学科协同设计与仿真平台及其关键技术[J].计算机集成制造系统-CIMS,2003第8期:704-709
    [105]武安波,王建华,耿英三等.基于对象Web的远程有限元仿真服务研究[J].系统仿真学报,2002第2期:136-139
    [106]刘传文,苏宏业,褚健.一种新型企业综合集成应用的解决方案[J].计算机集成制造系统,2005第1期:39-43
    [107]韩明红,邓家褆.复杂工程系统多学科设计优化集成环境研究[J].机械工程学报,2004,第9期:100-105
    [108]余志生.汽车理论(第二版)[M].北京:机械工业出版社,1998
    [109]周孔亢.车辆理论基础(第二版)[M].北京:兵器工业出版社,2002
    [110]刘惟信.汽车设计[M].北京:清华大学出版社,2001
    [111]陆永华.拖挂式防车制动控制策略的研究[D].硕士学位论文,江苏大学,2005
    [112]刘惟信.汽车制动系的结构分析与设计计算[M].北京:清华大学出版社,2004
    [113]赵幼平.鼓式制动器制动力矩的计算研究[J].汽车工程,1996第6期:360-364
    [114]陈效华,昌庆铃,李记峰.基于参数化的制动器设计方法研究[J].机械设计与制造工程,2002第1期:11-15
    [115]姚明.基于UG的车辆鼓式电磁制动器优化设计系统研究[D].硕士学位论文,江苏大学,2006
    [116]陈克.利用Matlab优化设计汽车鼓式制动器[J].机械设计与制造,2003第4期:18-19
    [117]MathWroks Inc.MATLAB Application Program Interface Guide Ver 5.Math Works Inc,1998
    [118]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2002
    [119]李军,刑俊文,覃文杰.ADAMS实例教程[M].北京:北京理工大学出版社,2002
    [120]金栋平,胡海岩.碰撞振动及其典型现象[J].力学进展,1999第2期:155-164
    [121]Earl A.Beck,Ken E.Kalies.Electromagnet Mount for an Electric Brake[P].U.S.Patent:5189324,1993-02-13
    [122]仲文才,全力.电磁制动器之电磁体的优化设计研究[J].拖拉机与农用运输车,2005第3期:20-21
    [123]陈照章,魏巍,全力等.磁路形状对电磁制动器制动安全性的研究[J].中国安全科学学报,2005第10期:53-56
    [124]刘向群.自动控制元件[M].北京:北京航空航天大学出版社,2001
    [125]李泉凤.电磁场数值计算与电磁体设计.北京:清华大学出版社,2002
    [126]J.A.埃德米尼斯特尔.工程电磁场基础.北京:科学技术出版社,2002
    [127]魏巍.拖车电磁制动器电磁场及防抱控制仿真[D].硕士学位论文,江苏大学,2005
    [128]邹继斌,刘宝廷,崔淑梅等.磁路与磁场[M].黑龙江:哈尔滨工业大学出版社,1998
    [129]陈骏,丁建宁,蔡兰等.纳观摩擦机理研究进展[J].江苏大学学报(自然科学版),2002第3期:23-28
    [130]杨鑫宏,胡忠辉,张伟等.平面研磨中基于磨具均匀磨损的磨具设计方法研究[J].机械工程学报,2004第11期:183-187
    [131]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000
    [132]李仲兴.车辆电磁制动器电磁体结构优化机理及工艺研究[D].博士学位论文,江苏大学,2007
    [133]兵器工业无损检测人员技术资格鉴定考核委员会编.常用钢材磁特性曲线速查手册[M].机械工业出版社,2003
    [134]陈立周.稳健设计[M].北京:机械工业出版,2000
    [135]吴立群.尺寸、公差并行稳健设计模型研究[J].机电工程,2003第1期:54-56
    [136]姚建军.机枪系统动力学仿真及动力稳健优化设计方法研究[D].博士学位论文,南京理工大学,2002
    [137]陈入领,潘双夏,沈彤.稳健设计研究现状[J].机械设计,2003第8期:10-12
    [138]Shoemaker AC,Tsui KL,Wu CFJ.Economical experimentation methods for robust design[J].Technometrics,1991,33(4):415-427
    [139]G Geoff,Rey Vinina,Raymond et al.combining taguchi and response surface philosophies:A dual response approach.Journal of Qualify[J].Technology,1990,22(1):38-45
    [140]Daryl Pregibon.Review of generalized linear models[J].The Annuals of Statistics,1984,12(4):1589-1596
    [141]Michael W,Siddall JN.The optimization problems with optimal tolerance assignment and full acceptance[J].TransoftheASME,J.of Mech.Desing,1981,103:842-848
    [142]A Parkinson,C Sorensen,N Pourhassan.A general approach for robust optional design[J].Journal of Mechanical Design,1993,115:74-80
    [143]AD Belegundu,Shenghun Zhang.Robustness of design through minimum sensitivity[J].Journai of Mechanical Design,1992,114:213-217
    [144]郭鹏飞.汽车电磁制动器关键零部件的稳健优化设计[D].硕士学位论文,江苏大学,2006
    [145]熊俊涛,乔志德.基于响应面法的跨声速翼型气动优化设计[J].实验流体力学,2005第1期:104-109
    [146]谢列卫.集成产品开发过程的理论、方法与应用研究[D].博士学位论文,浙江大学,2000
    [147]段红,黄柯棣.基于仿真的采办体系结构[J].系统仿真学报,2001第2期:247-250
    [148]D.J.Amdahl,R.E.Peterkin Jr.,J.D.Blahovec,et al.Virtual Prototyping of RF Weapons[C].AIAA 2000-0959
    [149]U.Roy,N.Pramanik,R.Sudarsan,et al.Function-to-Form Mapping:Model,Representation and Application in Design Synthesis[J].Computer-Aided Design,2001,33:699-719
    [150]董正卫,田立中,付宜利.UG/OPENAPI编程基础[M].北京:清华大学出版社,2002
    [151]陈立平,张云清,任为群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [152]范文杰,徐进永,张子达.基于双向渐进结构优化法的装载机动臂拓扑优化[J].农业机械学报,2006第11期:24-27
    [153]刘顺祥,刘旺锁,宋晓婷.基于LabVIEW的数据库访问技术[J].船海工程,2007第3期:125-127
    [154]张林鍹.并行工程环境下面向装配的产品设计研究[D].博士学位论文,清华大学,1998
    [155]侯永涛,周孔亢.汽车电磁制动器虚拟装配系统的设计与实现[J].工程图学学报,2008第2期:61-66