高重频Ho:YAG激光器及其泵浦源Tm:YLF激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从20世纪60年代少数研究者对掺Ho激光器进行介绍之后,Ho~(3+)离子因其特殊的光谱特性,如长的激光上能级寿命、可以获得人眼安全和大气高透过率的2.1μm激光等,使它成为产生激光的重要离子。2.1μm激光在医学、军事、机械加工和遥感等方面均有重要的应用,特别地,2.1μm激光可通过泵浦非线性晶体有效获得光电对抗源中红外3~5μm激光和远红外8~12激光。为获得高功率高重频中红外3~5μm激光,本文对2.1μm Ho:YAG激光器及其泵浦源Tm:YLF激光器进行了理论分析和实验研究。
     理论方面,分析了单掺Tm~(3+)激光和单掺Ho~(3+)激光的能级跃迁机制和发光机理,建立了单掺Tm~(3+)激光和单掺Ho~(3+)激光速率方程理论模型,并依据速率方程模型分析了各种参数对Tm:YLF激光器和Ho:YAG激光器输出特性的影响。分析了影响固体激光器弛豫振荡频率和弛豫振荡幅度的各种理论因素,为有效解决Tm:YLF激光器的弛豫振荡问题奠定了理论基础,为Tm:YLF激光器弛豫振荡问题的实验研究提供了重要的理论指导。分析了Tm:YLF晶体和Ho:YAG晶体的温度场和理论热焦距长度,为实现Tm:YLF激光器和Ho:YAG激光器的谐振腔优化设计提供了必要的参数。分析了Tm:YLF晶体的热致损伤阈值问题,为获得Tm:YLF激光器可承受的最大泵浦功率值提供了理论参考。
     实验方面,对Tm:YLF和Ho:YAG晶体的热透镜焦距以及Tm:YLF晶体的热致损伤阈值进行了测量,为Tm:YLF和Ho:YAG激光器谐振腔的设计以及Tm:YLF晶体最大可承受泵浦功率提供了参考数据。测试了输出镜透过率、泵浦-激光模式比率对Tm:YLF激光器功率特性的影响,并依据对测试结果的分析进行了高效率腔内双晶体和高功率、高光束质量腔内三晶体Tm:YLF激光实验,腔内双晶体Tm:YLF激光器的斜率效率达到49.4%。在Tm:YLF弛豫振荡实验中,测试了泵浦功率、腔长和输出镜反射率对弛豫振荡频率的影响,测试了泵浦功率和泵浦-激光模式比对弛豫振荡幅度的影响,通过对Tm:YLF弛豫振荡问题的实验研究,实现了高效率高功率Tm:YLF激光器功率信号的平滑无尖峰输出,排除了Ho:YAG激光器高重频几十千赫兹工作时的障碍。根据对腔内单晶体和腔内双晶体Ho:YAG激光器谐振腔参数的理论分析进行了高功率Ho:YAG激光器实验研究工作,利用两种结构的激光谐振腔均获得了平均功率大于40W的2.1μm激光,转换效率均约为50%,证明了百瓦级腔内双晶体Ho:YAG激光器的可行性。通过对键合和非键合Ho:YAG晶体的实验对比,发现键合Ho:YAG晶体的转换效率略高于非键合晶体,实验上证明了键合Ho:YAG晶体在高功率泵浦时的优势。最后,利用腔内单晶体Ho:YAG激光器进行了ZGP OPO的泵浦实验,OPO的斜率效率达到51.6%,光-光转换效率达到42.1%,利用刀口法测得3~5μm激光10W时的光束质量因子M~2为4.2,利用HgCdTe探测器测得16.0W时3~5μm激光脉冲宽度为18.5ns,考虑到实验结果与国际先进水平的差距,提出了改善中红外ZGP OPO效率和光束质量的方法。
After a few researchers have introduced Ho-doped lasers, Ho~(3+)ions have becomethe important ions which can be used of lasers because of their special spectralcharacteristics, such long lasers' upper level lifetime, getting eye-safe and atmospherehigh transmittance2.1μm laser etc. since the1960s. In medicine, military, mechanicalprocessing and remote sensing fields,2.1μm lasers have important applications. Inparticular,2.1μm lasers can effectively get optoelectronic countermeasure sourcemiddle infrared3~5μm lasers and far infrared8~12μm lasers by pumping nonlinearcrystal. In order to obtain high power&high repetitive frequency middle infrared3~5μm lasers, this article analyses and researches2.1μm Ho:YAG laser and it’s pumpsource Tm:YLF laser in theory and experiment.
     In the aspect of theory, the energy level transition mechanism and laser emittingmechanism of single-doped Tm~(3+)laser&single-doped Ho~(3+)laser are analysed, the rateequation theoretical model of single-doped Tm~(3+)laser&single-doped Ho~(3+)laser areestablished, and all kinds of parameters' effect on Tm:YLF laser&Ho:YAG laser'soutput characteristics according to rate equation model are analysed. All kinds oftheoretical factors that effect on solid-sate laser relaxation oscillation frequency andrelaxation oscillation range are analysed, establishing the theory basis for solvingTm:YLF lasers' relaxation oscillation issue effectively, providing the significanttheoretical guidance for Tm:YLF laser relaxation oscillation issue's experimentalresearch. The temperature field and the theoretical thermal focal length of Tm:YLFcrystal&Ho:YAG crystal are analysed, providing the necessary parameters for realizingthe resonant cavities' optimization design of Tm:YLF laser&Ho:YAG laser. thethermal damage threshold issue of Tm:YLF crystal is analysed and providing thetheoretical reference for obtaining Tm:YLF laser's maximum pump power value.
     In the aspect of experiment, the thermal lens focal lengths of Tm:YLF&Ho:YAGcrystal and thermal damage threshold of Tm:YLF crystal are measured and providingthe reference data for Tm:YLF&Ho:YAG laser resonant cavities' design and Tm:YLFcrystal's maximum pump power value. The output-mirroro transmission&pump-lasermodel ratio's effect on Tm:YLF power characteristics are tested, an effective cavitybicrystal and high power&high beam quality cavity tricrystal laser are conductedaccording to the analysis of test result, and the slope efficiency of49.4%is obtained inthe Tm:YLF laser with bicrystal cavity. During the Tm:YLF relaxation oscillationexperiment, the pump power and cavity length&output-mirroro transmission's effecton relaxation oscillation frequency are tested, pump power and pump-laser model ratio'seffect on relaxation oscillation range are tested. By the experiment research for Tm:YLF relaxation oscillation issue, realising the high efficiency&high power Tm:YLF laserpower signal's smooth output without peak and remove the working obstacles whenHo:YAG laser works at high repetitive frequency of some dozen kilohertz. According tothe single-crystal and bicrystal Ho:YAG laser resonant cavity parameter's theoreticalanalysis, high power Ho:YAG laser experimental research work is conducted. Averagepower of more than40W and conversion efficiency of~50%are realized in both ofsingle-crystal and bicrystal Ho:YAG laser resonant cavity. One hundred watt bicrystalHo:YAG resonant cavity is proved feasible. By bonding and nonbonding Ho:YAGcrystal's experiment comparision, finding bonding Ho:YAG crystal's conversionefficiency is a little bit higher than that of nonbonding crystal. That proves bondingHo:YAG crystal's advantage with high power pump. At last, by single-crystal Ho:YAGlaser resonant cavity, the ZGP OPO is experimented, and then OPO slope efficiencyreaches51.6%&optical-optical conversion efficiency reaches42.1%. By knife-edgemethod, the3~5μm laser's beam quality factor (M~2) of4.2with10W is measured. ByHgCdTe detector, the3~5μm laser's pulse width of18.5ns with16.0W is measured.Finally, considering the lower level of experimental result compared with internationaladvanced level, putting forward the methods of improving middle infrared ZGP OPOefficiency and beam quality.
引文
[1] R. H. Hoskins and B. H. Soffer.8B7–energy transfer and CW laser action inHo3+:Er2O3[J]. IEEE J quantum Elect.,1966,2(8):253-255.
    [2] R. L. Remski, Jr. James, L. T., K. H. Gooen, B. Di Bartolo, and A. Linz. Pulsedlaser action in LiYF4:Er3+, Ho3+at77K[J]. IEEE Journal of Quantum Electronics,QE-1969,5(5):214-214.
    [3] A. C. Everitt and E. D. Flectcher. The performance of the holmium3+in yttriumaluminium garnet laser[C]. Mullard Res. Labs: In Mullard Research Laboratoriesannual review,1969, IEE174571:28.
    [4]朱青,激光医学国内发展现状[J].上海大学学报,1997,31(10):7-13.
    [5]王永仲.现代军用光学技术[M].北京:科学出版社.2003:139-273.
    [6] R. M. Schotland. Some Observations of the Vertical Profile of Water Vapor byMeans of a Laser Optical Radar[C]. In Proceedings of the Fourth Symposium onRemote Sensing of Environment.1966:273-283.
    [7]徐英,周尚武.国外空军光电对抗装备综述[J].现代军事.2005,10:36-39.
    [8]李晓霞.国外海军光电对抗装备综述[J].现代军事.2005,10:30-35.
    [9]时家明,王峰.国外陆军光电对抗装备综述[J].现代军事.2005,10:40-42.
    [10] H. Saito S. Chaddha, R. S. E Chang, and N. Djeu. Efficient1.94-um Tm3+laserin YVO4host[J]. Optics Letters,1992,17(3):189-191.
    [11] C. H. Hanssen and N. Djeu. Further Investigations of a2-μm Tm:YVO4Laser[J].IEEE Journal of Quantum Electronics,1994,30(2):275-279.
    [12] J. J. Zayhowski, J. Harrison, C. Dill III and J. Ochoa. Tm:YVO4microchiplaser[J]. Applied Optics,1995,34(3):435-437.
    [13] Chr. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Yu. D. Zavartsev, P. A.Studenikin, A. I. Zagumennyi and I. A. Shcherbakov. Performance of aTm3+:GdVO microchip laser at1.9μm[J]. Optics Communications,1998,153:63–67.
    [14] Chr. P. Wyss, W. Lüthy, H. P. Weber, V. I. Vlasov, Yu. D. Zavartsev, P. A.Studenikin, A. I. Zagumennyi, I. A. Shcherbakov. A Diode-Pumped1.4-WTm:GdVO4Microchip Laser at1.9μm[J]. IEEE Journal of Quantum Electronics,1998,34(12):2380-2382.
    [15] P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemons, and E. P.Chicklis. CW and Q-switched Ho:YAG pumped by Tm:YALO[C]. AdvancedSolid State Lasers.1998,19:204-206.
    [16] L. A. Pomeranz, P. A. Budni, M. L. Lemons, C. A. Miller, J. R. Mosto, T. M.Pollak and E. P. Chicklis. Power scaling performance of Tm:YLF and Tm:YALOlasers[C]. Boston: Topical Meeting on Advanced Solid-State Lasers,1999.
    [17] P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis. High-Power/High-Brightness Diode-Pumped1.9-μm Thulium and Resonantly Pumped2.1-μmHolmium Lasers[J]. IEEE Journal of Quantum Electronics,2000,6(4):629-635.
    [18] M. Petros,J. Yu, U. N. Singh, B. M. Walsh, N. P. Barnes, J. C. Barnes. A300-mJ diode pumped1.9μm Tm:YLF laser[C]. Proceedings of SPIE,2002,4484:17-24.
    [19] A. Dergachev, K. Wall and P. F. Moulton, A CW side-pumped Tm:YLF laser[C].Advanced Solid-state Laser,2002,68:343-346.
    [20] A. Dergachev and P. F. Moulton. High-Power, High-Energy Diode-PumpedTm:YLF-Ho:YLF-ZGP Laser System[C]. San Antonio Texas: Advanced Solid-State Photonics (ASSP),2003, Postdeadline Session (PD):137.
    [21] A. C. Sullivan, G. J. Wagner, D. Gwin, R. C. Stoneman and A. I. R. Malm. Highpower Q-switched Tm:YAlO3lasers[C]. Advanced Solid-State Photonics.2004:WA7.
    [22] J. I. Mackenzie, S. So, D. P. Shepherd, and W. A. Clarkson. Comparison of LaserPerformance for Diode-Pumped Tm:YLF of Various Doping Concentrations[C].Advanced Solid-State Photonics.2005:202-207.
    [23] S. So. J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K.Gorton. A power-scaling strategy for longitudinally diode-pumped Tm:YLFlasers[J]. Appl. Phys. B2006,84:389–393.
    [24] Y. F. Li, B. Q. Yao and Y. Z. Wang. LD-pumped CW Tm:GdVO4laser at1.9μm[J]. Chinese Optics Letters.2006,4(3):175-176.
    [25] J. K. Jabczynski, W. Zendzian, J. Kwiatkowski, H. Jelinkova, J. Sulc, M. Nemec.Diode pumped, actively Q-switched thulium laser[C]. Proc. of SPIE.2007,6731:673114-1~8.
    [26] M. Schellhorn. High-power diode-pumped Tm:YLF laser[J]. Appl. Phys. B.2008,91:71-74.
    [27] X. M. Duan, B. Q. Yao, Y. J. Zhang, C. W. Song, L. L. Zheng, Y. L. Ju, and Y. Z.Wang. Diode-pumped high efficient Tm:YLF laser output at1908nm with near-diffraction limited beam quality[J]. Laser Phys. Lett.2008,5(5):347-349.
    [28] M. Schellhorn. S. Ngcobo. C. Bollig. High-power diode-pumped Tm:YLF slablaser[J]. Appl Phys B.2009,94:195-198.
    [29] N. G. Zakharov, O. L. Antipov, A. P. Savikin, V. V. Sharkov, O. N. Eremeikin, Yu.N. Frolov, G. M. Mishchenko, S. D. Velikanov. Efficient emission at1908nm in adiode-pumped Tm:YLF laser[J]. Quantum Electronics.2009,39(5):410-414.
    [30] J. K. Jabczynski,. Gorajek, W. Zendzian, J. Kwiatkowski, H. Jelínková, J. ulcand M. Němec. High repetition rate, high peak power, diode pumped Tm:YLFlaser[J]. Laser Phys. Lett.2009,6(2):109-112.
    [31] X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, Y. L. Ju, Y.Z. Wang. Stable output,high power diode-pumped Tm:YLF laser with a volume Bragg grating[J]. ApplPhys B.2010,99:465-468.
    [32] D. C. Hanna, I. M. Januncey. Continuous-wave Oscillation of a MonomodeThulium-doped Fiber Laser[J]. Electron. Lett.,1988,24(19):1222~1223.
    [33] D. C. Hanna, I. R. Perry and J. R. Lincoln. A1-watt Thulium-doped CW FiberLaser Operating at2μm[J]. Opt. Comm.,1990,80(1):52~56.
    [34] S. D. Jackson, T. A. King. High-power Diode-cladding-pumped Tm-doped SilicaFiber Laser[J]. Opt. Lett.,1998,23(18):1462~1464.
    [35] R. A. Hayward, W. A. Clarkson, P. W. Turner. Efficient Cladding-pumped Tm-doped Silica Fiber Laser with High Power Singlemode Output at2μm[J].Electron. Lett.,2000,36(8):711~712.
    [36] IPG Photonics. http://www.ipgphotonics.com/.
    [37] S. D. Jackson, A. Sabella and D. G. Lancaster. Application and Development ofHigh-Power and Highly Efficient Silica-Based Fiber Lasers Operating at2μm[J].IEEE J. Sel Topics in Quantum Electronics.,2007,13(3):576~572.
    [38] M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin and V. Sergeev.415W Single-Mode CW Thulium Fiber Laser in all-fiber format[C]. Lasers andElectro-Optics Europe,2007and the International Quantum ElectronicsConference. CLEOE-IQEC2007.
    [39] M. T. Kelemen, J. Weber, M. Rattunde, G. Kaufel, J. Schmitz, R. Moritz, M.Mikulla, and J. Wagner. High-Power1.9-μm Diode Laser Arrays With ReducedFar-Field Angle[J]. IEEE Journal of Quantum Electronics,2006,18(4):628-630.
    [40] K. Scholle, P. Fuhrberg. In-band pumping of high-power Ho:YAG lasers by laserdiodes at1.9μm[C]. OSA/CLEO/QELS,2008: CTuAA1.
    [41] S. Lamrini, P. Koopmann, K. Scholle, P. Fuhrberg and M. Hofmann. High-PowerHo:YAG Laser in-band Pumped by Laser Diodes at1.9μm and Wavelength-Stabilized by a Volume Bragg Grating[C]. OSA/ASSP/LACSEA/LS&C,2010:AMB13.
    [42] G. A. Newburgh, Akil Word-Daniels, Akio Ikesue and Mark Dubinskii.Resonantly Pumped2.1-μm Ho:Y2O3Ceramic Laser[C]. OSA/CLEO/QELS,2010: CMDD2.
    [43] S. Lamrini, P. Koopmann, M. Sch fer, K. Scholle P. Fuhrberg. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stackat1.9μm[J]. Appl Phys B,2012,106:315-319.
    [44] H. Hemmati.2.07-μm Cw Dipde-Laser-Pumped Tm,Ho:YLiF4Room-Temperature Laser[J]. Opt. Lett.,1989,14(9):435~437.
    [45] P. J. Morris, W. Lüthy, H. P. Weber, Y. D. Zavartsev, P. A. Studenikin, I.Shcherbakov and A. I. Zagumenyi. Laser operation and Spectrotroscope ofTm:Ho:GdVO4[J]. Opt. Commun.,1994,111:493~496.
    [46] P. A. Budni, L. A. Pomeranz, M. L. LemonsP. G. Schunemann, T. M. Pollak, andE P. Chicklis.10W mid-IR Holmium pumped ZGP OPO[C]. Advanced SolidState Lasers.,1998,19:226-229.
    [47] G. L. Bourdet, G. Lescroart and R. Muller. Performences and Efficiency of2microns Tm:YVO4and Tm,Ho:YLF Microchip Laser[C]. Proc. of SPIE.,1998,3549:48-56
    [48] J. R. Yu, U. N. Singh, N. P. Barnes, M. Petros.125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser[J]. Optics Letters.1998,23(10):780-782.
    [49]贺万骏.Tm,Ho激光器及其泵浦的3~5μm光学参量振荡器[D].哈尔滨.哈尔滨工业大学.2007
    [50] F. Cornacchia, A. Dilieto, P. Maroni, P. Minguzzi, A. Toncelli, M. Tonelli, E.Sorokin, I. Sorokina. A cw room-temperature Ho,Tm:YLF laser pumped at1.682μm[J].Appl. Phys. B.2001,73:191-194.
    [51] J. Yu, A. Braud and M. Petros.600-mJ, double-pulse2-mm laser[J]. OpticsLetters.2003,28(7):540-542.
    [52] A. Sato, K. Asai and K. Mizutani. Lasing characteristics and optimizations of adiode-side-pumped Tm, Ho:GdVO4laser[J]. Optics Letters.2004,29(8):836-838.
    [53] W. J. He, B. Q. Yao, Y. L. Ju, Y. Z. Wang, Y. F. Li and F. Yang. Tm:Ho:YLFAmplifiers at2.049μm with a Tm,Ho:GdVO4Oscillator[J]. Chinese PhysicsLetter.2005,22(6):1409-1412.
    [54] S. K. Asai, S. Ishii, K. Mizutani and T. Itabe. Characteristics of Pulse/CwVanadate lasers Operating at2μm[C]. Proc. of SPIE.,2006,6409:640916-1~8.
    [55] L. J. Li, B. Q. Yao, C. W. Song, X. M. Duan and T. H. Wang. High Efficiency2.05-μm CW and AO Q-Switched Operation of Diode End-PumpedTm,Ho:GdVO4Laser[J]. Laser Phys.2008,18(12):1512-1516.
    [56] Y. Z. Wang, G. L. Zhu, Y. L. Ju and B. Q. YAO. Efficient High PowerHo,Tm:GdVO4Laser[J]. CHIN. PHYS. LETT.2011,28(9):094211-1~3.
    [57] G. L. Zhu, Y. L. Ju, B. Q. YAO, Y. Z. Wang. A Dual-Crystal CavityHo,Tm:GdVO4Laser[J]. CHIN. PHYS. LETT.2012,29(2):024204-1~2.
    [58] G. J. Kintz, R. Allen and L. Esterowitz, Continuous-Wave Laser Emission at2.02um from Diode-Pumped Tm3+:YAG at Room Temperature[C]. Washington, D.C.:In Digest of Conference on Lasers and Electro-Optics (Optical Society ofAmerica).1988: FB2.
    [59] R. C. Stoneman and L. Esterowitz. Efficient, broadly tunable, laser-pumpedTm:YAG and Tm:YSGG cw lasers[J]. Optics Letters.1990,15(9):486-488.
    [60] Eric C. Honea, Raymond J. Beach, Steve B. Sutton, Joel A. Speth, Scott C.Mitchell, Jay A. Skidmore, Mark A. Emanuel and Stephen A. Payne.115WTm:YAG CW diode-pumped solid-state laser[C]. OSA TOPS Advanced SolrdState Lasers,1997,10:307-309.
    [61] K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, Ernest Lau, S. W. Toh, B. T. Toh, andAudrey Chng.120-W continuous-wave diode-pumped Tm:YAG laser[J]. OpticsLetters.2000,25(21):1591-1593.
    [62] K. S. Lai, W. J. Xie, R. F. Wu, Y. L. Lim, Ernest Lau, Lindy Chia, and P. B. Phua.A150W2-micron diode-pumped Tm:YAG laser[C]. OSA TOPS Advanced Solid-State Lasers.2002,68:535-539.
    [63]韩隆,魏磊,吴军勇.激光二极管抽运Tm:YAP晶体实验研究[J].中国激光,2008,35(1):1-4.
    [64] P. Koopmann, R. Peters, K. Petermann, and G. Huber. Highly Efficient, BroadlyTunable Tm:Lu2O3Laser at2μm[C]. in Proceedings of CLEO Europe–EQEC,2009: CA10.3.
    [65] P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber.High Power Diode Pumped2μm Laser Operation of Tm:Lu2O3[C]. OSA/CLEO/QELS,2010: CMDD1.
    [66] Petr koranda, Jan suic, and maxim Doroshenko. Cr:ZnSe laser pumped withTm:YAP microchip laser[C]. Solid State Lasers XIX: Technology and Devices,2010,7578:757826.
    [67] D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, Z. Xu. A200W diode-side-pumped CW2μm Tm:YAG laser with water cooling at8°C[C].Appl Phys B.2011,103:83-88.
    [68] P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber.Efficient diode-pumped laser operation of Tm:Lu2O3around2μm[C]. OpticsLetters.2011,36(6):948-950.
    [69] M. Schellhorn, P. Koopmann, K. Scholle, P. Fuhrberg, K. Petermann, and G.Huber. Diode-pumped Tm:Lu2O3thin disk laser[C]. OSA/ASSP.2011: ATuB14.
    [70]魏磊,胡学浩,韩隆,吴军勇,王克强。激光二极管双端抽运Tm:YAP激光器[J].中国激光,38(5):0502005-1~5.
    [71] R. H. Hoskins and B. H. Soffer. Energy Transfer and CW Laser Action inHo3+:Er2O3[J]. IEEE Journal of Quantum Electronics,1966, QE-2(8):253-255.
    [72] C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna.2W Ho:YAG laserintracavity pumped by a diode-pumped Tm:YAG laser[J]. Optics Letters,1998,23(22),1757-1759.
    [73] P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P.Chicklis. Efficient mid-infrared laser using1.9-μm-pumped Ho:YAG and ZnGeP2optical parametric oscillators[J]. J. Opt. Soc. Am. B.2000,17(5):723-728.
    [74] R. A. Hayward, W. A. Clarkson, D. C. Hanna. High-power diode-pumped room-temperature Tm:YAG and intracavity-pumped Ho:YAG lasers[C]. AdvabcesSolid-State lasers, Proc.2000,34:90-94.
    [75] P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P.Chicklis.50-mJ, Q-switched,2.09-μm holmium laser resonantly pumped by adiode-pumped1.9-μm thulium laser[C]. Optics Letters,2003,28(12):1016-1018.
    [76] A. Dergachev and P. F. Moulton. High-Power, High-Energy Diode-PumpedTm:YLF-Ho:YLF-ZGP Laser System[C]. OSA/ASSP.2003.
    [77] D. Y. Shen,A. Abdolvand,L. J. Cooper,W. A. Clarkson. Efficient Ho:YAGlaser pumped by a claddingpumped tunable Tm: silica-fibre laser[C]. Appl. Phys.B,2004,79:559–561.
    [78] D. Y. Shen, W. A. Clarkson, L. J. Cooper, and R. B. Williams. Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiberlaser[J]. Optics Letters.2004,29(20):2396-2398.
    [79] Christelle Kieleck and Antonine Hirth. Investigation of a Q-switched Ho:YAGlaser intracavity-pumped by a diode-pumped Tm:YLF laser[C]. Proc. of SPIE.2004,5460:56-63.
    [80] Alex Dergachev, Peter F. Moulton. High-power, high-energy Ho:YLF laserpumped with Tm:fiber laser[C]. OSA/ASSP,2005:608-612.
    [81] Espen Lippert, Stephane Nicolas, Gunnar Arisholm, Knut Stenersen, and GunnarRustad. Midinfrared laser source with high power and beam quality[J]. Appliedoptics.2006,45(16):3839-3845.
    [82] S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K.Gorton, and J. A. C. Terry. Intra-cavity side-pumped Ho:YAG laser[J]. OpticsExpress.2006,14(22):10481-10487.
    [83] Alex Dergachev, Darrell Armstrong and Arlee Smith, Thomas Drake and MarcDubois.3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumpedby a2.05-μm Ho:YLF MOPA system[J]. Optics Express.2007,15(22):14404-14413.
    [84] G. Renz and W. Bohn. Two-Micron Thulium-Pumped-Holmium Laser Source forDIRCM Applications[C]. Proc. of SPIE.2007,6552:655202-1~15.
    [85] S. So, J. I. Mackenziea, D. P. Shepherd, and W. A. Clarkson. High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG[C]. Proc. of SPIE.2008,6871:68710R-1~10.
    [86] B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang, and G.J. Zhao.7.3W of single-frequency output power at2.09μm from an Ho:YAGmonolithic nonplanar ring laser[J]. Optics Letters.2008,33(18):2161-2163.
    [87] X. M. Duan, B. Q. Yao, C.W. Song, J. Gao, and Y. Z. Wang. Room temperatureefficient continuous wave and Q-switched Ho:YAG laser double-pass pumped bya diode-pumped Tm:YLF laser[J]. Laser Phys. Lett.2008,5(11):800-803.
    [88] X. D. Mu, H. E. Meissner, H. C. Lee. Thulium Fiber Laser4-Pass End-PumpedHigh Efficiency2.09-μm Ho:YAG Laser[C]. OSA/CLEO/IQEC,2009: CWH1.
    [89] X. M. Duan, B. Q. Yao, Y. L. Ju, Y. Z. Wang, and G. J. Zhao.8.5W roomtemperature continuous wave operation of a Ho:LuAG laser[J]. Laser Phys. Lett.2009,6(12):847-849
    [90] X. M. Duan, B. Q. Yao, G. Li, T. H. Wang, X. T. Yang, Y. Z. Wang, G. J. Zhao,and Q. Dong. High efficient continuous wave operation of a Ho:YAP laser atroom temperature[J]. Laser Phys. Lett.2009,6(4):279-281.
    [91] E. Lippert, H. Fonnum, G. Arisholm and K. Stenersen. A22-watt mid-infraredoptical parametric oscillator with V-shaped3-mirror ring resonator[J]. OpticsExpress.2010,18(25):26475-26483.
    [92] X. J. Cheng, J. Q. Xu, M. J. Wang, B. X. Jiang, W. X. Zhang and Y. B. Pan.Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature[J]. LaserPhys. Lett.2010,7(5):351-354.
    [93] H. Chen, D. Shen, J. Zhang, H. Yang, D. Y. Tang, T. Zhao and X. F. Yang. In-band pumped highly efficient Ho:YAG ceramic laser with21W output power at2097nm[J]. Optics Letters.2011,36(9):1575-1577.
    [94] G. A. Newburgh, Akil Word-Daniels, Arocksiamy Michael, Larry D. Merkle,Akio Ikesue, and Mark Dubinskii. Resonantly diode-pumped Ho3+:Y2O3ceramic2.1μm laser[J]. Optics Express.2011,19(4):3604-3611.
    [95] P. S. Golding, S. D. Jackson, P. K.Tsai, and B. C. Dickson, Efficient high poweroperation of a Tm-doped silica fiber laser pumped at1.319μm[J]. Opt. Comm.,2000,175(13):179-183.
    [96] S. D. Jackson, S. Mossman. High-power diode-cladding-pumped Tm3+,Ho3+-doped silica fibre laser. Appl. Phys. B.,2003,77:489-491.
    [97] G. Frith, D. G. Lancaster and S. D. Jackson.85W Tm3+-doped silica fiber laser[J].Electron. Lett.,2005,41:687-688.
    [98] S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts and D. G. Lancaster. High-power83W holmium-doped silica fiber laser operating with high beam quality[J].Opt. Lett.,2007,32(3):241~243.
    [99] E. Slobodtchikov and P. F. Moulton. Efficient, High-Power, Tm-doped SilicaFiber Laser[C]. Adv. Solid-State Photon. Conf. Postdeadline Paper,2007
    [100] Marc Eichhorn, and Stuart D. Jackson. High-pulse-energy actively Q-switchedTm3+,Ho3+-doped silica2μm fiber laser[J]. Opt. Lett.,2008,33(10):1044-1046.
    [101] A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin. All-fiber10W holmium laserspumped at λ=1.15μm[J]. Opt. Lett.,2010,35(4):490-492.
    [102] R. Burnham, R. A. Stolzenberger and A. Pinto. Infrared optical parametricoscillator in potassium titanyl phosphate[J]. IEEE Photonics Tech. Lett.1989,1(1):27-28.
    [103] E. Cheung, S. Palese, H. Injeyan, C. Hoefer, R. Hilyard, H. Komine, J. Gish andW. Borenberg. High power optical parametric oscillator source[C]. IEEEAerospace Conf. Proc.2000,3:55-59.
    [104] S. Haidar, K. Miyamoto and H. Ito. Generation of tunable Mid-IR (5.5-9.3μm)from a2-μm pumped ZnGeP2optical parametric oscillator[J]. Opt. Commun.2004,241:173-178.
    [105]谢刚,彭跃峰,鲁燕华,王卫民,武德勇.23.6W高效率2μm激光器[J].中国激光.2007,34(11):1488-1491.
    [106]彭跃峰,谢刚,王卫民,武德勇.46W腔内光参量振荡高重复频率2μm激光器[J].中国激光.2009,36(1):33-36.
    [107] G. G. Zhong, J. Jin, Z. K. Wu. Measure of optically induced refractive indexdamage of lithium niobate doped with different concentration of MgO[J]. IEEE J.Quantum Electron.1980,80:631-633.
    [108] Y. Hirano and S. Yamamoto, H. Taniguchi. Highly efficient and high power2μmgeneration with PPMgLN OPO[C]. CLEO,2001:579-580.
    [109] H. Ishizuki, J. Saikawa and T. Taira.100mJ output optical parametric oscillationusing periodically poled MgO:LiNbO3[J]. ASSP,2006: TuC3.
    [110] R. Bhushan, H. Yoshida, K. Tsubakimoto, H. Fujita, M. Nakatsuka, N. Miyanaga,Y. Izawa, H. Ishizuki, T. Taira. High efficiency and high energy parametricwavelength conversion using a large aperture periodically poled MgO:LiNbO3[J].Opt. Commun.2008,281:3902-3905.
    [111] M. J. Kavaya, G. J. Koch, M. Petros, et al. Test Bed Doppler Wind Lidar andIntercomparison Facility at NASA Langley Research Center[C]. Honolulu: LidarRemote Sensing for Industry and Environmental Monitoring,2004.
    [112] D. C. Shannon, D. L. Vecht, S. Re, J. Alonis and R. W. Wallance. High averagepower diode-pumped laser near2μm[C]. Proc. SPIE,1993,1865:164-173.
    [113] M.Schellhorn. A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers inCW and Q-switched operation under identical pump conditions[C]. AdvancedSolid-State Photonics (ASSP).2011: AWA08.
    [114] T. Taira, W. M. Tulloch, and R. L. Byer. Modeling of quasi-three-level lasers andoperation of CW Yb:YAG lasers[J]. Applied Optics,1997,36(9):1867-1874.
    [115] S. Bjurshagen, D. Evekull, and R. Koch. Effcient generation of blue light byFrequency doubling of a Nd:YAG laser operating on4F3/24I9/2transitions[C].Osnabruck, Germany: In2002Spring Meeting of the Quantum Optics Section ofthe German Physical Society. Appl. Phys. B, Lasers Opt.(Germany),2003, B76:135.
    [116] S. Bjurshagen and R. Koch. Modeling of energy-transfer upconversion andthermal effects in end-pumped quasi-three-level lasers[J]. Applied Optics,2004,43(24):4753-4767.
    [117] M. Schellhorn and A. Hirth. Modeling of intracavity-pumped quasi-three-levellasers[J]. IEEE Journal of Quantum Electronics,2002,38(11):1455-1464.
    [118] B. M. Walsh, N. P. Barnes, and B. Di Bartolo. Branching ratios, cross sections,and radiative lifetimes of rare earth ions in solids: Application to Tm3+and Ho3+ions in LiYF4[J]. Journal of Applied Physics,1998,83(5):2772-2787.
    [119] K. Kubodera and K. Otsuka. Single-transverse-mode LiNdP4O12slab waveguidelaser[J]. Journal of Applied Physics,1979,50(2):653-659.
    [120] G. rustad and K. Stenersen. Modeling of laser-pumped Tm and Ho laseraccounting for upconversion and ground-state depletion[J]. IEEE Journal ofQuantum Electronics,1996,32(9):1645-1656.
    [121] S. R. Bowman, G. J. Quarles, and B. J. Feldman. Upconversion losses in flashlamp-pumped Cr,Tm:YAG. In OSA Proceedings on Advanced Solid-StateLasers[C]. Sante Fe, NM, USA: Proceedings of the Topical Meeting, OSAProceedings on Advanced Solid-State Lasers.1992,13:169.
    [122] G. J. Kintz. Highly effcient CW2-μm laser[C]. OSA annual meeting,1990.
    [123] G. Rustad. Modeling and experimental in vestigation of laser-diode end-pumpedand side-pumped thulium-and holmium doped lasers[D]. PhD thesis, Universityof Oslo,1994.
    [124] L. B. Shaw, R. S. F. Chang, and N. Djeu. Measurement of up-conversion energy-transfer probabilities in HoY3Al5O12and TmY3Al5O12[D]. Physical Review B,1994,50(10):6609-6619.
    [125] M. Schellhorn and A. Hirth. Modeling of intracavity-pumped quasi-three-levellasers[J]. IEEE Journal of Quantum Electronics,2002,38(11):1455-1464.
    [126] E. C. Honea, R.J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore,M. A. Emanuel, and S. A. Payne.115-W Tm:YAG diode-pumped solid-state laser.IEEE Journal of Quantum Electronics,1997,33(9):1592-1600.
    [127] P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna. Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd:YLFlaser crystals[J]. IEEE Journal of Quantum Electronics,1999,35(4):647-655.
    [128] G. Armagan, A. M. Buoncristiani, A. T. Inge and B. D. Bartolo. Comparison of thespectroscopic properties of Tm and Ho in YAG and YLF crystals[C]. AdvancedSolid-State Lasers, Proceedings.1991,10:222-226.
    [129] B. M. Walsh, N. P. Barnes and B. Di Bartolo. Branching ratios, cross sections, andradiative lifetimes of rare earth ions in solids: Application to Tm3+and Ho3+ionsin LiYF4[J]. Journal of Applied Physics,1998,83:2772-2787.
    [130] L. Yan and C. H. Lee. Thermal effects in end-pumped Nd:Phospate glasses[J].Journal of Applied Physics,1994,75(3):1286-1292.
    [131]小松,能抑制长脉冲Nd:YAG激光器弛豫振荡的腔结构[J].激光与红外,1979,11:4-9.
    [132]孙文,江泽文,程国祥译.固体激光工程[M].北京:科学出版社,2002.
    [133] A. E. Siegman. Lasers[M]. University Science Books,1986.
    [134] W. Koechner. Solid-state laser Engineering[M]. Springer-Verlag,1999
    [135]陈默,魏晓羽,吴念乐,李师.泵浦带有弛豫振荡的固体激光器的弛豫振荡特性理论研究.量子电子学报[J].2004,21(3):311-316.
    [136] R. P. Sandoval. Resonator configuration for the suppression of relaxationoscillations in a long-pulsed Nd:YAG laser. Applied Optics.1979,18(9):1328-1333.
    [137] R. F. Marshall and D. L. Roberts. Use of Electro-Optical Shutters to StabilizeRuby Laser Operation[C]. Proc.1962, IRE50:2108.
    [138] D. V. keller and B. I. Davis. High Power Non-Spiking Operation of Ruby Laser[J].IEEE J. Quantum Electron.1966, QE-2:179-181.
    [139] C. H. Thomas and E. V. Price. Feedback control of a Q-switched ruby laser[J].IEEE J. Quantum Electron.1975, QE-11:17-21.
    [140] R. V. Lovberg, E. R. Wooding, M. L. Yeoman. Pulse Stretching and Shape Controlby Compound Feedback in a Q-Switched Ruby Laser[J]. IEEE J. QuantumElectron.1975, QE-11:17.
    [141] R. H. Pantell and J. Warszawski. Laser power stabilization by means of nonlinearabsorption[J]. Appl. Phys. Lett.1967,11:213-215.
    [142] R. P. Sandoval. Resonator configuration for the suppression of relaxationoscillations in a long-pulsed Nd:YAG laser. Applied Optics.1979,18(9):1328-1333.
    [143] D. Ross, Lasers, Light Amplifers and Oscillator[M].1969, chap.12.
    [144] S. Knut, L. Espen, R. Gunnar and A. Gunnar Thermal Effects in end-pumpedSolid State Lasers-Influence on resonator stability, beam quality, and outputpower[J]. Norwegian Defence Research Establishment, FFI/RAPPORT,2001:03865
    [145] P. A. Budni, M. L. Lemons, J. R. Mosto and E. P. Chicklis. High-power/high-brightness diode-pumped1.9-μm thulium and resonantly pumped2.1-μmholmium lasers[J]. IEEE J. Sel. Top. on Quantum Electron.2000,6(4):629-635.
    [146] S. R. Bowman and B. J. Feldman. Demonstration and analysis of a Holmiumquasi-two level laser[C]. Proc. of SPIE.1992,1627:46-54.
    [147] P. Peterson, A. Gavrielides and P.M. Sharma. CW theory of a laser diode-pumpedtwo-manifold solid state laser[J]. Opt. Commun.1994,109:282-287.
    [148] S. R. Bowman. Lasers Without Internal Heat Generation[J]. IEEE J. QuantumElectron.1999,35(1):115-122.
    [149] V. Lupei, G. Aka and D. Vivien. Highly efficient,0.84slope efficiency,901nm,quasi-two-level laser emission of Nd in strontium lanthanum aluminate[J]. Opt.Lett.2006,31(8):1064-1066.
    [150] J. E. Hellstr m, B. Jacobsson, V. Pasiskevicius and F. Laurell. Quasi-two-levelYb:KYW laser with a volume Bragg grating[J]. Opt. Express.2007,15(21):13930-13935.
    [151] E. K. Gorton, J. G. Betterton, D. A. Orchard, B. J. Perrett, P. D. Mason and I. F.Elder. CW and Temporal Theoretical Model Predictions and Experimental Resultsfor Tm:YAG and Ho:YAG Lasers[C]. Proc. of SPIE,2008,7115:71150U-1~8
    [152] G. Rustad and K. Stenersen. Modeling of Laser-Pumped Tm and Ho LasersAccounting for Up-conversion and Ground-State Depletion[J]. IEEE Journalof Quantum Electronics.1996,32(9):1645-1656.
    [153] M. Schellhorn and A. Hirth. Modeling of Intracavity-pumped Quasi-Three-LevelLasers. IEEE Journal of Quantum Electronics[J].2002,38(11):1455-1464.
    [154] S. A. Payne, L. L. Chase, Larry K. Smith, Wayne L. Kway, and William F. Krupke.Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, andHo3+[J]. IEEE Journal of Quantum Electronics,1992,28(11):2619-2630.
    [155]王雨三,张中华,林殿阳.光电子学原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2002:101.
    [156] M. Tsunekane, N. Taguchi, T. Kasamatsu and H. Inaba. Analytical andExperimental Studies on the Characteristics of Composite Solid-State Laser Rodsin Diode-End-Pumped Geometry[J]. IEEE Journal of Selected Topics in QuantumElectronics,1997,3(1):9-18.
    [157] P. A. Budni, M. L. Lemons, J. R. Mosto and E. P. Chicklis. High-power/high-brightness diode-pumped1.9μm Thulium and resonantly pumped2.1μmHolmium lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2000,6:629-635.
    [158] A. Dergachev, K. Wall and P. F. Moulton. A CW side-pumped Tm:YLF laser[C].Advanced Solid-State Lasers, Proceedings, OSA Trends in Optics and Photonics,2002,68:343-346.
    [159] P. A. Budni, M. L. Lemons, J. R. Mosto. and E. P. Chicklis. High-power/high-brightness diode-pumped1.9μm Thulium and resonantly pumped2.1μmHolmium lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2000,6:629-635.
    [160] M. Tsunekane, N. Taguchi, T. Kasamatsu and H. Inaba. Analytical andexperimental studies on the characteristics of composite solid-state laser rods indiode-end-pumped geometry[J]. IEEE Journal of Selected Topics in QuantumElectronics,1997,3:9-18.
    [161] L. Yan and C. H. Lee. Thermal effects in end-pumped Nd:phosphate glasses[J].Journal of Applied Physics,1994,75:1286-1292.