Zn_(1-x)Cu_xO微纳结构的制备及其光学磁学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米材料的物理化学性质与其成分、形状和尺寸有着密切的关系。目前,对ZnO微纳材料的可控制备、表征与应用研究引起了材料、物理、化学等领域研究人员的广泛兴趣。在本文中我们选择了Cu掺杂ZnO体系作为研究对象。与其他过渡金属掺杂元相比,Cu掺杂不仅是一种实现室温铁磁性有效的掺杂元,而且具有其自身的优势:如铜替代锌的掺杂为p型,铜离子半径与锌离子离子半径差异较小,掺杂所需要的结合能低等。此外,由于Cu及其氧化物都是非磁性的,这种不会产生磁性沉淀的掺杂有利于我们研究稀磁半导体磁性的来源。
     目前为止,人们已经在实验上通过各种方法实现了Cu掺杂的ZnO样品的制备,但对Cu掺杂ZnO磁性的来源是外部Cu引入还是来源于本征结构的缺陷仍然存在一些争议;而且目前的文献报道主要集中在体材料与薄膜中,只有较少关于Cu掺杂ZnO一维纳米结构报道(如一维的纳米线,纳米棒以及纳米钉等)。
     而ZnO球壳结构以及三维分层结构具有特殊的结构和独特的性能,设计和可控制备球壳结构以及分层结构材料在材料制备领域受到了人们广泛的关注。如球壳结构具有独特的几何外形和大的比表面积,与一维纳米结构相比在高性能催化剂,传感器,药物传输,能量存储等方面存在潜在的规模应用。由一维结构纳米材料构筑的ZnO三维分层结构有望于应用复合功能纳米电子器件中(如气体传感器,光催化产氢等)。所以制备铜掺杂的ZnO磁性球壳结构与实现分层结构的制备是十分必要而且重要的。据我们所知,目前还没有关于铜掺杂ZnO磁性球壳结构与Z_(1-x)Cu_xO三维分层微十字架结构相关的报道。
     本论文主要集中于探索Z_(1-x)Cu_xO空球壳结构与分层结构的方法,并对所制备的微纳结构进行详细表征,研究了Cu掺杂前后对样品形貌与结构的影响,并解释其生长机理;在性质方面,探讨了Cu引入对ZnO光学性质的影响;在应用方面,对所制备的Cu掺杂ZnO空球壳结构的磁性进行了研究。
     实验上,在制备ZnO球壳结构与分层结构等复杂结构的过程中通常需要较高的反应温度,复杂多步的反应步骤,或者会因模板或催化剂的使用而引入一些杂质,这些都不利于所制备的纳米结构在器件上的应用。因此,用一种简单,低温,无催化,可控的方法制备出具有新颖或潜在应用价值的复杂结构仍然是一个挑战。迄今为止,在各种制备ZnO微纳结构的方法中,化学气相沉积法被证明是一种有效的易于生长出多种形貌的纳米结构的合成方法。
     本文中,我们通过化学气相沉积法成功地制备出Cu掺杂ZnO空球壳结构。通过改变生长条件,研究样品的形貌,结构变化,我们对其生长机理进行了探讨。对其光学性质研究发现,Cu掺杂使得ZnO可见区发光显著增强。制备出的球壳结构具有室温铁磁性,其磁性来源于Cu引入产生的大量缺陷。缺陷会导致磁性的增强,我们可以通过改变掺杂浓度来调控磁性的强度。
     接下来,我们用简单无催化的气相沉积法实现从一维纳米棒到Z_(1-x)Cu_xO三维分层的微十字架结构的制备。该方法的要点是利用了高温有利于Cu的聚集、成核、分支外延生长等。高含量的Cu的引入实现了通常ZnO六方结构向四方对称结构的转变。我们还发现本方法所制备的单个Z_(1-x)Cu_xO微十字架结构由于Cu浓度分布的不同而显示出有趣的不均匀发光现象。
     此外, ZnO中高的激子束缚能量大(60meV)导致室温下高浓度的激子的产生,这将有利于ZnO在低的激发能量密度下产生激光现象,从而在短波长发光器件与激光器件中表现出巨大的发展潜力。因而在本文中,我们也选择了ZnO的激光发射性质进行研究。通过化学气相沉积法实现了纳米线环绕纳米管,纳米管组装微球壳等复杂的ZnO微纳结构的制备,从实验上观察到随机激光发射信号。在ZnO纳米塔结构中发现其具有固定模式的激光发射峰,通过理论计算,将其归因为Fabry-Perot共振增强的Whisper Gallery Mode。
The physical and chemical properties of micro/nano materials are afunction of their composition, morphology, and size. At present,controllable synthesis, characterization and application of micro/nanomaterials is of great interest to physicists, chemists, and materialscientists. On the other hand, doping is an efficient method to improve theelectrical and optical properties of semiconductors. In this dissertation,we have chosen the Cu-doped ZnO (Zn1-xCuxO) system to investigate.Compared with the other transition metal, Cu is not only an effectiveferromagnetism dopant, but also has its own advantages. Such as, thesubstitution of Zn by Cu is a p-type doping, and the size mismatchbetween Cu and Zn is very small, resulting in the low formation energy.In addition, Z_(1-x)Cu_xO is free of ferromagnetic impurities, making iteasier to investigate the origin of ferromagnetism in diluted magneticsemiconductor.
     So far, considerable effort has been devoted to the fabrication ofZ_(1-x)Cu_xO materials with room temperature ferromagnetism (RTFM)through various methods. However, it remains controversial whether the observed RTFM originates from the extrinsic Cu introducing or theintrinsic structural defects. Most of the investigations have been focusedon bulk materials or thin films, whereas only a few reports onone-dimensional (1D) nanostructures (e.g., nanowires, nanonails, andnanoneedles).
     In recent years, increasing attention has been paid to design andcontrollable preparation of hollow spherical structures andthree-dimensional (3D) hierarchical ZnO architectures because of theirunique geometrically shape and widely applications in many fields.Compared with the reported1D Cu-doped ZnO nanostructures, sphericalstructures could apply to catalysis, sensors, drug delivery, energy-storagemedia, and so forth because of their geometrically hollow shape and largesurface area.3D hierarchical ZnO architectures, which derived from1Dnanostructures as building blocks,show considerable promise for thedevelopment of multiple functional nanodevices (e.g., gas sensor andphoto-catalytic hydrogen generation). For these reasons, it is veryimportant and necessary to fabricate the Z_(1-x)Cu_xO hollow sphericalstructures and3D hierarchical micro/nano structures. Thus far, there havebeen no reports of such Z_(1-x)Cu_xO hollow spherical and hierarchicalstructures.
     We concentrate on exploring new method to prepare the Zn1-xCuxOhollow spherical and hierarchical micro/nano structures, studying the influence of Cu doing on the morphologies and structures of theas-synthesized samples. The optical and magnetic properties are also beeninvestigated after Cu introducing.
     Experimentally, the processes of prepare the Z_(1-x)Cu_xO hollowspherical and hierarchical micro/nano structures often require highertemperature, multi-step process, or introduce impurities by foreigncatalysts or the templates, which is harmful to the application in device.Therefore, it is still a challenge to find a simple and controllable methodto fabricate hollow spherical and hierarchical micro/nano structures.
     In this dissertation, we firstly report a simple chemical vapordeposition method to prepare the Z_(1-x)Cu_xO hollow spherical structures.Through a series of controlled experiments by changing the growthconditions, we study on the changes of morphology and structures afterCu doping, and propose the growth mechanism of the as-preparedspherical structures. The visible luminescence is greatly enhanced afterCu introduced. We attribute the enhanced RTFM with Cu contents in ourZ_(1-x)Cu_xO hollow spherical structures to the increased intrinsic defectstriggered by the Cu doping.
     Followed that, we have realized the fabrication from1D nanorod to3D hierarchical Z_(1-x)Cu_xO micro-cross structures by a simplecatalyst-free vapor-phase method. The key point is that the highertemperature is helpful to form a central core and epitaxial growth of the hierarchical structure. The introduction of abundant Cu in the core causethe usual hexagonal ZnO structures growing into four-fold hierarchicalcross-like structures. Interestingly, we have observed the distinctinhomogeneous cathodeluminescence (CL) in a single Zn1-xCuxOmicrocross structure, which is attributed to the different concentrations ofCu.
     On the other hand, high concentration of excitons can be generated atroom temperature because of the large exciton binding energy (60meV)in ZnO, which will benefit to produce laser in a low excitation energy. Wealso investigate the laser emission properties of pure ZnO nanostrucures.Different hierarchical ZnO nanostructures, such as nanotube surroundednanowires, and nanotube assembled micro spherical shell structures havebeen prepared by chemical vapor deposition method. We can observe therandom action in the as-prepared ZnO hierarchical nanostructures.Moreover, we have prepared the micro-tower arrays, which can be servedas laser micro cavity. The observed fixed laser mode at room temperaturein the ultraviolet region at room temperature in micro-tower structurescan be attributed to the Whisper Gallery Mode lasing assisted byFabry-Pérot resonance.
引文
[1] Qzgur, U., Hofstetter, D,, and Morko, H,, ZnO Devices and applications: A reviewof current status and future prospects, Proceedings of the IEEE,98(7):1255-1268.
    [2] Shen, G., Fabrication and characterization of metal oxide nanowire sensors,Recent Patents on Nanotechnology,2008,2(3):160-168.
    [3] Shulin, J, and Changhui, Y., Synthesis, growth mechanism, and applications ofzinc oxide nanomaterials [J], Journal of Materials Sciences and Technology,2007,24(04):457-472.
    [4] Zhang, Q., Dandeneau, C., Zhou, X., et al., ZnO nanostructures for dye-sensitizedsolar cells, Advanced Material,2009,21(41):4087-4108.
    [5] Hwang, D., Oh, M., Lim, J., et al., ZnO thin films and light-emitting diodes,Journal of Physics D: Applied Physics,2007,40: R387.
    [6] Klingshin, C., ZnO: material, physicas and applications, ChemPhysChem,2007,8(6):782-803.
    [7] Look, D., Recent adbances in ZnO materials and devices, Materials Science&Engineering B,2001,80(1-3):383-387.
    [8] Zhuang, B., Lai, F., Lin, L., et al., ZnO nanobelts and hollow microspheres grownon Cu foil, Chinese Journal of Chemical Physics,23:79.
    [9] Zhang, H., Wu, J., Zhai, C., et al., From ZnO nanorods to3D hollowmicrohemisphere3s solvothermal synthesis, photoluminescence and gas sensorproperties, Nanotechnology,2007,18:455604.
    [10] Zhang, M., Zhou, Z., Yang, X., et al., Fabricaiton of ZnO nanowire devices viaselective electrodeposion, Electrochemical and Solid-State Letters,2008,11:D69.
    [11] Wang, Z., Qin, X., Yin, J., et al., Large-scale fabrication of tower-like flower-like,and tube-like ZnO arrays by a simple chemical solution route, Langumuir,2004,20(8):3441-3448.
    [12] Gao, P., Ding, Y., and Wang, Z., Crystallographic orientation-alligned ZnOnanorods grown by a tin catalyst, Nano Letters,2003,3(9):1315-1320.
    [13] Yi, G., Wang, C., and Park, W., ZnO nanorods synthesis, characterization andapplications, Semiconductor Science and Technology,2005,20: S22-S34.
    [14] Okazaki, K., Znkamura, D., Higashihata, M., et al., Lasing characteristics of anoptically pumped single ZnO nanosheet, Optics Express,2011,19(21):20389-20394.
    [15] Pan, Z. W., Mahurin, S. M., Dai, S., et al., Nanowire array gratings with ZnOcombs, NanoLetters,2005,5(4):723-727.
    [16]仲维卓,华素坤,晶体生长形态学.114,1999:科学出版社.
    [17] Bates, C., White, W., and Roy, R., New high-pressure ploymorph of znic oxide,Science,1962,137:993.
    [18] Recio, J., Blanco, M., Luana, V., et al., Compressibility of the high-pressurerocksalt phase of ZnO, Physical Reviews B,1998,58(14):8949.
    [19] Wang, Z., Zinc Oxide Nanosturcures: Growth, properties and applicaions,Journal of Physics: Condensed Matter,2007,16: R829.
    [20]曹茂盛,关长赋,俆甲强,纳米材料导论,2001:哈尔滨工业大学出版社。
    [21] Wang, Z. L., Nanosturctures of znic oxide, Matericals Today,2004,7(6):26-33.
    [22] Yi, G., Wang, C., and Park, W., ZnO nanorods: synthesis, characterization andapplications, Simiconductor Science and Techonology,2005,20: S22.
    [23] Tenne, R., and Rao, C., Inorganic nanotubes, Philosophical Transactions of theRoyal Society of London. Series A: Mathematica, Physical and EngineeringSciences,2004,362(1823):2099.
    [24] Zhang, H., Yang, D., Ma, X., et al., Synthesis of flower-like ZnO nanostructuresby an organic-free hydrothermal process, Nanotechnology,2004,15:622.
    [25] Kharisov., B., A review for synthesis of nanoflowers, Recent Patents onNanotechnology,2008,2(3):190-200.
    [26] Mahamuni, S., Borgohain, K., Bendre, B., et al., Spectroscopic and structuralcharacterization of electrochemiaclly grown ZnO quantum dots, Journal ofApplied Physics,1999,85(5):2861-2865.
    [27] Zhang, Z., Wang, S., Yu, T., et al., Controlling the growth mechanism of ZnOnanowires by selecting catalysts, The Journal of Physical Chemistry C2007,111(47):17500-17505.
    [28] Keis, K., Magnusson, E., Lindstrom, H., et al., A5%efficientphotoelectrochemical solar cell based on nanostructured ZnO electrodes, SolarEnergy Materials and Solar Cells,2002,73(1):51-58.
    [29] Xu, J., Pan, Q., Shun, Y. A., and Tian. Z. Z., Grain size control and gas sensingproerties of ZnO gas sensor, Sensors and Actuators B: Chemical,2000,66(1):277-279.
    [30] Chakrabatri, S., and Dutta, B. K., Photocatalytic degradation of model textiledyes in watewater using ZnO as semiconductor catalys, Journal of HazardousMaterials,2004,112(3):269-278.
    [31] Van De Pol, F. C., Thin film ZnO properties and applications, American CeramicSociety Bulletion,1990,69(12):1959-1965.
    [32] Paradis, E., and Shuskus, A., Rf sputtered epitaxial ZnO films on sapphire forintegrated optics, Thin Solid Films,1976,38(2):131-141.
    [33] Serbice, R., Materials science: Will UV lasers beat the blues, Science,1997,276(5314):895.
    [34] Cross, S. E., Innes, B., Roberts, M. S., et al., Human skin penetration ofsunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxideformulation, Skin Pharmacology and Physiology,2007,20(3):148-154.
    [35] Lim, J. H., Kang, C. K., Kim, K. K., et at., UV elctroluminescence Emissionfrom ZnO light-emitting diodes grown by high-temperature radiofrequencysputtering, Adbanced Materials,2006,18(20):2720-2724.
    [36] Jiang, C., Sun, X., Lo, G., et al., Improved dye-senstized solar cells with aZnO-nanoflower photonode, Applied Physics Letters,2007,90:263501.
    [37] Yang, Y., Chu, Y., Zhang, Y., et al., Polystyrene-ZnO core-shell microspheres andhollow ZnO strucbures synthesized with the sulfonated polysyrene templates,Journal of Soled State Chemistry,2006,179(2):470-475.
    [38]Zhu, Y, Fan, D., and Shen, W., Template-free synthesis of zinc oxide hollow microspheres in aqueous solution at low temperature, The Journal of Physical Chemistry C,2007,111(50):18629-18635.
    [39]Shen, G., Bando, Y, and Lee, C. J., Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process, The Journal of Physical Chemistry B,2005,109(21):10578-10583..
    [40]Deng, Z., Chen, M., Gu, G., et al., A facile method to fabricate ZnO hollow spheres and their photocatalytic property, The Journal of Physical Chemistry B,2008,112(1):16-22..
    [41]Dong, Z., Lai, X., Halpert, J. E., et al., Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Advanced Materials,2012,24(8):1046-1049.
    [42]Feng, L., Liu, J., She, J., et al., Three-dimensional six-fold symmetry ZnO sub-microstructures, Journal Crystal Growth,2009,311(5):1435-1440.
    [43]Rai, P., Jo, J. N., Lee, I. H., et al., Fabrication of3D rotor-like ZnO nanostructure from1D ZnO nanorods and their morphology dependent photoluminescence property, Solid State Sciences,2010,12(10):1703-1710.
    [44]Lao, J. Y., Wen, J. G., and Ren, Z. F., Hierarchical ZnO nanostructures, Nano Letters,2002,2(11):1287-1291.
    [45]Lao, J., Huang, J., Wang, D., et al., ZnO nanobridges and nanonanails, Nano Letters,2003,3(2):235-238.
    [46]Wang, Z. L., Kong, X. Y, Ding, Y, et al., Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces, Advanced Functional Materials,2004,14(10):943-956.
    [47]Wu, Y, Xi, Z., Zhang, G., et al., Fabrication of hierarchical zinc oxide nanostructures through multistage gas-phase recation, Crystal Growth and Design,2008,8(8):2646-2651.
    [48]Dai, J., Xu, C., Gao, M., et al., Structure evolution and optical properties of hierarchical ZnO micro/nanorods fabricated by a two-step growth method, CrysEngComm,2012,14(6):2180-2185.
    [49]Lu, F., Cai, W., and Zhang, Y, ZnO hierarchical micro/nanoarchitectures:Solbothermal synthesis and structurally enhanced photocatylytic performance, Adbanced Functianl Materials,2008,18(7):1047-1056.
    [50]Wang, Z., Gong, J., Su, Y, et al., Six-fold-symmetrical hierarchical ZnO nanostructure arrays:synthesis, characterization, and field emission properties, Crystal Growth&Design,10(6):2455-2459.
    [51]Czekalla, C., Sturm, C., Schmidt-Grund, R., et al., Whispering gallery mode lasing in zinc oxide microwires, Applied Physics Letters,2008,92:241102..
    [52]Cao, H., Zhao, Y., Ho, S., et al., Random laser action in semiconductor powder, Physical Review Letters,1999,82(11):2278-2281..
    [53]Hsu, H., Wu, C., and Hsieh, W., Stimulated emission and lasing of random-growth oriented ZnO nanowires, Journal of Applied Physics,2005,97:064315..
    [54]Yu, S., Yuen, C., Lau, S., et al., Random laser action in ZnO nanorod arrays embedded in ZnO epilayers, Applied Physics Letters,2004,84:3241..
    [55]Lau, S., Yang, H., Yu, S., et al., Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates, Applied Physics Letters,2005,87:013104..
    [56]Xu, N., Cui, Y, Hu, Z., et al., Photoluminescence and low-threshold lasing of ZnO nanorod arrays, Opticas Express,2012,20(14):14857-14863.
    [57]Yang, P., Yan, H., Mao, S., et al., Controlled growth of ZnO nanowires and their optical properties, Advanced Functional Materials,2002,12(5):323-331..
    [58]Huang, M., Mao, S., Feick, H., et al., Room-temperature ultraviolet nanowire nanolasers, Science,2001,292(5523):1897..
    [59]Yan, H., He, R., Johnson, J., et al., Dendritic nanowire ultraviolet laser array, Journal of the American Chemical Society,2003,125(16):4728-4729..
    [60]Wang, F., Liu, R., Pan, A., et al., The optical properties of ZnO sheets electrodeposited on ITO glass, Materials Letters,2007,61(10):2000-2003.
    [61] Dong, H., Sun, S., Sun, L., et al., Thermodynamic-effect-induced growth, opticalmodulation and UV lasing of hierarchical ZnO Fabry-Pérot resonators, Journalof Materials Chemistry,2012,22(7):3069-3074.
    [62]汤定元,天坛中几个建筑物的声学问题,科学通报,1953,4:50-55.
    [63] Nobis, T., Kaidashev, E., Pahm, A., et al., Whispering gallery modes in nanosizeddielectric resonators with hexagonal cross section, Physical Review Letters,2004,93(10):103903.
    [64] Kim, C., Kim, Y., Jang, E., et al., Whispering-gallery-modelike-enhancedemission from ZnO nanodisk, Applied Physics Letters,2006,88:093104.
    [65] Dai, J., Xu, C., Zheng, K., et al., Whispering gallery-mode lasing in ZnOmicrorods at room temperature, Applied Physics Letters,2009,95:241110.
    [66] Wang, D., Seo, H., Tin, C., et al., Laing in whipering gallery mode in ZnOnanonails, Journal of Applied Physics,2009,99:093112.
    [67] Yu, D., Chen, Y., Li, B., et al., Structural and lasing characteristics of ultrathinhexagonal ZnO nanodisks grown bertically on silicon on insulator substrates,Applied Physics Letters,2007,91:091116.
    [68] Dai, J., Xu, C., Wu, P., et al., Exciton and electron-hole plasma lasing in ZnOdodecagonal whispering-gallery-mode microcaties at room temperature, AppliedPhysics Letters,2010,97:011101.
    [69] Dai, J., Xu, C., and Sun, X., Single-photon and theree-photon absorption inducedwhispering-gallery mode lasing in ZnO micronails, Optics Communications,2011,284(16):4018-4021.
    [70] Xu, X., Brossard, F. S., Williams, D. A., et al., Mapping cabity modes of ZnOnanobelts, Applied Physics Letters,2009,94(23):231103.
    [71] Sun, L., Chen, Z., Ren, Q., et al., Direct obserbation of whispering gallery modepolaritons and their dispersion in a ZnO tapered microcavity, Physical ReviewLetters,2008,100(15):156403.
    [72]孙聊新, ZnO回音壁微腔中激子极化激元色散,激射以及凝聚的实验研究,2009,复旦大学。
    [73] Dietl, T., Ohno, H., Matsukura, F., et al., Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science,2000,287(5455):1019-1022.
    [74]Yosida, K., Magnetic properties of Cu-Mn alloys, Physical Review,1957,106(5):893.
    [75]Sato, K. and Katayama-Yoshida, H., Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, Japanese Journal of Applied Physics,2000,39:555..
    [76]Coey, J., Venkatesan, M., and Fitzgerald, C., Donor impurity band exchange in dilute ferromagnetic oxides,Nature Materials,2005,4(2):173-179.
    [77]Sharma, P., Gupta, A., Owens, F.J., et al., Room temperature spintronic material-Mn-doped ZnO revisited, Journal of magnetism and magnetic materials,2004,282:115-121.
    [78]Han, S., Song, J., Yang, C.-H., et al., A key to room-temperature ferromagnetism in Fe-dopedZnO:Cu, Applied Physics Letters,2002,81(22):4212-4214.
    [79]Karmakar, D., Mandal, S., Kadam, R., et al., Ferromagnetism in Fe-doped ZnO nanocrystals:Experiment and theory, Physical Review B,2007,75(14):144404.
    [80]Lee, H. J., Jeong, S. Y, Cho, C.R., et al., Study of diluted magnetic semiconductor:Co-doped ZnO, Applied Physics Letters,2002,81(21):4020-4022..
    [81]Sato, K., and Katayama, Y. H., Stabilization of ferromagnetic states by electron doping in Fe-, Co-or Ni-doped ZnO, Japanese Journal of Applied Physics,2001,40:334.
    [82]Cui, J., and Gibson, U., Electrodeposition and room temperature ferromanetic anistropy of Co and Ni-doped ZnO nanowire arrays, Applied Physics Letters,2005,87(13):133108.
    [83]Ferhat, M., Zaoui, A., and Ahuja, R., Magnetism and band gap narrowing in Cu-doped ZnO, Applied Physics Letters,2009,94:142502..
    [84]Zhou, S., Zhang, X., Meng, X., et al., The fabrication and optical properties of highly crystalling ultra-long Cu-doped ZnO nanowires, Nanothechnology,2004,15(9):1152-1155.
    [85]Zhu, H., Iqbal, J., Xu, H., et al., Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor-liquidosolid process, The Journal of Chemical Physics,2008,129:124713.
    [86]Xu, C., Yang, K., Huang, L., et al., Cu-doping induced ferromagnetism in ZnO nanowires, The Journal of Chemical Physics,2009,130:124711.
    [87]Zhang, Z., Yi, J. B., Ding, J., et al., Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties, The Journal of Physical Chemistry C,2008,112(26):9579-9585.
    [88]Shama, P. K., Kumar, M., and Pandey, A. C., Green luminescent ZnO:Cu+nanoparticles for their applications in white-light generation from UV LEDs, Journal of Nanoparticle Research,13(4):1629-1637.
    [89]Herng, T., Lau, S., Yu, S., et al., Origin of room temperature ferromagnetism in ZnO:Cu films, Journal of Applied Physics,2006,99:086101..
    [90]Xu, Q., Schmidt, H., Zhou, S., et al., Room temperature ferromagnetism in ZnO films due to defects, Applied Physics Letters,2008,92(8):082508.
    [91]Wang, X., Xu, J., Cheung, W., et al., Aggregation-based growth and magnetic properties of inhomogeneous Cu-doped ZnO nanocrystals, Applied Physics Letters,2007,90(21):212502..
    [92]Gao, D., Xu, Y., Zhang, Z., et at., Room temperature ferromagnetism of Cu doped ZnO nanowire arryas, Journal of Applied Physics,2009,105:063903.
    [93]Wu, Z. F., Wu, X. M., Chen, X, M., and Wang, X. F., Synthesis and magnetix properties of Cu doped ZnO nanorods via radio frequency plasma deposition, Applied Physics Letters,2008,93:023103.
    [94]Huang, J., Zhu, L., Hu, L., et al., Island nucleation, opcial and ferromagnetic properties of vertically aligned secondary growth ZnO:Cu nanorod arryas, Nanoscale,2012,4(5):1627-1635.
    [95]Herng, T., Lau, S., Yu, S., et al., Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles, Applied Physics Letters,2007,90:032509.
    [1]张以忱.真空技术及应用系列讲座-第十二讲:真空工艺,2003,2:63-66.
    [2]谈育煦,胡志忠,材料研究方法,机械工业出版社,2004.
    [3] Kaneko, R.,: Oguchi, S., Hara, S., Matsuda, R., Okada, T., et al., Atomic forcemicroscope coupled with an optical microscope, Ultramicroscopy1992,42:1542-1548.
    [4] Williams, D. B., Carter, B. C., Transmission electron microscopy: A texbook formaterials, Science New York: Plenum Press,1996.
    [5]刘粤惠,刘平安,X射线衍射分析原理与应用,2003,化学工业出版社.
    [6]李树堂.晶体X射线衍射学基础,冶金工业出版社,1990,92-94.
    [7]曹则贤.材料化学分析的物理方法(I),物理2004,33:282-288.
    [8] Tolles, W. M., Niblerm, J. W., Mcdonald, J. R., Harvey, A, B., ApplliedSpectroscopy1977,31:253-272.
    [9]黄惠忠.纳米材料分析.化学工业出版社.2003.
    [10]沈学础.半导体光谱和光学性质.科学出版社.2002.
    [11]季振国.半导体物理.浙江大学出版社.2005.
    [1] Van De Pol, F. C., Thin film ZnO properties and applications, American CeramicSociety Bulletin,1990,69(12):1959-1965.
    [2] Paradis, E., and Shuskus, A., Rf sputtered epitaxial ZnO films on sapphire forintegrated optics, Thin Solid Films,1976,38(2):131-141.
    [3] Hiramatsu, M., Imaeda, K., Horio, N., et al., Transparent conducting ZnO thinfilms prepared by XeCl excimer laser ablation, Journal of Vacuum Science&Technology A: Vacuum, Surface, and Films,1998,16(2):669-673.
    [4] Chubachi, N., ZnO films for surface acoustooptic devices on nonpiezoelectricsubstrates, Proceedings of the IEEE,1976,64(5):772-774.
    [5] Kadota, M., Surface acoustic wave characteristics of a ZnO/quartz substratestructure having a large electromechanical coupling factor and a small temperaturecoefficient, Journal of Applied Physics,1997,36(5B):3076-3680.
    [6] Service, R., Materials science: Will UV lasers beat the blues?, Science,1997,276(5314):895.
    [7] Klingshirn, C., Properties of the electron-hole plasma in II–VI semiconductors,Journal of Crystal Growth,1992,117(1):753-757.
    [8] Christopoulos, S., Von H gersthal, G. B. H., Grundy, A., et al., Room-temperaturepolariton lasing in semiconductor microcavities, Physical Review Letters,2007,98(12):126405.
    [9] Kayanuma, Y., Quantum-size effects of interacting electrons and holes insemiconductor microcrystals with spherical shape, Physical Review B,1988,38(14):9797.
    [10] Wegscheider, W., Pfeiffer, L., Dignam, M., et al., Lasing from excitons inquantum wires, Physical Review Letters,1993,71(24):4071-4074.
    [11] Thareja, R. and Mitra, A., Random laser action in ZnO, Applied Physics B:Lasers and Optics,2000,71(2):181-184.
    [12] Huang, M., Mao, S., Feick, H., et al., Room-temperature ultraviolet nanowirenanolasers, Science,2001,292(5523):1897.
    [13]Chu, S., Wang, G., Zhou, W., et al., Electrically pumped waveguide lasing from ZnO nanowires, Nature nanotechnology,2011,6(8):506-510.
    [14]Xu, X., Brossard, F.S., Williams, D.A., et al., Mapping cavity modes of ZnO nanobelts, Applied Physics Letters,2009,94(23):231103.
    [15]Dong, H., Sun, S., Sun, L., et al., Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry-Perot resonators, Journal of Materials Chemistry,2012,22(7):3069-3074.
    [16]Sun, L., Dong, H., Xie, W., et al., Quasi-whispering gallery modes of exciton-polaritons in a ZnO microrod, Optics Express,2010,18(15):15371-15376.
    [17]Dong, H., Chen, Z., Sun, L., et al., Single-crystalline hexagonal ZnO microtube optical resonators, Journal of Materials Chemistry,2010,20(26):5510-5515.
    [18]Fan, D., Zhu, Y., and Shen, W., Synthesis of hierarchical pure ZnO nanostructures with controllable morphology, Journal of Nanoscience and Nanotechnology,2008,8(12):6325-6331.
    [19]Pan, N., Wang, X., Li, M., et al., Strong surface effect on cathodoluminescence of an individual tapered ZnO nanorod, The Journal of Physical Chemistry C,2007,111(46):17265-17267.
    [20]Nobis, T., Kaidashev, E., Rahm, A., et al., Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section, Physical Review Letters,2004,93(10):103903.
    [21]Wang, N., Yang, Y., and Yang, G., Fabry-Perot and whispering gallery modes enhanced luminescence from an individual hexagonal ZnO nanocolumn, Applied Physics Letters,2010,97(4):041917.
    [22]Wang, D., Seo, H., Tin, C., et al., Lasing in whispering gallery mode in ZnO nanonails, Journal of Applied Physics,2006,99:093112.
    [23]Dai, J., Xu, C., Zheng, K., et al., Whispering gallery-mode lasing in ZnO microrods at room temperature, Applied Physics Letters,2009,95:241110.
    [24]Yu, D., Chen, Y, Li, B., et al., Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates,Applied Physics Letters,2007,91:091116.
    [25] Dai, J., Xu, C., Wu, P., et al., Exciton and electron-hole plasma lasing in ZnOdodecagonal whispering-gallery-mode microcavities at room temperature,Applied Physics Letters,2010,97:011101.
    [26] Czekalla, C., Sturm, C., Schmidt-Grund, R., et al., Whispering gallery modelasing in zinc oxide microwires, Applied Physics Letters,2008,92:241102.
    [27] Dai, J., Xu, C., and Sun, X., Single-photon and three-photon absorption inducedwhispering-gallery mode lasing in ZnO micronails, Optics Communications,2011,284(16):4018-4021.
    [1] Dietl, T., Ohno, H., Matsukura, F., et al., Zener model description offerromagnetism in zinc-blende magnetic semiconductors. Science,2000.287(5455):1019-1022.
    [2] Sato, K. and Yoshida, H. K., First principles materials design for semiconductorspintronics. Semiconductor Science and Technology,2002.17(4):367.
    [3] Lee, H. J., Jeong, S. Y., Cho, C.R., et al., Study of diluted magnetic semiconductor:Co-doped ZnO. Applied Physics Letters,2002.81(21):4020-4022.
    [4] Karmakar, D., Mandal, S., Kadam, R., et al., Ferromagnetism in Fe-doped ZnOnanocrystals: Experiment and theory. Physical Review B,2007.75(14):144404.
    [5] Sharma, P., Gupta, A., Rao, K., et al., Ferromagnetism above room temperature inbulk and transparent thin films of Mn-doped ZnO. Nature Materials,2003.2(10):673-677.
    [6] Lin, X., Zhu, Y., and Shen, W., Synthesis and optical and magnetic properties ofdiluted magnetic semiconductor Zn1xMnx O hollow spherical structures. TheJournal of Physical Chemistry C,2009.113(5):1812-1817.
    [7] Buchholz, D., Chang, R., Song, J., et al., Room-temperature ferromagnetism inCu-doped ZnO thin films. Applied Physics Letters,2005.87(8):082504.
    [8] Ye, L., Freeman, A., and Delley, B., Half-metallic ferromagnetism in Cu-dopedZnO: Density functional calculations. Physical Review B,2006.73(3):33203.
    [9] Ahn, K. S., Deutsch, T., Yan, Y., et al., Synthesis of band-gap-reduced p-type ZnOfilms by Cu incorporation. Journal of Applied Physics,2007.102(2):023517.
    [10] Wei, M., Braddon, N., Zhi, D., et al., Room temperature ferromagnetism in bulkMn-Doped Cu2O. Applied Physics Letters,2005.86(7):072514.
    [11] Hou, D., Ye, X., Zhao, X., et al., Room-temperature ferromagnetism in n-typeCu-doped ZnO thin films. Journal of Applied Physics,2007.102(3):033905.
    [12] Li, X. L., Xu, X. H., Quan, Z. Y., et al., Role of donor defects in enhancingferromagnetism of Cu-doped ZnO films. Journal of Applied Physics,2009.105(10):103914.
    [13] Xu, Q., Schmidt, H., Zhou, S., et al., Room temperature ferromagnetism in ZnOfilms due to defects. Applied Physics Letters,2008.92(8):082508.
    [14] Herng, T., Lau, S., Yu, S., et al., Magnetic anisotropy in the ferromagneticCu-doped ZnO nanoneedles. Applied Physics Letters,2007.90:032509.
    [15] Herng, T., Lau, S., Yu, S., et al., Origin of room temperature ferromagnetism inZnO: Cu films. Journal of Applied Physics,2006.99:086101.
    [16] Lee, H., Kim, B., Cho, C., et al., A study of magnetic and optical properties ofCu-doped ZnO. physica status solidi (b),2004.241(7):1533-1536.
    [17] Xu, C., Yang, K., Huang, L., et al., Cu-doping induced ferromagnetism in ZnOnanowires. The Journal of Chemical Physics,2009.130:124711.
    [18] Xing, G. Z., Yi, J. B., Tao, J. G., et al., Comparative study of room-temperatureferromagnetism in Cu-doped ZnO nanowires enhanced by structuralinhomogeneity. Advanced Materials,2008.20(18):3521-3527.
    [19] Zhang, Z., Yi, J., Ding, J., et al., Cu-doped ZnO nanoneedles and nanonails:morphological evolution and physical properties. The Journal of PhysicalChemistry C,2008.112(26):9579-9585.
    [20] Liu, H., Yang, J., Zhang, Y., et al., Ferromagnetism in Cu-doped ZnOnanoparticles at room temperature. Journal of Materials Science: Materials inElectronics,2009.20(7):628-631.
    [21] Kane, M. H., Strassburg, M., Asghar, A., et al. Multifunctional III-nitride dilutemagnetic semiconductor epilayers and nanostructures as a future platform forspintronic devices. in Integrated Optoelectronic Devices2005.2005.
    [22] Zhu, Y., Fan, D., and Shen, W., Template-free synthesis of zinc oxide hollowmicrospheres in aqueous solution at low temperature. The Journal of PhysicalChemistry C,2007.111(50):18629-18635.
    [23] Chakraborti, D., Narayan, J., and Prater, J., Room temperature ferromagnetisminZn1-xCuxO thin films. Applied Physics Letters,2007.90(6):062504.
    [24] Gao, P. and Wang, Z., Mesoporous polyhedral cages and shells formed bytextured self-assembly of ZnO nanocrystals. Journal of the American ChemiscalSociety,2003.125(37):11299-11305.
    [25] Sulieman, K. M., Huang, X., Liu, J., et al., Controllable synthesis andcharacterization of hollow-opened ZnO/Zn and solid Zn/ZnO single crystalmicrospheres. Nanotechnology,2006.17(19):4950.
    [26] Xu, C., Sun, X., Zhang, X., et al., Photoluminescent properties of copper-dopedzinc oxide nanowires. Nanotechnology,2004.15:856.
    [27] Ozen, I. and Gülgün, M.A., Residual stress relaxation and microstructure in ZnOthin films. Advances in Science and Technology,2006.45:1316-1321.
    [28] Shannon, R., Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides. Acta Crystallographica Section A: CrystalPhysics, Diffraction, Theoretical and General Crystallography,1976.32(5):751-767.
    [29] Gao, D., Xue, D., Xu, Y., et al., Synthesis and magnetic properties of Cu-dopedZnO nanowire arrays. Electrochimica Acta,2009.54(8):2392-2395.
    [30] Kolesnik, S., Dabrowski, B., and Mais, J., Structural and magnetic properties oftransition metal substituted ZnO. Journal of Applied Physics,2004.95(5):2582-2586.
    [31] Cao, B., Cai, W., Zeng, H., et al., Morphology evolution and photoluminescenceproperties of ZnO films electrochemically deposited on conductive glasssubstrates. Journal of Applied Physics,2006.99(7):073516.
    [32] Vincent, R., Cherns, D., Nghia, N.X., et al., Raman scattering in Me-doped ZnOnanorods (Me=Mn, Co, Cu and Ni) prepared by thermal diffusion.Nanotechnology,2008.19(47):475702.
    [33] Hong, N. H., Sakai, J., and Brizé, V., Observation of ferromagnetism at roomtemperature in ZnO thin films. Journal of Physics: Condensed Matter,2007.19(3):036219.
    [34] Gao, D., Zhang, Z., Fu, J., et al., Room temperature ferromagnetism of pure ZnOnanoparticles. Journal of Applied Physics,2009.105(11):113928.
    [35] Xing, G., Wang, D., Yi, J., et al., Correlated d0ferromagnetism andphotoluminescence in undoped ZnO nanowires. Applied Physics Letters,2010.96(11):112511.
    [36]Xu, H., Liu, Y., Xu, C., et al., Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. Applied Physics Letters,2006.88(24):242502.
    [37]Jin, Y., Cui, Q., Wen, G., et al., XPS and Raman scattering studies of room temperature ferromagnetic ZnO:Cu. Journal of Physics D:Applied Physics,2009.42:215007.
    [38]Shuai, M., Liao, L., Lu, H., et al., Room-temperature ferromagnetism in Cu+implanted ZnO nanowires. Journal of Physics D:Applied Physics,2008.41:135010.
    [39]Huang, M., Wu; Y, Feick, H., et al., Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials,2001.13(2):113-116..
    [40]Vanheusden, K., Warren, W., Seager, C., et al., Mechanisms behind green photo luminescence in ZnO phosphor powders. Journal of Applied Physics,1996.79(10):7983-7990..
    [41]He, J. H., Lao, C. S., Chen, L. J., et al., Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. Journal of the American Chemical Society,2005.127(47):16376-16377..
    [42]Coey, J., Venkatesan, M., and Fitzgerald, C, Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials,2005.4(2):173-179..
    [43]Hong, N. H., Sakai, J., Huong, N.T., et al., Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Physical Review B,2005.72(4):045336.
    [44]Tian, Y, Li, Y., He, M., et al., Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Applied Physics Letters,2011.98(16):162503.
    [45]Gao, D., Xu, Y., Zhang, Z., et al., Room temperature ferromagnetism of Cu doped ZnO nanowire arrays. Journal of Applied Physics,2009.105:063903.
    [1] Huang, Y., Duan, X., Wei, Q., et al., Directed assembly of one-dimensionalnanostructures into functional networks. Science,2001.291(5504):630-633.
    [2] Lao, J. Y., Wen, J. G., and Ren, Z. F., Hierarchical ZnO nanostructures. NanoLetters,2002.2(11):1287-1291.
    [3] Jiang, C., Sun, X., Lo, G., et al., Improved dye-sensitized solar cells with aZnO-nanoflower photoanode. Applied Physics Letters,2007.90(26):263501-263501-3.
    [4] McCune, M., Zhang, W., and Deng, Y., High efficiency dye-sensitized solar cellsbased on three-dimensional multilayered ZnO nanowire arrays with ''caterpillar-like''structure. Nano Letters,2012.
    [5] Wang, Z., Gong, J., Su, Y., et al., Six-fold-symmetrical hierarchical ZnOnanostructure arrays: synthesis, characterization, and field emission properties.Crystal Growth&Design,2010.10(6):2455-2459.
    [6] Zhang, Y., Xu, J., Xiang, Q., et al., Brush-like hierarchical ZnO nanostructures:synthesis, photoluminescence and gas sensor properties. The Journal of PhysicalChemistry C,2009.113(9):3430-3435.
    [7] Wang, Z.L., Kong, X.Y., Ding, Y., et al., Semiconducting and piezoelectric oxidenanostructures induced by polar surfaces. Advanced Functional Materials,2004.14(10):943-956.
    [8] Lao, J., Huang, J., Wang, D., et al., ZnO nanobridges and nanonails. Nano Letters,2003.3(2):235-238.
    [9] Zhang, H., Yang, D., Ma, X., et al., Synthesis of flower-like ZnO nanostructuresby an organic-free hydrothermal process. Nanotechnology,2004.15:622.
    [10] Gao, X., Zheng, Z., Zhu, H., et al., Rotor-like ZnO by epitaxial growth underhydrothermal conditions. Chemical Communications,2004(12):1428-1429.
    [11] Fan, D., Shen, W., Zheng, M., et al., Integration of ZnO nanotubes withwell-ordered nanorods through two-step thermal evaporation approach. The Journal ofPhysical Chemistry C,2007.111(26):9116-9121.
    [12]Kuo, S. Y., Chen, W.C., Lai, F. I., et al., Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. Journal of Crystal Growth,2006.287(1):78-84.
    [13]Pashchanka, M., Hoffmann, R. C., Gurlo, A., et al., A molecular approach to Cu doped ZnO nanorods with tunable dopant content. Dalton Transition,2011.40(16):4307-4314.
    [14]Xu, C., Sun, X., Zhang, X., et al., Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology,2004.15:856.
    [15]Kryshtab, T., Khomchenko, V., Papusha, V., et al., Thin ZnS:Cu, Ga and ZnO: Cu, Ga film phosphors. Thin Solid Films,2002.403:76-80.
    [16]Kutty, T. and Raghu, N., Varistors based on polycrystalline ZnO:Cu. Applied Physics Letters,1989.54(18):1796-1798.
    [17]Tian, Y., Li, Y., He, M., et al., Bound magnetic polarons and p-d exchange interaction in ferromagnetic insulating Cu-doped ZnO. Applied Physics Letters,2011.98(16):162503.
    [18]Kataoka, T., Yamazaki, Y., Singh, V., et al., Ferromagnetic interaction between Cu ions in the bulk region of Cu-doped ZnO nanowires. Physical Review B,2011.84(15):153203.
    [19]Liu, C., Yun, F., and Morkoc, H., Ferromagnetism of ZnO and GaN:A review. Journal of Materials Science:Materials in Electronics,2005.16(9):555-597.
    [20]Kouklin, N., Cu-doped ZnO nanowires for efficient and multispectral photodetection applications. Advanced Materials,2008.20(11):2190-2194.
    [21]Zhang, Z., Yi, J., Ding, J., et al., Cu-doped ZnO nanoneedles and nanonails: morphological evolution and physical properties. The Journal of Physical Chemistry C,2008.112:9579-9585.
    [22]Zhang, H.; Wu; J., Zhai, C., et al., From ZnO nanorods to3D hollow microhemispheres:solvothermal synthesis, photoluminescence and gas sensor properties. Nanotechnology,2007.18:455604..
    [23]Liu, Z., Bai, H., Xu, S., et al., Hierarchical CuO/ZnO "corn-like" architecture for photocatalytic hydrogen generation. International Journal of Hydrogen Energy,
    [24] Kraft, T., Marcus, P., Methfessel, M., et al., Elastic constants of Cu and theinstability of its bcc structure. Physical Review B,1993.48(9):5886.
    [25] Park, W., Kim, D., Jung, S., et al., Metalorganic vapor-phase epitaxial growth ofvertically well-aligned ZnO nanorods. Applied Physics Letters,2002.80:4232.
    [26] Wu, Y., Xi, Z., Zhang, G., et al., Fabrication of hierarchical zinc oxidenanostructures through multistage gas-phase reaction. Crystal Growth and Design,2008.8(8):2646-2651.
    [27] Gao, P. and Wang, Z. L., Self-assembled nanowire-nanoribbon junction arrays ofZnO. The Journal of Physical Chemistry B,2002.106(49):12653-12658.
    [28] Gao, P. X. and Wang, Z. L., Nanopropeller arrays of zinc oxide. Applied PhysicsLetters,2004.84:2883.
    [29] Xu, C., Sun, X.W., Yuen, C., et al., Ultraviolet amplified spontaneous emissionfrom self-organized network of zinc oxide nanofibers. Applied Physics Letters,2005.86(1):011118.
    [30] Zhu, Y., Sow, C., Yu, T., et al., Co-synthesis of ZnO-CuO nanostructures bydirectly heating brass in air. Advanced Functional Materials,2006.16(18):2415-2422.
    [31] Zhao, X., Wang, P., and Li, B., CuO/ZnO core/shell heterostructure nanowirearrays: synthesis, optical property, and energy application. Chemical Communications,2010.46(36):6768-6770.
    [32] Xu, H., Liu, Y., Xu, C., et al., Room-temperature ferromagnetism in (Mn,N)-codoped ZnO thin films prepared by reactive magnetron cosputtering. AppliedPhysics Letters,2006.88(24):242502-242502-3.
    [33] Jing, L. Q., Wang, D, J., Wang, B. Q., et al., Effects of noble metal modificationon surface oxygen composition, charge separation and photocatalytic activity of ZnOnanoparticles. Journal of Molecular Catalysis A: Chemical,2006.244(1):193-200.
    [34] Shuai, M., Liao, L., Lu, H., et al., Room-temperature ferromagnetism in Cu+implanted ZnO nanowires. Journal of Physics D: Applied Physics,2008.41:135010.
    [35] Borgohain, K., Singh, J., Rao, M.R., et al., Quantum size effects in CuOnanoparticles. Physical Review B,2000.61(16):11093.
    [36] Damen, T., Porto, S., and Tell, B., Raman effect in zinc oxide. Physical Review,1966.142(2):570-574.
    [37] Vincent, R., Cherns, D., Nghia, N.X., et al., Raman scattering in Me-doped ZnOnanorods (Me=Mn, Co, Cu and Ni) prepared by thermal diffusion. Nanotechnology,2008.19(47):475702.
    [38] Jin, Y., Cui, Q., Wen, G., et al., XPS and Raman scattering studies of roomtemperature ferromagnetic ZnO: Cu. Journal of Physics D: Applied Physics,2009.42:215007.
    [39] Sudakar, C., Thakur, J., Lawes, G., et al., Ferromagnetism induced by planarnanoscale CuO inclusions in Cu-doped ZnO thin films. Physical Review B,2007.75(5):054423.
    [40] Xu, J., Ji, W., Shen, Z., et al., Raman spectra of CuO nanocrystals. Journal ofRaman Spectroscopy,1999.30(5):413-415.
    [41] Goldstein, H., Kim, D., Yu, P.Y., et al., Raman study of CuO single crystals.Physical Review B,1990.41:7192-7194.
    [42] Vanheusden, K., Warren, W., Seager, C., et al., Mechanisms behind greenphotoluminescence in ZnO phosphor powders. Journal of Applied Physics,1996.79(10):7983-7990.
    [43] Dai, Y., Zhang, Y., Li, Q., et al., Synthesis and optical properties of tetrapod-likezinc oxide nanorods. Chemical Physics Letters,2002.358(1):83-86.
    [44] Shi, X., Yang, X., Gu, X., et al., CuO–ZnO heterometallic hollow spheres:Morphology and defect structure. Journal of Solid State Chemistry,2012.
    [45] Tian, S., Yang, F., Zeng, D., et al., Solution-processed gas sensors based on ZnOnanorods array with an exposed (0001) facet for enhanced gas-sensing properties. TheJournal of Physical Chemistry C,2012.116(19):10586-10591.
    [46] An, W., Wu, X., and Zeng, X., Adsorption of O2, H2, CO, NH3, and NO2onZnO nanotube: a density functional theory study. The Journal of Physical Chemistry C,2008.112(15):5747-5755.
    [47] Polarz, S., Roy, A., Lehmann, M., et al., Structure–property–functionrelationships in nanoscale oxide sensors: a case study based on zinc oxide. Advanced
    functional materials,2007.17(8):1385-1391.