不同价态抗光损伤离子对Er:LiNbO_3晶体缺陷和光学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺铒光波导放大器(EDWA)是未来微光子系统的重要组件之一,Er:LiNbO_3晶体作为EDWA的基体材料具有稳定性高和集成性能好等优点,并可以将Er~(3+)离子的激光性能和LiNbO_3晶体的非线性光学性能结合在一起。Er:LiNbO_3晶体发射的1.54μm波段近红外发光对应现代光纤通信的标准“窗口”波长。然而,Er:LiNbO_3晶体的光损伤效应限制了晶体的实际应用。本论文选择不同价态Zn~(2+),In~(3+)和Zr~(4+)离子提高晶体的光损伤性能,研究了不同价态抗光损伤离子对Er:LiNbO_3晶体缺陷结构和光学性能的影响,为获得高效率1.54μm波段近红外发光提供了理论依据和实验指导。
     采用第一性原理的方法,研究了Zn~(2+),In~(3+)和Zr~(4+)离子掺杂LiNbO_3晶体的几何结构。结果表明,Zn~(2+),In~(3+)和Zr~(4+)离子在晶体中均优先占据Li位。研究了Zn~(2+),In~(3+)和Zr~(4+)离子在Li位上的稳定性,认为在Er:LiNbO_3晶体中,Zn~(2+)离子会促使Er~(3+)离子进入Nb位,形成Er~(3+)离子团位束。In~(3+)离子对Er~(3+)离子占位影响不大。Zr~(4+)离子在Li位上稳定性较低,易于进入Nb位,使Er~(3+)离子继续占据Li位。
     采用Czochralski方法生长了Er:LiNbO_3晶体,通过研究不同浓度Er~(3+)离子掺杂同成分LiNbO_3晶体的缺陷结构和不同激发波长下的近红外发射光谱,上转换发射光谱和上转换布局机制,提出了Er~(3+)离子占位与光学性能的关系,即Er:LiNbO_3晶体中Er~(3+)离子团位束的形成增大了交叉弛豫的发生概率,在980nm激发光源下,Er~(3+)离子团位束会抑制1.54μm波段近红外发光。研究了不同[Li]/[Nb]比(分别为0.94,1和1.25)对Er:LiNbO_3晶体缺陷结构和光学性能的影响。结果显示,当[Li]/[Nb]=1时,Er:LiNbO_3晶体中的Er~(3+)离子团位束被解离,发射高效率的1.54μm波段近红外发光。
     研究了Er~(3+)(3mol%)/Zn~(2+)(3,6和7mol%):LiNbO_3晶体的缺陷结构和光学性能,结果显示,Er~(3+)离子并未影响Zn~(2+)离子在晶体中的阈值浓度;当Zn~(2+)离子掺杂浓度低于其阈值浓度时,晶体中的Er~(3+)离子团位束被解离,引起了1.54μm波段近红外发光的增强;当Zn~(2+)离子掺杂浓度高于其阈值浓度时,晶体中会再次形成Er~(3+)离子团位束,导致1.54μm波段近红外发光降低。结合第一性原理计算结果和Er~(3+)离子占位和光学性能的关系,生长了Zn~(2+)/Er~(3+)摩尔比例为3/1.5(mol%/mol%),6/1(mol%/mol%)和7/1.5(mol%/mol%)的Zn/Er:LiNbO_3晶体。光学测试结果表明Zn/E(r6mol%/1mol%):LiNbO_3晶体具有最强的1.54μm波段近红外发光。Zn/Er:LiNbO_3晶体的OH-吸收峰Lorentz三峰分解和上转换绿光寿命测试结果表明,Zn~(2+)离子促使Er~(3+)离子在低于其阈值浓度时从Li位进入Nb位,在晶体中形成了Er~(3+)离子团位束。
     研究了In/Yb/Er:LiNbO_3晶体(In~(3+)离子掺杂浓度为1,2和3mol%)的缺陷结构和光学性能。研究发现,Yb3+和Er~(3+)离子共掺降低了In~(3+)离子的阈值浓度;当In~(3+)离子达到阈值浓度时,晶体中形成Er~(3+)离子团位束。由于Yb3+离子的敏化作用,In/Yb/Er:LiNbO_3晶体中Er~(3+)离子团位束的形成有利于1.54μm波段近红外发光。In~(3+)离子掺杂浓度为阈值浓度时,晶体1.54μm波段发射最强。
     Zr/Er:LiNbO_3和Zr/Yb/Er:LiNbO_3晶体近红外发射光谱测试结果显示Zr~(4+)离子提高了1.54μm波段近红外发射效率。通过晶体Raman光谱和Er~(3+)离子4I11/2→4I15/2跃迁在1020nm处的衰减曲线测试结果分析了Zr~(4+)离子增强近红外发光强度的机理是晶体最大声子能量的增大。不同价态Zn~(2+),In~(3+)和Zr~(4+)离子掺杂Yb/Er:LiNbO_3晶体的1.54μm波段发射性能结果显示,Zn~(2+)离子降低了1.54μm波段发射,In~(3+)离子对此波段发光没有影响,Zr~(4+)离子大幅度增强了1.54μm波段发射。因此Zr/Yb/Er: LiNbO_3晶体将成为最有前景的优良波导器件基质材料。
     采用Judd-Ofelt理论研究了Zn~(2+), In~(3+)和Zr~(4+)离子掺杂Er:LiNbO_3和Yb/E r:LiN bO_3晶体的光谱性质,Zr/Yb/Er:LiNbO_3晶体具有最大的光学品质因子值。通过McCumber和Füchtbauer-Ladenburg理论分析了抗光损伤离子掺杂Er:LiNbO_3和Yb/Er:Li NbO_3晶体1.54μm波段的发射性能,结果显示,晶体均具有大的发射截面积,适合作为EDWA的基体材料。
Er-doped wavelength amplifiers (EDWAs) will be one of the key componentsof futher microphotonic systems, and Er:LiNbO_3crystals, used as the host materialsfor EDWAs, have excellent advantages such as the high stabilization and integration.Furthermore, Er:LiNbO_3crystals could combine the laser performances of Er~(3+)ionwith the nonlinear characteristics presented by LiNbO_3crystal. Er:LiNbO_3emits1.54μm near infrared emission, which corresponds to the standard communication“window” wavelength. Howerve, the practical applications of Er:LiNbO_3crystalsare limited by the optical damage effect. Different valence Zn~(2+), In~(3+)and Zr~(4+)ionsare chosen to enhance the optical damage of LiNbO_3crystals. We performinvestigations on the effect of different valence optical damage resistant ions on thedefect structure and optical characteristics of Er:LiNbO_3crystals, which provide thetheoretical and experimental direction for us to obtain the high efficient1.54μmnear infrared emission.
     The geometry structure of LiNbO_3crystals doped with Zn~(2+), In~(3+)and Zr~(4+)ionsare calculated by the first principle theory, which shows that Zn~(2+), In~(3+)and Zr~(4+)ionsoccupy Li sites firstly. The stuies on the stability of Zn~(2+), In~(3+)and Zr~(4+)ionsoccupied Li sites show that Zn~(2+)ions will push Er~(3+)ions into Nb sites, and the Er~(3+)clusters sites are formed in Er:LiNbO_3crystals, and In~(3+)ions have little effect on theoccupancy of Er~(3+)ions, and the low stability of Zr~(4+)ion makes Er~(3+)ions stilloccupy Li sites.
     The Er:LiNbO_3crystals are grown by Czochraski method. The defect structureof Er:LiNbO_3with different Er~(3+)ion concentration, as well as the near infraredemission, upconversion emission and mechanism under different excitationwavelength are studied. It has been proposed that the formation of Er~(3+)cluster sitescould increase the rate of cross relaxation processes. Under980nm excitation, Er~(3+)cluster sites will suppress the1.54μm near infrared emission. Studies on the effectof [Li]/[Nb] ratio (is equal to0.94,1and1.25, respectively) on the defect structureand optical characteristics of Er:LiNbO_3crystals show that as for [Li]/[Nb]=1, theEr~(3+)cluster sites are dissociated and the strongest1.54μm emission is observed inEr:LiNbO_3crystal.
     The studies on the defect structure and optical characteristics of Er~(3+)(3mol%):LiNbO_3crystals doped with3,6and7mol%Zn~(2+)ions show that thethreshold concentration of Zn~(2+)ion is not affected by Er~(3+)ions in Zn/Er:LiNbO_3crystal. When the concentration of Zn~(2+)ions is lower than its threshold, the Er~(3+)cluster sites are dissociated by Zn~(2+)ions, which results in the enhancement of1.54 μm near infrared emission. When the concentration of Zn~(2+)ions is higher than itsthreshold, the reformantion of Er~(3+)cluster sites are observed, which decreases the1.54μm near infrared emission. Combined the first principle theory with the relationbetween the occupancy and optical characteristics of Er~(3+)ions, the Zn/Er:LiNbO_3crystals with the3/1.5,6/1and7/1.5mol ratio of Zn~(2+)/Er~(3+)are grown. The strongest1.54μm emission is found in Zn/Er (6mol%/1mol%):LiNbO_3crystal. Stuies on theOH-absorption Lorentz three decomposition and the decay curves of upconversiongreen emission show that Zn~(2+)ions would push Er~(3+)ions from Li sites into Nb sites,and the Er~(3+)cluster sites are formed at lower concentration.
     The defect structure and optical characteristics of Yb/Er:LiNbO_3crystal dopedwith1,2and3mol%In~(3+)ions are studied. The experiemtal results show that Yb3+and Er~(3+)ions decrease the threshold concentration of In~(3+)ions. When theconcentration of In~(3+)ion is equal to its threshold, the Er~(3+)cluster sites are formed.The formation of Er~(3+)cluster sites is favor for the1.54μm near infrared emissiondue to the sensization effect of Yb3+ion. The strongest intensity of1.54μmemission is observed in Yb/Er:LiNbO_3crystal codoped with the thresholdconcentration of In~(3+)ions.
     Zr~(4+)ion doping enhances the1.54μm emission in Zr/Er:LiNbO_3andZr/Yb/Er:LiNbO_3crystals. Raman spectra and the decay curves of Er~(3+)4I11/2→4I15/2transition at1020nm indicate that the enhancement of the1.54μm emission arisesfrom the increased maximum phonon energy of host material. The near infraredspectra of Yb/Er:LiNbO_3crystals doped with the different valence Zn~(2+), In~(3+)andZr~(4+)ions suggest that Zn~(2+)doping decreases the1.54μm emission, In~(3+)ions havealmost no effect, and Zr~(4+)ions lead to a drastical increase of1.54μm emission.Zr/Yb/Er:LiNbO_3crystal could be considered as the most outstanding host materialsfor waveguides.
     The spectral characteristics of Er:LiNbO_3and Yb/Er:LiNbO_3crystals dopedwith Zn~(2+), In~(3+)and Zr~(4+)ions are studied by Judd-Ofelt theory, and Zr/Yb/Er:LiNbO_3crystal has the largest spectroscopic quality factor. The emission performance of1.54μm emission is analyzed by McCumber and Füchtbauer-Ladenburg theory. Allthe crystals have large emission cross section, which is suitable for the hostmaterials of EDWA.
引文
1Hossain N, Naji A W, Mishra V, et al. Modeling, optimization, andexperimental evaluation of remotely pumped double-pass EDFA[J].Microwave Opt. Technol. Lett.,2007,49(9):2257-2261.
    2Ramamurthy B, Datta D, Feng H, et al. Impact of Transmission Impairmentson the Teletraffic Performance of Wavelength-Routed Optical Networks[J]. J.Lightwave Technol.,1999,17(10):1713-1723.
    3Wysocki P F, Judkins J B, Espindola R P, et al. Broad-Band Erbium-DopedFiber Amplifier Flattened Beyond40nm Using Long-Period Grating Filter[J].IEEE Photonics Technol. Lett.,1997,9(10):1343-1345.
    4Mondal K, Chaudhuri P R, Designing high performance Er3+-doped fiberamplifier in triangular-lattice photonic crystal fiber host towards higher gain,low splice loss[J]. Opt. Laser Technol.,2011,43:1436-1441.
    5Liaw S K, Huang C K, Hsiao Y L, Parallel-type C+L band hybrid amplifierpumped by1480nm laser diodes[J]. Laser Phys. Lett.,2008,5(7):543-546.
    6Thomas D H, Weid J P von der, Impairments of EDFA DynamicGain-Fluctuations in Packet-Switched WDM Optical Transmissions[J]. IEEEPhotonics Technol. Lett.,2005,17(5):1097-1099.
    7Awaji Y, Furukawa H, Wada N, et al. Guidelines for amplification of Opticalpackets in WDM environment regarding impact of transient response oferbium-doped fiber amplifier[J]. Comput Networks,2008,52:2087-2093.
    8Berkdemir C, zsoy S, The temperature dependent performance analysis ofEDFAs pumped at1480nm: A more accurate propagation equation[J]. Opt.Express,2005,13(13):5179-5185.
    9Chen C, Zhang D, Li T, et al. Erbium-ytterbium codoped waveguide amplifierfabricated with solution-processable complex[J]. Appl. Phys. Lett.,2009,94:0411191-3.
    10Lenz F, Hryciw A, DeCorby R, et al. Reversing the temperature dependence ofthe sensitized Er3+luminescence intensity[J]. Appl. Phys. Lett.,2009,95:091909(1)-(3).
    11Dahal R, Ugolini C, Lin J Y, et al. Erbium-doped GaN optical amplifiersoperating at1.54μm[J]. Appl. Phys. Lett.,2009,95:1111091-3.
    12He Z, Li Y G, Li Y F, et al. Ion-exchanged silica-on-silicon structured channelerbium-doped waveguide amplifiers[J]. Appl. Opt.,2011,50(18):2964-2972.
    13Bouzidi C, Elhouichet H, Moadhen A, Yb3+effect on the spectroscopicproperties of Er-Yb codoped SnO2thin films[J]. J. Lumin.,2011,131:2630-2635.
    14Guo R M, Wang X J, Zang K, et al. Optical amplification in Er/Yb silicatestrip loaded waveguide[J]. Appl. Phys. Lett.,2011,99:161115(1)-(3).
    15Zhang D L, Zhang P, Wong W H, et al. Locally Er-Doped Near-StoichiometricLiNbO3Crystal for Integrated Optics[J]. Cryst. Crowth Des.,2008,8(7):2121-2124.
    16Shen D Y, Sahu J K, Clarkson W A, Highly efficient in-band pumped Er:YAGlaser with60W of output at1645nm[J]. Opt. Lett.,2006,31(6)754-756.
    17Zhou Y X, Dai S X, Wang J, et al. Spectroscopic properties of Er3+:4I13/2levelin Bi2O3-B2O3-GeO2-Na2O glasses[J]. J. Alloys Compd.,2009,472:203-207.
    18孙亮,双掺抗光损伤元素/Er-LiNbO3晶体的微观结构与发射性能的研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:1-3.
    19Yajima H, Kawase S, Sekimoto Y, Amplification at1.06μm using a Nd:glassthin-film waveguide[J]. Appl. Phys. Lett.,1972,21(9):407-409.
    20Vallés J A, Lázaro J A, Rebolledo M A, Modeling of Integrated Erbium-Doped Waveguide Amplifiers with Overlapping Factors Methods[J]. IEEE J.Quantum Electron.,1996,32(9):1685-1694.
    21Shooshtari A, Touam T, Najafi S I, Yb3+sensitized Er3+-doped waveguideamplifiers:a theoretical approach[J]. Opt. Quantum Electron.,1998,30:249-264.
    22Vermelho M V D, Peschel U, Aitchison J S, Simple and Accurate Procedurefor Modeling Erbium-Doped Waveguide Amplifiers with HighConcentration[J]. J. Lightwave Technol.,2000,18(3):401-408.
    23Cantelar E, Nevado R, Lifante G, et al. Modelling of980nm pumped EDWAs:Spectroscopic variations associated to fabrication process[J]. Opt. QuantumElectron.,2001,33:561-569.
    24Strohh fer C, Ponlina A, Absorption and emission spectroscopy in Er3+-Yb3+doped aluminum oxide waveguides[J]. Opt. Mater.,2003,21:705-712.
    25Yu Z, Gao L M, Wei W, et al. Numerical analysis of amplificationcharacteristic of erbium-doped waveguide amplifiers by FD-BPM[J]. Opt.Quantum Electron.,2004,36:321-330.
    26Lai K H, Yeh C H, Chi S, Coupled-structure erbium-doped fiber amplifier with94-nm bandwidth[J]. Opt. Eng.,2005,44(5):055001(1)-(4).
    27Demiguel S, Sahri N, Hartlaub M, et al. Low-cost photoreceiver integrating anEDWA and waveguide PIN photodiode for40Gbit/s applications[J], Electron.Lett.,2007,43(1):51-52.
    28Yeh C H, Chi S, Utilizations of two-stage erbium amplifier andsaturable-absorber filter for tunable and stable power-equalized fiber laser[J].Opt. Express,2007,15(7):3680-3684.
    29Tang H S, Li Y G, Zhang Y W, et al. A semi-weakly confined erbium-dopedwaveguide amplifier with double-layered buffer/cladding[J]. Opt. Express,2008,16(13):9844-9849.
    30Bradley J D B, Silva M C, Gay M, et al.170Gbit/s transmission in anerbium-doped waveguide amplifier on silicon[J]. Opt. Express,2009,17(24):22201-22208.
    31Thomson R R, Psaila N D, Beecher S J, et al. Ultrafast laser inscription of ahigh-gain Er-doped bismuthate glass waveguide amplifier[J]. Opt. Express,2010,18(12):13212-13219.
    32Jin W, Chiang K S, Liu Q, Analysis of Lithium Niobate ElectroopticLong-Period Waveguide Gratings[J]. J. Lightwave Technol.,2010,28(10):1477-1484.
    33Sher S M, Pintus P, Pasquale F D, et al. Design of980nm-Pumped WaveguideLaser for Continuous Wave Operation in Ion Implanted Er:LiNbO3[J]. IEEE J.of Quantum Electron.,2011,47(4):526-533.
    34Kika P G, Polman A, Exciton-erbium interactions in Si nanocrystal-dopedSiO2[J]. J. Appl. Phys.,2000,88(4):1992-1998.
    35Wang X, Kong X G, Yu Y, et al. Effect of Annealing on UpconversionLuminescence of ZnO:Er3+Nanocrystals and High Thermal Sensitivity[J]. J.Phys. Chem. C,2007,111:15119-15124.
    36Singh V, Rai V K, Al-Shamery K, et al. NIR to visible upconversion inEr3+/Yb3+co-doped CaYAl3O7phosphor obtained by solution combustionprocess[J]. J. Lumin.,2011,131:2679-2682.
    37Auzel F, Upconversion and Anti-Stokes Processes with f and d Ions inSolids[J]. Chem. Rev.,2004,104:139-173.
    38张希艳.稀土发光材料[M].国防工业出版社,2004:203-205。
    39Vetrone F, Boyer J C, Capobianco J A, et al.980nm excited upconversion inan Er-doped ZnO-TeO2glass[J]. Appl. Phys. Lett.,2002,80(10):1752-1754.
    40Capobianco J A, Vetrone F, Boyer J C, et al. Enhancement of Red Emission(4F9/2→4I15/2) via Upconversion in Bulk and Nanocrystalline CubicY2O3:Er3+[J]. J. Phys. Chem. B,2002,106:1181-1187.
    41Giaquinto A, Mescia L, Fornarelli G, et al. Particle swarm optimization-basedapproach for accurate evaluation of upconversion parameters in Er3+-dopedfibers[J]. Opt. Lett.,2011,36(2):142-144.
    42Coelho J, Azevedo J, Hungerford G, et al. Luminescence and decay trends forNIR transition (4I13/2→4I15/2) at1.5μm in Er3+-doped LBT glasses[J]. Opt.Mater.,2011,33:1167-1173.
    43Yang Y M, Yang Z P, Li P L, et al. Dependence of optical properties on thecomposition in Er3+-doped xNaPO3-(80-x) TeO2-10ZnO-10Na2O glasses[J].Opt. Mater.,2009,32:133-138.
    44陈冠英,稀土氧化物和氟化物纳米晶上转换荧光光谱的设计研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:22-23.
    45李艾华,飞秒激光激发稀土掺杂铌酸锂单晶的上转换发光研究[D].哈尔滨:哈尔滨工业大学学位论文,2010:5-12.
    46Tian Y, Xu R R, Hu L L, et al.2.7μm fluorescence radiative dynamics andenergy transfer between Er3+and Tm3+ions in fluoride glass under800nm and980nm excitation[J]. J. Quant. Spectrosc. Radiat. Transfer.2012,113:87-95.
    47Patra A, Friend C S, Kapoor R, et al. Upconversion in Er:ZrO2Nanocrystals[J]. J. Phys. Chem. B,2002,106(8):1909-1912.
    48Taniguchi T, Soga K, Tokuzen K, et al. NIR-excited NIR and visibleluminescent properties of amphipathic YVO4:Er3+/Yb3+nanoparticles[J]. J.Mater. Sci.,2012,47:2241-2247.
    49Auzel F, Chen Y H, Photon avalanche luminescence of Er3+ions in LiYF4crystal[J]. J. Lumin.,1995,65:45-56.
    50Bell M J V, Sousa D F D, Nunes L A O, Looping mechanism in Er-dopedfluoroindogallate glasses[J]. J. Appl. Phys.,2000,87(12):8264-8267.
    51Huang L, Yamashita T, Jose R, et al. Intense Ultraviolet Emission from Tb3+and Yb3+Codoped Glass Ceramic Containing CaF2Nanocrystals[J]. Appl.Phys. Lett.,2007,90:131116(1)-(3).
    52Pei X J, Hou Y B, Zhao S L, et al. Frequency upconversion of Tm3+and Yb3+codoped YLiF4synthesized by hydrothermal method[J]. Mater. Chem. Phys.2005,90:270-274.
    53A. Polman. Erbium Implanted Thin Film Photonic Materials[J]. J. Appl. Phys..1997,82(1):1-39.
    54Xu S Q, Yang Z M, Dai S X, et al. Spectral properties and thermal stability ofEr-doped oxyfluoride silicate glasses for broadband optical amplifier[J]. J.Alloys Compd.,2003,361:313-319.
    55D. Zhang, C. Chen, C.M. Chen, et al. Optical gain at1535nm in LaF3+:Er,Ybnanoparticle-doped organic-inorganic hybrid material waveguide[J]. Appl.Phys. Lett.,2007,91:161109(1)-(3).
    56Liu F, Ma E, Chen D Q, et al. Infrared luminescence of transparent glassceramic containing Er3+:NaYF4nanocrystals[J]. J. Alloys Compd.,2009,467:317-321.
    57Zhang D L, Chen X J, Wang Y F, et al. Influence of vapor transportequilibration on Raman spectra of Er:LiNbO3crystals[J]. J. Phys. Chem.Solids,2002,63:345-358.
    58Gruber J B, Sardar D K, Yow R M, et al. Modeling the crystal-field splitting ofthe energy levels of Er3+in charge-compensated sites in lithium niobate[J].Phys. Rev. B,2004,69:195103(1)-(10).
    59Slooff L H, Blaaderen A V, Polman A, et al. Rare-earth doped polymers forplanar Opt. amplifiers[J]. J. Appl. Phys.2002,91:3955-3980.
    60Matthias B T, Remeika J P, Ferroelectricity in the illmenite structure[J]. Phys.Rev.,1949,76:1886-1887.
    61Ballman A A, Growth of Piezoelectric and Ferroelectric Materials by theCzochralski Technique[J]. J. Am. Ceram. Soc.,1965,48(2):112-113.
    62Ashkin A, Boyd G D, Dziedzic J M, et al. Optically Induced Refractive IndexInhomogeneities in LiNbO3and LiTaO3[J]. Appl. Phys. Lett.,1966,(9):72-75.
    63Chen F S, LaMacchis J T, Fraser D B, Holographic Storage in LithiumNiobate[J]. Appl. Phys. Lett.,1968,13(7):223-225.
    64Magnusson R, Mitchell J H, Black T D, et al. Holographic interferometryusing iron-doped lithium niobate[J]. Appl. Phys. Lett.,1987,51(2):81-82.
    65Mok, F H, Tackitt M C, Stoll H M, Storage of500high-resolution hologramsin a LiNbO3crystal[J]. Opt. Lett.,1991,16(8):605-607.
    66Mattarelli M, Sebastiani S, Spirkova J, et al. Characterization of erbium dopedlithium niobate crystals and waveguides[J]. Opt. Mater.2006,28:1292-1295.
    67Ju J J, Kwon T Y, Yun S I, et al. Mechanisms of upconverted fluorescence inan Er3+doped LiNbO3single crystal[J]. Appl. Phys. Lett.,1996,69(10):1358-1360.
    68Bucci D, Grelin J, Ghibaudo E, et al. Realization of a980-nm/1550-nmPump-Signal (De) multiplexer Made by Ion-Exchange on Glass Using aSegmented Asymmetric Y-Junction[J]. IEEE Photonics Technol. Lett.2007,19:698-700.
    69Hua P R, Zhang D L, Cui Y M, et al. Off-Congruent LiNbO3Crystals Preparedby Li-Poor Vapor Transport Equilibration for Integrated Optics[J]. Cryst.Growth Des,2008,8(7):2125-2129.
    70Kang J, Lee M, Lee S, et al.1.5μm emission characteristics of Er3+-dopedstoichiometric LiNbO3[J]. Appl. Phys. Lett.2004,85(19):4367-4369.
    71Amin J, Dussardier B, Schweizer T, et al. Spectroscopic analysis of Er3+transitions in lithium niobate[J]. J. Lumin.,1996,69:17-26.
    72Lázaro J A, Vallés J A, Rebolledo M A, Determination of emission andabsorption cross sections of Er3+in Ti:LiNbO3waveguides from transversalfluorescence spectra[J]. Pure Appl. Opt.,1998,7:1363-1371.
    73Lázaro J A, Vallés J A, Rebolledo M A, In Situ Measurement of Absorptionand Emission Cross Sections in Er-Doped Waveguides for TransitionsInvolving Thermalized States[J]. IEEE J. Quantum Electron.,1999,35(5):827-831.
    74Kaczmarek S M, Jablonski R, Pracka I, et al. Radiation Defects in LiNbO3Single Crystals Doped with Cr3+Ions[J]. Cryst. Res. Technol.1999,34(5-6):729-735.
    75Zhang D L, Wong W H, Pun E Y B, Near-Stoichiometric LiNbO3OpticalWaveguides Fabricated Using Vapor Transport Equilibration and TiCo-diffusion[J]. Appl. Phys. Lett.,2004,85(15):3002-3004.
    76Zhang D L, Pun E Y B, Accurate Measurement of1.5μm Lifetime of Er3+inLiNbO3Crystals and Waveguides[J]. J. Appl. Phys.,2003,94(3):1339-1346.
    77Sekita M, Nakamura M, Watanabe A, et al. Induced emission cross sections ofnear-stoichiometric LiNbO3:Mg,Nd[J]. J. Appl. Phys.,2006,100:103501(1)-103501(6).
    78Arcangeli A, Parisi D, Toncelli A, et al. Growth and characterization ofEr-doped singlecrystal lithium niobate fibers[J]. J. Appl. Phys.,2008,104:144104(1)-144104(9).
    79Li A H, Sun Liang, Zheng Z R, et al. Spectroscopic properties of Er3+inSc:LiNbO3crystal[J], Appl. Phys. A,2007,89:1005-1010.
    80Li A, Sun L, Zheng Z, et al. Spectroscopic properties of Er3+ions in LiNbO3crystals codoped with HfO2[J]. Appl. Phys. B,2008,90:29-34.
    81Xu H X, Lee D H, Sinnott S B, et al. Structure and energetic of Er defects inLiNbO3from first-principles and thermodynamic calculations[J]. Phys. Rev. B,2009,80:144104(1)-(9).
    82Zhang D L, Qi L, Hua P R, et al. Judd-Ofelt Spectroscopic Study ofEr:In:LiNbO3Crystals For Integrated Optics[J]. J. Am. Ceram. Soc.,2011,94:1460-1466.
    83Ródenas A, Zhou G Y, Jaque D, et al. Rare-Earth Spontaneous EmissionControl in Three-Dimensional Lithium Niobate Photonic Crystals[J]. Adv.Mater.2009,21:3526-3530.
    84Zhong J G, Jin J, Wu K Z, Measurement of Opt.ly Induced Refractive IndexDamage of Lithium Niobate Doped with Different Concentration of MgO[J].11thInternational Quantum Electronics Coference, NewYork, IEEE catalog.No.80, CH1561-0,1980,631-637.
    85Volk T R, Pryalkin V I, Rubinina N M, Optical-Damage-Resistant LiNbO3:ZnCrystal[J]. Opt. Lett.,1990,15(18):996-998.
    86Volk T R, Rubinina N M, W helcke M, Optical-Damage-Resistant Impuritiesin Lithium Niobate[J]. J. Opt. Soc. Am. B.1994,11(9):1681-1687.
    87Yamamoto J K, Yanazaki T, Yamagishi K. Noncritical Phase Mateching andPhotorefractive Damage in Sc2O3:LiNbO3[J]. Appl. Phys. Lett.,1994,64(24):3228-3230.
    88Li S Q, Liu S Q, Kong Y F, et al. The optical damage resistance and absorptionspectra of LiNbO3:Hf crystals[J]. J. Phys.: Condens. Matter,2006,18:3527-3534.
    89Kong Y F, Liu S G, Zhao Y J, et al. Highly optical damage resistant crystal:Zirconium-oxide-doped lithium niobate[J]. Appl. Phys. Lett.,2007,91:081908(1)-(3).
    90Schiller F, Herrerors B, Lifante G, Optical Charatereization of Vapor ZnDiffused Waveguides in Lithium Niobate[J]. J. Opt. Soc. Am. A.1997,14(2):425-429.
    91Wang H F, Shi G T, Wu Z K, Photovoltaic Effect in LiNbO3:Mg[J]. Phys.States Solid,1985,89:211-214.
    92冯锡淇,张启仁,应继峰.掺镁铌酸锂晶体阈值效应的研究[J].中国科学A辑.1989,18(6):665-669.
    93Zhen X H, Zhao L C, Xu Y H. Defect Structure and Optical DamageResistance of Zn:Fe:LiNbO3[J]. Appl. Phys. B,2003,76:655-659.
    94Xu W S, Wang R, Li M H, et al. Holographic Storage of In:Fe:LiNbO3[J].Processing of SPIE.1999,3899:468-474.
    95孔勇发,李兵,陈云琳等.掺镁铌酸锂晶体抗光折变微观机理研究[J].红外与毫米波学报.2003,22(1):40-44.
    96Volk T R, Rubinina N M, Pryallkin V I, et al. Optical and Nolinear OpticalInvestigations in LiNbO3:Mg and LiNbO3:Zn[J]. Ferroelectr.1990,109:345-350.
    97Meng Q X, Luo S H, Sun X D, The Analysis of the Threshold Concentrationof Damage-Resistant Ions by OH-Absorption Spectra[J]. Nonlinear Opt.Phenom. Appl., Beijing.2004. Proceeding of SPIE.5646:378-382.
    98Sun L, Li A H, Guo F Y, et al. Enhanced1.5μm emission and simultaneouslysuppressed green upconversion emission in Er:LiNbO3crystals heavilycodoped with MgO[J]. Appl. Phys. Lett.,2007,91:071914(1)-(3).
    99Lerner P, Legras C, Dumas J P, Stoechiometrie des Monocristaux deMetaniObate de Lithium[J]. J. Cryst. growth.1968,3-4:231.
    100Kojima S. Composition Variation of Optical Phonon Damping in LithiumNiobate Crystals[J]. Jpn. J. Appl. Phys.1993,32(9B):4373-4376.
    101Blümel J, Born E, Metzger T H. Solid State NMR Study Supporting theLithium Vacancy Defect Model in Congruent Lithium Niobate[J]. J. Phys.Chem. Solids.1994,55(7):589-593.
    102Wilkinson A P, Cheetham A K, Jarman R H. The Defect Structure ofCongruently Melting Lithium Niobate[J]. J. Appl. Phys.1993,74(5):3080-3083.
    103冯少新.晶体缺陷能学计算及铌酸锂的缺陷结构[D].天津:南开大学博士研究生学位论文.2001.
    104Dierolf V, Koerdt M. Combined Excitation-Emission Spectroscopy of Er3+ionsin Stoichiometric LiNbO3: The Site Selectivity of Direct and UpconversionExcitation Processes[J]. Phys. Rew. B.2000,61(12):8043-8052.
    105Shinn M D, Sibley W A, Drexhage M G, et al. Optical transitions of Er3+ionsin fluorozirconate glass[J]. Phys. Rev. B,1983,27(11):6635-6648.
    106Hehlen M P, Cockroft N J, Gosnell T R, et al. Spectroscopic properties ofEr3+-and Yb3+-doped soda-lime silicate and aluminosilicate glasses[J]. Phys.Rev. B,1997,56(15):9302-9318.
    107Ping H, Chen D Q, Yu Y L, et al. Judd-Ofelt analyses and luminescence ofEr3+/Yb3+co-doped transparent glass ceramics containing NaYF4nanocrystals[J]. J. Alloys Compd.2010,490:74-77.
    108Cheng Z X, Zhang S J, Song F, et al. Optical spectroscopy of Yb/Er codopedNaY(WO2)4crystal[J]. J. Phys. Chem. Solids,2002,63:2011-2017.
    109Ma X H, Li J F, Zhu Z J, et al. Optical properties of Er3+:SrMoO4singlecrystal[J]. J. Phys. Chem. Solids,2008,69:2411-2415.
    110Kaminskii A A, Crystalline Lasers: Physical Processes and OperatingSchemes[M]. CRC Press,1996:243-301.
    111Lomheim T S, DeShazer L G, Optical-absorption intensities of trivalentneodymium in the uniaxial crystal yttrium orthovanadate[J]. J. Appl. Phys.1978,49:5517-5522.
    112Schlarb U, Betzler K, Refractive indices of lithium niobate as a function oftemperature, wavelength, and composition: A generalized fit[J]. Phys. Rev. B,1993,48(21):15613-15620.
    113Xie J H, Zhang Q, Zhuang Y X, et al. Enhanced mid-IR emission in Yb3+-Tm3+co-doped oxyfluoride glass ceramics[J]. J. Alloy Compd.2011,509:3032-3037.
    114Jaba N, Mansour H B, Kanoun A, et al. Spectral broadening and luminescencequenching of1.53μm emission in Er3+-doped zinc tellurite glass[J]. J. Lumin.2009,129:270-276.
    115Huang C H, McCaughan L, Gill D M, Evaluation of Absorption and EmissionCross Section of Er-Doped LiNbO3for Application to Integrated OpticAmplifiers[J]. J. Lightwave Technol.1994,12(5):803-809.
    116Jayasimhadri M, Moorthy L R, Kojima K, et al. Optical properties of Dy3+ionsin alkali tellurofluorophosphate glasses for laser materials[J]. J. Phys. D: Appl.Phys.2006,39:635-641.
    117Pisarska J, Pisarski W A, Romanowski W A, Laser spectroscopy of Nd3+andDy3+ions in lead borate glasses[J]. Opt. Laser Technol.2010,42:805-809.
    118H mmerich U, Hanley C, Brown E, et al. Spectroscopic studies of the1.5μm(4I15/2→4I13/2) emission from polycrystalline ceramic Er:YAG andEr:KPb2Cl5[J]. J. Alloys Compd.,2009,488:624-627.
    119Gill D M, Wright J C, McCaughan J, Site characterization of rare-earth-dopedLiNbO3using total site selective spectroscopy[J]. Appl. Phys. Lett.,1994,64(19):2483-2485.
    120Sun L, Yang C H, Li A H, et al. In/Er-codoped LiNbO3crystals with enhanced1.5μm emission and suppressed upconversion emission[J]. J. Appl. Phys.,2009,105:043512(1)-(6).
    121Hu Z H, Guo P, Li J Y, et al. Structure and optical damage resistance ofIn:Yb:Er:LiNbO3crystals[J]. Cryst. Res. Technol.2007,42:488-492.
    122Shi W Q, Bass M, Birnbaum M, Effects of energy transfer among Er3+ions onthe fluorescence decay and lasing properties of heavily doped Er:Y3Al5O12[J].J. Opt. Soc. Am. B,1990,7(8):1456-1462.
    123Gill D M, McCaughan L, Wright J C, Spectroscopic Site Determinations inErbium-Doped Lithium Niobate[J]. Phys. Rew. B.,1996,53(5):2334-2344.
    124Aghamalyan N R, Demirkhanyan G G, Hovsepyan R K, et al.Room-temperature near infrared emission and green upconversion inPbMoO4:Er3+crystals[J]. Opt. Mater.2012,32:1046-1049.
    125Pandozzi F, Vetrone F, Boyer J C, et al. A Spectroscopic Analysis of Blue andUltraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+Nanocrystals[J]. J. Phys. Chem. B,2005,109:17400-17405.
    126Lu S Z, Yang Q H, Zhang B, et al. Upconversion and infrared luminescencesin Er3+/Yb3+codoped Y2O3and (Y0.9La0.1)2O3transparent ceramics[J]. Opt.Mater.2011,33:746-749.
    127李晨亮,BiMoO3, Nb4SiC3和掺杂Cr2Nb的力,电以及光学性能的第一性原理[D].哈尔滨:哈尔滨工业大学学位论文,2009:18-33.
    128靳磊,铌酸锂晶体结构与光学性能的密度泛函理论计算[D].哈尔滨:哈尔滨工业大学学位论文,2006.
    129Zhang D L, Wu C, Yang Q Z, et al. Transient characteristics of greenupconversion emission of Er3+in MgO:LiNbO3crystal: Mg thresholdconcentration effect[J]. Appl. Phys. B,2009,95:335-340.
    130Xue D F, He X K, Dopant occupancy and structural stability of doped lithiumniobate crystals[J]. Phys. Rev. B,2006,73:064113(1)-(7).
    131Zhen X H, Li X T, Zhao L C, et al. Structure and Opt. damage resistance ofZn:Er:LiNbO3waveguides[J]. Mater. Sci. Eng. B,2003,103:135-139.
    132Kovacs L, Rebouta L, Soares J C, On the lattice site of trivalent dopants andthe structure of Mg2+-OH-M3+defects in LiNbO3:Mg crystals[J]. J.Phys.:Condens Matter.1993,5:781-794.
    133Kong Y, Xu J, Zhang W, et al. The site occupation of protons in lithiumniobate crystals[J]. J. Phys. Chem. Solids.2000,61:1331-1335.
    134Zhang H X, Kam C H, Zhou Y, et al. Green upconversion luminescence inEr3+:BaTiO3films[J]. Appl. Phys. Lett.2000,77:609-611.
    135Jakutis J, Gomes L, Amancio C T, et al. Increased Er3+upconversion intellurite fibers and glasses by co-doping with Yb3+[J]. Opt. Mater.2010,33:107-111.
    136Cantelar E, Cussó F, Competitive up-conversion mechanisms in Er3+/Yb3+co-doped LiNbO3[J]. J.Lumin.2003,102-103:525-531.
    137Boyer J C, Cuccia L A, Capobianco J A, Synthesis of Colloidal UpconvertingNaYF4:Er3+/Yb3+and Tm3+/Yb3+Monodisperse Nanocrystals[J]. Nano. Lett.2007,7(3):847-852.
    138Zheng J, Tao Y L, Wang W, et al. Highly efficient1.53μm luminescence inErxYb2-xSi2O7thin films grown on Si substrate[J]. Mater. Lett.2011,65:860-862.
    139Kong Y F, Wen J K, Wang H F, New doped lithium niobate crystal with highresistance to photorefraction-LiNbO3:In[J]. Appl. Phys. Lett.,1995,66:280-281.
    140Kong Y F, Deng J C, Zhang W L, et al. OH-absorption spectra in dopedlithium niobate crystals[J]. Phys. Lett. A,1994,196:128-132.
    141Kong Y F, Wu S Q, Liu S G, et al. Fast photorefractive response and highsensitivity of Zr and Fe codoped LiNbO3crystals[J]. Appl. Phys. Lett.,2008,92:251107(1)-(3).
    142Shur J W, Choi K H, Yoon D H, Growth of Zr codoped Tm:LiNbO3singlecrystal for improvement of photo luminescence property in blue wavelengthrange[J]. J. Cryst. Growth,2011,318:653-656.
    143Guo H, Dong N, Yin M, et al. Visible Upconversion in Rare Earth Ion-DopedGd2O3Nanocrystals[J]. J. Phys. Chem. B,2004,108:19205-19209.
    144Rai V K, Rai S B, Optical transitions of Dy3+in tellurite glass: observation ofupconversion[J]. Solid State Commun.2004,132:647-652.
    145Weber M J, Probabilities for Radiative and Nonradiative Decay of Er3+inLaF3[J]. Phys. Rev.1967,157(2):262-272.
    146Harun S W, Parvizi R, Cheng X S, et al. Experimental and theoretical studieson a double-pass C-band bismuthbased erbium-doped fiber amplifier[J]. Opt.Laser Technol.2010,42:790-793.
    147Payne S A, Chase L L, Smith L K, et al. Infrared Cross-Section Measurementsfor Crystals Doped with Er3+, Tm3+and Ho3+[J]. IEEE J. Quant. Electron.1992,28:2619-2630.
    148Li C, Wyon C, Moncorgé R, Spectroscopic Properties and FluorescenceDynamics of Er3+and Yb3+in Y2SiO5[J]. IEEE J. Quant. Electron.1992,28:1209-1221.
    149Sokólska I, Spectroscopic characterisation of LaGaO3:Er3+crystals[J]. Appl.Phys. B2000,71:157-162.
    150Stange H, Petermann K, Huber G, et al. Continuous Wave1.6μm Laser Actionin Er Doped Garnets at Room Temperature[J]. Appl. Phys. B,1989,49:269-273.
    151Zhao D, Wang G F, Growth and spectroscopic characterization ofEr3+:Sr3Y(BO3)3crystal[J]. J. Lumin.2010,130:424-428.
    152Bertini C, Toncelli A, Tonelli M, et al. Optical spectroscopy and laserparameters of GdVO4:Er3+[J]. J. Lumin.2004,106:235-242.
    153Lu X A, You Z Y, Li J F, et al. The optical properties of Er3+dopedNaY(MoO4)2crystal for laser applications around1.5μm[J]. J. Alloy Compd.2006,426:352-356.
    154Kang J, Lee M, Lee S, et al. Response to:“Commention ‘1.5μm emissioncharacteristics of Er3+-doped stoichiometric LiNbO3’”[J]. Appl. Phys. Lett.,2005,86:266102(1)-(2).
    155Carnall W T, Fields P R, Wyboune B G, Spectral Intensities of the TrivalentLanthanides and Actinides in Solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+[J].J. Chem. Phys.1965,42:3797-3806.
    156Huang X Y, Wang G F, Growth and optical characteristics ofEr3+:LiLa(MoO4)2crystal[J]. J. Alloys Compd.2009,475:693-697.
    157Li X Z, Lin Z B, Zhang L Z, et al. Growth, thermal and spectroscopiccharacterization of Er3+:NaY(MoO4)2crystal[J]. J. Cryst. Growth,2006,293:157-161.
    158Zhang D L, Hua P R, Xu Y H, et al. Judd-Ofelt analysis of spectroscopicproperty of Er3+in congruent and near-stoichiometric Zn/Er-codoped LiNbO3crystals[J]. J. Appl. Phys.,2007,101:053523(1)-(10).
    159Li A H, Sun L, Zheng Z R, et al. Spectroscopic analysis of Er3+transition inMg/Er-codoped LiNbO3crystal[J]. J. Lumin.2008,128:239-244.
    160Lisiecki R, Dzik G D, Solarz P, et al. Spectroscopic characterisation ofEr-doped LuVO4single crystals[J]. Appl. Phys. B,2010,101:791-800.
    161Dong Q, Zhao G J, Cao D H, et al. Growth and anisotropic spectral propertiesof Er:YAlO3crystal[J]. J. Alloys Compd.,2010,493:661-665.
    162Ding Y C, Zhao G J, Xu X D, Crystal growth and spectroscopic properties oferbium doped Lu2SiO5[J]. J. Cryst. Growth,2010,312:2103-2106.
    163Pujol M C, Rico M, Zaldo C, et al. Crystalline structure and opticalspectroscopy of Er3+-doped KGd(WO4)2single crystals[J]. Appl. Phys. B,1999,68(2):187-197.
    164Gong X H, Chen Y J, Lin Y F, et al. Spectral properties and1.55μm laseroperation of Ce3+:Yb3+:Er3+:NaLa(WO4)2crystal[J]. J. Appl. Phys.2010,108:073524(1)-(7).
    165Li L, Zhou Z X, Feng L, et al. Spectroscopic and upconversion properties ofEr3+/Yb3+-codoped KLTN single crystal[J]. J. Alloys Compd.2011,509:6457-6461.