基于激光后向散射的多光束风场位移测量及弱信号相关检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确的大气风场观测对提高全球长期天气预报和风暴预报的准确性、检测大气污染、改进气候研究模型、提高航天航空的安全性等具有重大意义。传统的多普勒激光测风雷达基于多普勒效应来测量风速。为克服多普勒激光测风仪中反射回波相位畸变,对激光器的波长、单模工作模式和频率稳定度要求高、使用维护不便等不足,本文提出并研制了一种基于激光后向散射的多光束风场位移测量法的激光测风仪。该系统通过采集激光光束传播路径上气溶胶团散射回来的光信号强度,确定气溶胶微粒通过多束平行激光光束的时间来计算风速。由于该系统测量的物理量是回波信号的强度,因此对激光源的单色性和频率稳定度无要求,系统可靠性高,结构简单,适用于低空风力测量,具有很好的工程实用性。本文所做的主要工作为:
     1.分析脉冲激光在风场中的传输特性,完善了基于小扰动理论的多光束位移测风理论,即根据激光后向散射回波信号间接测量气溶胶微粒经过等间距的多光束的时间来对风速进行测量;
     2.研制了多光束风场位移测风仪系统,该系统主要由激光发射系统、回波检测系统、数据处理模块和工作维护系统等组成。激光发射系统采用了20 Hz的YAG固体激光器作为激光源。为提高测量精度,利用光束角控制器和分束器后将激光脉冲分成三束。回波检测系统主要包括四象限APD探测器、对数增益放大器、基于FPGA的数字化仪、增益控制电路等。探测器和放大器直接影响着整个系统的测量精度。本系统采用低噪声、宽带宽、可变增益放大器芯片AD603。同时,本设计采取对数增益放大器进行级联的方式对弱信号有效地放大;
     3.设计了基于现场可编程门阵列(FPGA)的高速数据采集和缓存电路,该电路主要由模数转换芯片ADC08200、FPGA芯片EP2C8Q208C8和单片机系统C8051F120组成;其中,设计了实现高速数据缓存和传输控制的FPGA芯片,主要包括PLL时钟管理模块、前级FIFO缓冲模块、后级双口RAM存储模块以及FIFO和RAM的读写控制模块等,很好地完成了数据的缓存和异步读取,并且极大简化了A/D芯片接口电路结构和印制电路板设计的复杂性。并在开发环境Quartus II 6.1中对各个模块成功完成了综合及仿真。
     4.设计了针对低信噪比弱散射回波信号的信号处理模块。首先,为滤除接收机的热噪声、ADC转换器的量化噪声以及环境噪声等对激光回波信号的干扰,本系统采用中位值滤波器和FIR滤波器对采样回波信号进行滤波。其次,采用多脉冲互相关检测法进一步滤除噪声信号。理论研究结果表明,经过N个信号进行平均互相关后,信噪比将提高N1/2倍。
     5.采用光学互相关方法对探测得到的回波信号进行分析和计算得到风速和风向。其中包括峰值延时法、斜率法、频率法、Briggs法和协方差法。最后进行实地风场测量实验,包括固定距离处的风速实时测量,不同距离处的风速测量,以及系统在旋转一定角度时的风速测量,从而全面检测系统的测量精度。
     6计算了系统的响应时间和测量风场的占空比。另外,通过变化环境温度,得出了系统在40度以下均能够保持很高的精度。当系统工作于连续工作或者间隔工作状态时,只要能够对系统进行有效的降温处理,系统就能够长时间维持高精度测量状态。
     总体而言,本文详尽研究了基于多光束激光后向散射风场位移测量相关检测系统。该系统成功地克服了大气后向散射对高灵敏度探测的影响,解决了目标回波探测、低信噪比弱信号提取、空间滤波、精密延时和精确波门控制等技术,成功研制收发一体化系统。本系统具有距离分辨率为0.75米,测风误差有效控制在5%以内,并实现了对不同距离风场的实时准确监测。
Accurate observation of atmospheric wind field has great significance in improving long-term global weather forecasting and storm prediction accuracy, detection of air pollution, ameliorating climate research model and improving the safety of aerospace, etc. Traditional Doppler laser radars are based on the Doppler effect to measure wind speed. To overcome the instinct inadequatenesses such as phase distortion of reflected signals, rigorous demand of laser wavelength, single working mode and frequency stability, and inconvenient to use and mainten, a novel multi-laser beams displacement measurement (MLBM) system for high precision detection of flow fields based on laser backscatter is proposed in this work. Our system can collect signal strength of back-scattering light from the aerosol passing through propagation path of multi-laser beams. Then, we extract the time interval of the aerosol passing through parallel laser beams to calculate wind velocity. As the physical quantity of measurement of our system is the strength of echo signal, MLBM system has no limitation on monochrome and frequency stability of laser emitter. Therefore, MLBM system presents high reliability, simple structure, adaptation in wind measurement at low altitude, and good engineering practicability. Main contents of this articale are as follws.
     1. The transmission characteristics of impulse lasers in atmospheric is analysed, and the measuring theory of multi-laser beams based on small perturbation theory is consummated. According to the time interval of the aerosol passing through parallel and equidistant laser beams, wind velocity can be calculated;
     2. A novel multi-laser beams displacement measurement system is successfully designed and completed. MLBM system is mainly consisted of four subsystems: laser launch system, laser detection system, data-processing unit, and working security system. In the laser launch system, YAG solid-state laser was adopted as laser source. In order to improve measuring accuracy, output laser were divided into three beams by beam-angle controller and beam splitter. The laser detection system majorly embraces four-quadrant APD detectors, logarithmic gain amplifiers, digitizer based on FPGA, gain control circuit, et al. The APD detectors and amplifiers directly affect the accuracy of the system. Low-noise, wide bandwidth, variable gain amplifier chip AD603 was adopted as a gain amplifier. Meanwhile, two gain amplifiers were designed in a cascade structure to effectively amplify weak signals;
     3. High-speed data acquisition and buffer circuits are well designed, and they are mainly consisted of analog-digital conversion chip ADC08200, FPGA chip EP2C8Q208C8 and SCM System C8051F120. In this paper, the FPGA chips was well designed to achieve cache and transmission control of high-speed data to meet the actual demand, including PLL clock management module, the preceding stage of FIFO buffer module, the rear stage of dual-port RAM memory modules and the reading and writing control module of FIFO and RAM. It not only fulfilled caching and asynchronous data reading, but also greatly simplified the interface circuit structures of A/D chip and the design of printed circuit board. Synthesis and simulation of all modules was carried out using the program Quartus II6.1;
     4. Signal processing module for weak backscattering signals was successfully designed and completed. Firstly, to decrease the interference to echo signals by filtering thermal noise of signal receivers, quantization noise of ADC converter, and environmental noises, median filter and FIR filter were adopted to consult backscattering sampling signals. Then, multi-pulse cross-correlation detection method was used to further filter out noise. Theoretically, after consulted by N-pulse cross-correlation method, the SNR of backscattering signals was increased by N1/2 times;
     5. Optical cross-correlation method was adopted to analyze backscattering signals and calculate wind speed and wind direction, which embracing the peak delay method, slope method, frequency method, Briggs method and covariance method. Finally, experiments were carried out to measuring the wind field, including real-time measurement at a fixed distance, measurement of wind speeds at different distances, and conforming measurement by rotating the system to different direction. Thus, measuring accuracy of detection system can be comprehensively determined.
     6 The response time and duty cirle of wind measuring have been calculated. Moreover, our system can maintain a high measuring accuracy at the 40 celsius or lowerer by varing the surouding temperature. When the system is working at the continuous duty or the interval duty situation, a high measuring accuracy can also achieved in a long time by suitably cooling system.
     Overall, the MLBM system has been studied in detail. The system has successfully overcome the atmospheric backscattering effects of high-sensitivity detection, detected the target echo, extracted weak signals with low signal to noise ratio, achieved spatial filtering, precision delay and exact wave gate control technologies, and successfully developed transceiver system. The system has a range resolution of 0.75 meters, and the wind error is less than 5%. As a result, we successful realize monitoring the wind field at different distances in real time.
引文
[1] R. Atlas. The Potential Impact of Space-Based Lidar Winds on Weather Prediction: Update on Recent Experiments at the NASA DAO. Oxnard, CA, 2003:17-19
    [2] R. M. Htlffaker, T. R. Lawrence, M. J. Post, et al. Feasibility Studies for a Global Wind Measuring Satellite System: Analysis of Simulated Performance. Appl. Opt, 1984, 23:2532-2536
    [3] N. B. Negra, O. Holmstrm, B. Bakjensen, et al. Aspects of relevance in offshore wind farm reliability assessment. IEEE Trans. Energy Conv., 2007, 22:159-166
    [4] C. B. Hasager, A. Pe?a, M. B. Christiansen, et al. Remote Sensing Observation Used in Offshore Wind Energy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(1): 67-79
    [5] I. Antoniou, H. E. J?rgensen, T. Mikkelsen, et al. Offshore wind profile measurements from remote sensing instruments. http://www.risoe.dk/rispubl/art/2007_81_paper.pdf, 2007, 1-11
    [6] Xinping Bai, Zhenxin Song. The Estimation of Dust Aerosol Sources for the Numerical Simulation of Asian Dust Storms Observed in May 2005 in China. Geoscience and Remote Sensing Symposium, IEEE International Conference, 2006, 628-631
    [7] S. E. Schwartz, F. Arnold, J. P. Blanchet, et al. Group report: Connections between aerosol properties and forcing of climate. In Aerosol Forcing of Climate. New York, 1995, 251-280
    [8] J. A. McKay, D. J. Rees. Design of a direct-detection Doppler wind lidar for spaceflight. SPIE Proceeding,1998, 3494:250-258
    [9]刘源,刘继桥,陈卫标,人眼安全相干多普勒测风激光雷达全光纤单频激光器,中国激光, 2009, 36(7):1857-1860.
    [10]黄长城,田文斌,齐润东,等.我国研制的UHF多普勒测风雷达. Missles & Spacecraft, 1990, 4: 41-45
    [11] World Meteorologicak Organization. Preliminary statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas. WMO/TD, 1998
    [12] M. G. Bruce, C. Huailin, X. L. Steven, et al.. Wind Measurements with a 355 nm Molecular Doppler Lidar. Opt. Lett., 2000, 25(17): 1231-1233
    [13]周小林,孙东松,钟志庆,等.多普勒测风激光雷达研究进展.大气与环境光学学报, 2007, 2(3):161-168
    [14] P. Rabinowitz, S. Jacobs, R. Targ, et al. Homodyne detection of phase modulated light. Proc. IRE correspondence, 1962, 50:11-17
    [15] R. N. James, W. B. Babcock, H. S. Seifert. A laser-Doppler technique for the measurement of particle velocity. AIAA Journal, 1968, 6:160-162
    [16] R. M. Huffaker. Laser Doppler detection systems for gas velocity measurements. Appl. Opt, 1970, 9: 1026-1039
    [17] M. J. Post . Development of Coherent Laser Radar. IEEE Geoscience and Remote Sensing Symposium, 1994, 2: 923-925
    [18] R. M. Huffaker, A. V. Jelalain, J. A. L. Thomson. Laser-doppler system for detection of aircraft trailing vortices. Proceeding of the IEEE, 1970, 58:322-326
    [19] R. T. Menzies, R. M. Hardesty. Coherent Doppler lidar for measurements of wind fields. Proceeding of the IEEE, 1989, 77(3):449-462
    [20] J. Rothermel, L. D. Olivier, et al. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar. Optics Express, 1998, 2(2): 40-52
    [21] J. M. Vaughan, D. W. Brown, P.H. Davies, et al. Atmospheric backscatter at 10.6μm; a compendium of measurements made outside the United Kingdom by the airborne LATAS coherent laser radar velocimeter. RSRE Malvern Rep., 1987, 87002
    [22] J. V. Abreu. Wind measurements from an orbital platform using a lidar system with incoherent detection: an analysis. Applied Optics, 1979, 18(17): 2992-2997
    [23] G. B. Michelangeli, F. Congeduti, G. Fiocco. Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar. J. Atmos. Sci., 1972, 29:906-910
    [24] J. V. Abreu, P. B. Hays, W. R. Skinner, et al. The high resolution Doppler imager. Optics & Photonics News, 1991, 2(10):28-30
    [25] M. L. Chainin, A. Gamier, A. Hauchecome, et al. A Doppler lidar for measuring winds in the middle atmosplere. Geophysical Research Letters, 1989, 16:1273-1276
    [26] A. Garnier, M. L. Chanin. Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere, Appl. Phys, 1992,55: 35-40
    [27] P. A. Bernhardt', N. A. Gondarenko, P. N. Guzdar, Using radio induced fluorescence to determine the horizontal structure of ion layers in the mesosphere and lower thermosphere. Proceedings of SPIE, 2002, 4485: 281-291
    [28] T. Kobayashi, Y. Mizoguchi, T. Matsumura, et al. Development of a compact direct-detection Doppler lidar system for wind profiling. Proceedings of SPIE, 2001, 4153: 329-337
    [29] J. G. Yoe, M. K. R. V. Raja, R. M. Hardesty, et al. Ground winds 2000 field campaign: demonstration of new Doppler lidar technology and wind lidar data intercomparison. Proceedings of SPIE, 2003, 4893:327-336
    [30]宁平.广泛应用的激光雷达.电子工程信息, 2005, 5:45-46
    [31]潘静岩,李冬梅,郑永超,等. 2μm相干测风激光雷达研究,电光系统, 2007, 3:18-22
    [32] C. Flesia, C. L. Korb, C.Hirt. Double-edge molecular measurement of lidar wind profiles at 355 nm. Opt. Lett., 2000, 25(19):1466-1468
    [33] R. M. Htlffaker, T. R. Lawrence, M. J. Post, et al.. Feasibility Studies for a Global Wind Measuring Satellite System: A Nalysis of Simulated Performance. Appl. Opt., 1984, 23: 2532-2536
    [34] S.V.Nghiem, G. Neumann. New Method to Measure High-Resolution Wind from a Decade of NASA Satellite Scatterometer Data for Offshore Wind Energy Development. 2010 International Conference on Biosciences (BIOSCIENCESWORLD), 125 - 129
    [35]周军,岳古明,金传佳,等.探测对流层气溶胶的双波长米氏散射激光雷达.光学学报, 2000, 20(10):1412-1417
    [36]刘金涛,陈卫标,刘智深.高光谱分辨率激光雷达同时测量大气风和气溶胶光学性质的模拟研究.大气科学, 2003, 27(1):115-122
    [37] D. S. Sun, ZH. Q. Zhong, J. Zhou, et al. Accuracy analysis of the Fabry-Perot etalon based doppler wind lidar. Optical Review, 2005, 12(5): 409-414
    [38]孙东松,杨昭,薛国刚,直接探测测风激光雷达的性能分析,红外与激光工程, 2003, 32(2):115-118 (与9同)
    [39]孙东松,钟志庆,迟如利,等.1.06um直接米散射测风激光雷达的性能分析.激光与红外,2004, 34(6):412-514.
    [40]丁红星,孙东松,戴丽莉,等.离轴Mie散射激光雷达系统及其信号校准.红外与激光工程,2007, 36(6):842-845
    [41]钟志庆,孙东松,王邦新.基于Fabry-Perot标准具的多普勒测风激光雷达.红外与激光工程, 2006, 35(6):687-690
    [42] M. J. Post. Experimental measurements of atmospheric aerosol inhomogeneities. Optics Letters, 1978, 6(2):166~168
    [43] R. Frehlich. Simulation of laser propagation in a turbulent atmosphere. Appl. Opt., 2000, 39(3):393-397
    [44]张逸新,宋正方,龚知本.激光大气闪烁概率分布.科学通报, 1987, 10:747-750
    [45]宋正方,顾慰渝,韩守春.利用激光闪烁遥感风速.应用激光, 1983, 4(1): 1-6
    [46]吴健,杨春平,刘建斌.大气中的光传输理论,北京:北京邮电大学出版社, 2006年
    [47] V. I. Tatarskii, V. U. Zavorotnyi. Wave propagation in random media with fluctuating turbulent parameters. Opt. Soc. Am. A, 1985, 2(12): 2069-2072
    [48]宋正方.常用激光的大气衰减.激光杂志, 1988, 9(1):1-7
    [49]卫丽萍,钱锦霞,赵丽平,等.浅谈经纬仪测风, 2006, 1(74):24-26
    [50] D. K. Michael, J. K. Yoram, T. Didier, et al. Remote sensing of tropospheric aerosols from space: past, present, and future. Bulletin of the American Meteorological Society, 1999, 80(11):2229-2259
    [51] J. T. Dobler, B. M. Gentry, J. A. Reagan. Doppler lidar using aerosol backscatter and a frequency agile laser transmitter for profiling atmospheric winds in the planetary boundary layer. Geoscience and Remote Sensing Symposium of IEEE, 2002, 5:2687-2689
    [52] M. J. Matthew, W. R. Skinner, and I. D. Irgang. Incoherent doppler lidar for continuous measurement of wind and aerosol profiles. Geoscience and Remote Sensing Symposium, 1994. IGARSS '94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, 1994, 2: 934-936
    [53] K. D. Deepak, S. Veerabuthiran, J. P. Dudeja, et al. Optimization of doppler lidar system parameters for the measurement of atmospheric wind speed. SPIE, 2006, 6409:1-7
    [54] R. P. Leland. Requirements and models for adaptive optics in coherent lidar wind measurements. Proceeding of the 31st IEEE Conference, 1992, 4:3540-3541
    [55] M. W. Brian, P. B. Norman, P. Mulugeta, et al,“Modeling of Pulsed Lasers for Remote Sensing,”Proc. SPIE, 2005, 5653: 24-32
    [56]陈立新.大气激光通信系统的实验测量[硕士学位论文].西安:西安理工大学, 2005
    [57]陈建文.激光大气传输的信道及性能研究[博士学位论文].武汉:华中科技大学, 2007
    [58] E. W. Eloranta, S. D. Mayor, J. P. Garcia. Lidar measurements of vector wind fields Lasers and Electro-Optics. The Pacific Rim Conference, Seoul, Korea, 1999, 2: 143-144
    [59] J. S. Friedman, C. A. Tepley, and P. A. Castleberg, et al.. Middle atmosphere Doppler Lidar Using a Iodine-vapor Edge Filter. Opt. Lett., 1997, 22(21): 1648-1650
    [60] W. H. Sammy, M. H. Stephen. Advanced Coherent Lidar System for Wind Measurements. Proc. SPIE, 2005, 5887: 58870I:1-10
    [61] F. Schlottau, L. Youzhi, K. Wagner. Doppler LIDAR processing in spatial spectral holograms. 2005. OSA Topical Meeting on Information Photonics, 1-3
    [62] R. Frehlich,; N. Kelley. Measurements of Wind and Turbulence Profiles With Scanning Doppler Lidar for Wind Energy Applications IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(1): 42-47
    [63] R. M. Huffaker, R. M. Hardesty. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proceedings of the IEEE, 1996, 84(2):181-204
    [64] J. M. Cruickshank. Transversely excited atmosphere CO2 laser radar with heterodyne detection. Appl. Opt., 1979, 8: 290-293
    [65] C. Grund. Coherent doppler lidar for boundary layer wind measurement employing a diode-pumped Tm:Lu YAG laser. Proceeding 8th Coherent Laser Radar Conference, 1995, 14-16
    [66] S. W. Henderson, C. P. Hale, J. R. Magee, et al. Eye safe coherent laser radar system at 2.1μm using Tm,Ho:YAG laser. Opt. Lett., 1991,16:773-775
    [67] R. M. Huffaker, P. A. Reveley. Solid-state coherent laser radar wind field measurement systems. Pure Appl. Opt, 1998, 7:863-873
    [68] J. X. Wanga, M. Dehringb, C. Nardellb, et al.. Direct Detection Doppler Wind Lidar: Ground-based Operation to Space. Proc. SPIE, 2003, 5154: 93-104
    [69] M. G. Bruce, C. L. Korb. Edge technique for high-accuracy doppler velocimetry. Appl. Opt., 1994, 33(24): 5770-5777
    [70]沈法华,孙东松,陈敏.对基于Fizeau干涉仪的测风激光雷达的研究.红外与激光工程2006, 35(6):691-695
    [71] C. Flesia, C. L.Korb, Theory of the double edge molecular technique for doppler lidar wind measurement. Appl. Opt., 1999, 38(3):432-440
    [72] X. T. Sun, J. Q. Liu, J. Zhou, et al.. Frequency stabilization of a single-frequency all-solid-state laser for Doppler wind lidar. Chinese Opt. Lett., 2008, 6(9): 679-680
    [73] Q. Wang, S. Gogineni. A numerical procedure for recovering scattering coefficients from measurements with wide-beam antennas. IEEE Trans. Geosci. Remote Sens., 1991, 29: 778-783
    [74] J. L.álvarez-Pérez, S. J. Marshall, K. Gregson. Resolution improvement of ERS scatterometer data over land by Wiener filtering. Remote Sens. Envir., 2000, 71: 261-271
    [75] D. S. Early, D. G. Long. Image reconstruction and enhanced resolution imaging from irregular samples. IEEE Trans. Geosci. Remote Sens., 2001, 39: 291-302
    [76] J. Wang, J. Wu, P. B. Hays. University of Michigan ground-based circle-to-line Fabrey-Perot interferometer and its applications in mesosphere and lower thermosphere dynamics studies. Proceeding of SPIE, 1994, 2266: 133-142
    [77] R. S. Lawrence, G. R. Ochs, S. F. Clifford. Use of scintillations to measure average wind across a ling beam, App. Opt., 1972, 11(2):239-243
    [78] Ting-i Wang, G. R. Ochs, R. S. Lawrence. Wind measurements by the temporal cross-correlation of the optical scintillations. Appl. Opt., 1981, 20(23): 4073-4081
    [79] S. Tomas, M. Sicard, J. Masjuan, et al. A wind speed and fluctuation simulator for characterizing the wind lidar correlation method, IEEE, 2007, 23(28):2779-2782
    [80] W. T. Buttler, C. Soriano, J M. Baldasano, er al. Remote sensing of three-dimensional winds with elastic lidar: explanation of maximum cross-correlation method. Boundary-Layer Meteorology, 2001, 305–328
    [81]何乐生,王顺. AD603在振动信号采集系统中的应用.电子产品世界, 2002, 5B:26-28
    [82]杨世忠,邢丽娟.增益可变运放AD603的原理及应用.山西电子技术, 2001, 3:18-23
    [83]许正望.可变增益放大器AD603及其使用.湖北工学院学报, 2000, 15(3):33-35
    [84]吴建斌,田茂.基于AD603的时变增益放大器的实现.电子测量技术, 2008, 31(4):29-32
    [85]考丽.汽车激光雷达防撞系统中高速数据采集与实时处理研究.哈尔滨:哈尔滨工业大学, 2006
    [86]汤少维.基于FPGA控制的高速数据采集系统设计与实现.成都:电子科技大学, 2007, 34-51
    [87]陆中华.基于MCU_FPGA组合的高速数据采集系统的设计.太原:太原理工大学, 2007, 28-50
    [88]于晅,肇云波.基于FPGA高速数据采集的解决方案.现代电子技术, 2007, 5:15-151
    [89] National Semiconductor. ADC08200 8-bit, 20MSPS to 200MSPS, 1.05 mw/MSPS A/D converter. http://www.national.com/pf/AD/ADC08200.html. 2008, 2
    [90]吴继华,王诚. Altera FPGA/CPLD设计高级篇.北京:人民邮电出版社, 2005, 22-40
    [91]童子权. 1GSPS高速数据采集时钟系统的设计.哈尔滨理工大学学报, 2007, 12(3):36-39
    [92]王红林,王勇,植勇.高速数据采集系统中时钟模块的设计与实现.自动化技术与应用, 2007, 26(6):102-103
    [93]梁书豪. C8051F020MCU在高速数据采集系统中的应用.电气应用, 2007, 2:30-33
    [94]邱士安.基于C8051F020单片机的控制系统应用.大庆石油学院学报, 2006, 30(5):72-74
    [95]毛君,刘克铭,徐广明.基于C8051F020单片机的串口通信应用.煤矿机械, 2005, 5:79-81
    [96]高晋占.微弱信号检测.北京:清华大学出版社, 2004, 32-43
    [97]陈涌,王玉兰,周鼎富,等,基于小波多分辨率分析的激光雷达弱信号处理,激光技术2005, 29(3), 278-280
    [98]章正宇,眭晓林.激光测距弱信号数字相关检测技术的研究和仿真,中国激光, 2002, 29(7): 661-665
    [99] R. M. Hardesty, C. J. Senff, R. M. Banta, et al. Lidar Applications in Regional Air Quality Studies[J]. IEEE, 2001, 3:1029~1031
    [100] X. L. Zhou, D. S. Sun, Z. Q. Zhong, et al. Development of Doppler Wind Lidar[J], Journal of Atmospheric and Environmental Optics, 2007, 2(3): 161-168 (in Chinese)
    [101] R. Milton, R. M. Huffaker, R. Michael, et al. Remote sensing velocities using coherent laser of atmospheric wind solid-state and CO2 systems[J]. Proceedings of the IEEE, 1966, 84(2): 81~204
    [102] R. S. Lawrence, G. R. Ochs, S. F. Clifford. Use of Scintillations to Measure Average Wind across a light beam[J]. Applied Optics, 1972, 11(2): 239-243