新型掺钕钒酸盐与硅酸盐晶体光谱及全固态激光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为激光器的核心部件,激光材料一直是人们研究的热点。由于良好的光学特性、机械特性以及稳定的化学特性,钕掺杂的钒酸盐和硅酸盐晶体成为两大类比较重要的激光增益介质。对于钒酸盐晶体来说(Nd:YVO4, Nd:LuVO4和Nd:GdVO4),因为其内部掺杂的钕离子具有较大的吸收截面和受激发射截面,从而使得该类晶体成为中小功率全固态激光器的首选。然而,大的受激发射截面和相对较短的上能级寿命限制了该类材料在中小功率脉冲激光器中的应用。为了解决这一难题,近几年生长出了掺钕钒酸盐“混晶”(主要是Nd:GdxY1-xVO4、 Nd:LuxGd1-xVO4和Nd:LuxY1-xVO4)。研究证明,在该类“混晶”中基质不同阳离子的相互取代使得钕离子的受激发射截面减小且上能级寿命增长,相应的使得其能量存储能力增强。从本质上来说产生这一现象的主要原因是此类“混晶”中钕激活离子发射光谱的非均匀展宽,然而对于非均匀展宽的的直接测量国内外未见任何报道。针对这一研究空白,本论文第二章对上述三种钒酸盐混晶中(GdxY1-xVO4, LuxGd1-xVO4和LuxY1-xVO4)钕离子发射光谱的非均匀展宽情况进行了直接研究。结果表明,由于基质中相同晶格内不同阳离子的相互占据,“混晶”光谱有了明显的非均匀展宽。而这种展宽对于调Q和锁模脉冲激光器来说都是非常有益的。另外,根据我们测得的不同温度光谱发现,随着温度增加发射谱变宽且发射峰均出现红移。在低温77K下,通过与常规钕钒酸盐晶体(Nd:YVO4, Nd:LuVO4和Nd:GdVO4)半峰宽的比较,可以直接得到每种组分配比的非均匀展宽量。对三个系列的钒酸盐混晶来说,最大的非均匀展宽和最长的能级寿命分别来自Nd:Gd0.63Y0.37VO4、Nd:Lu0.5Gd0.5VO4以及Nd:Lu0.61Y0.39VO4。通过首次对非均匀展宽效应的直接测量,可以确信基质阳离子相互取代是一种用来调节激活离子发射特性从而满足不同激光需求的有效技术手段。
     近年来,大量的激光实验都证明Nd:GdxY1-xVO4和Nd:LuxGd1-xVO4晶体脉冲能量增强效应和更短脉冲锁模特性。本文结合直接测量的光谱非均匀展宽特性发展了新型Nd:LuxY1-xVO4晶体,并在第三章系统全面地研究了该系列晶体的调Q、锁模以及自受激拉曼激光特性。在调Q脉冲激光实验中,用c切Nd:Lu0.1Y0.9VO4晶体得到了脉宽为1.9ns、能量为104.7μJ以及峰值功率为55.1kW的1.06μm被动调Q脉冲输出。用a切Nd:Lu0.1Y0.9VO4晶体得到脉宽为23.8ns,脉冲能量为124μJ以及峰值功率5.21kW的1.3μm声光调Q脉冲输出。本章也首次实现了该系列晶体的声光自拉曼激光输出,用半径为800μm的大光斑激光二极管作为泵浦源有效减小了激光和拉曼过程中产生的热效应。结合c切晶体大的能量存储能力最终得到1175nm拉曼激光结果为:101μJ脉冲能量,1.3ns脉冲宽度和78kW峰值功率。通过比较a切Nd:LuxY1-xVO4系列晶体的声光自拉曼激光输出结果,发现2.3W的最大输出功率来自具有较大热导率的Nd:Lu0.26Y0.74VO4晶体。除此之外,本章也研究了该系列晶体的锁模激光特性,最短的锁模脉宽来自光谱最宽的组分(x=0.61),这也间接地证明了Nd:Lu0.61Y0.39VO4晶体中钕离子最强的非均匀展宽效应。
     对于硅酸盐晶体的研究,之前主要是集中在闪烁晶体和镱离子掺杂上。近年来由于该类晶体的各向异性激光发射特性,钕激活离子掺杂的研究也频繁出现。然而,目前的研究还停留在基础工作,包括材料的生长、非偏振发射谱的测量、单一切向激光输出等。对其偏振光谱、各向异性发射及应用方面研究甚少。针对这样的研究现状,本文第四章通过测量不同折射率主轴方向的偏振发射谱,首次计算了Nd:LYSO晶体受激发射截面的空间分布;并利用受激发射截面很好地解释了该晶体的各向异性激光输出,提出利用低对称性晶体不同切向发射特性的差异来满足不同实际需要。利用该晶体双波长输出特性,结合新型可饱和吸收材料石墨烯的宽波段调制特性成功实现了双波长同步调Q激光输出。所得到的最大脉冲平均输出功率为1.8W,单脉冲能量为11.3μJ,峰值功率为118W。比光纤激光器中相应结果大2~4个数量级,这也是目前石墨烯应用于全固态激光器中的最好输出结果。良好的的脉冲输出特性已能实现腔外非线性和频,这不但说明得到的双波长在时域上是同步的,另一方面也有助于石墨烯的进一步实用化。
     利用Nd:LYSO晶体作为激光增益介质,我们在简单紧凑的两镜腔内观察到了连续和脉冲光漩涡激光输出,详见本论文第五章。这是国际上首次直接产生光漩涡(没用任何其他辅助光学元件)。随着泵浦功率的增加,脉冲光漩涡的脉冲能量维持相对稳定但是其轨道角动量是增加的。用柱透镜对组成模式转换器,将得到的LG模式光漩涡转化为HG模式输出,从而确定我们得到的是LG01和LG02模式的光漩涡。为了更明确光漩涡的产生过程和变化原因,用量子亏损更严重的1.36μm的激光输出来进行验证。结果高阶LG模式出现得更早且最终得到了更高阶的LG1o模激光。结合在1.08μm的光漩涡输出情况我们初步进行了解释:在连续激光运转下,热透镜效应使得振荡光模式半径变小,然后通过与泵浦光的模式匹配来进行输出激光模式的选择。在脉冲激光运转中,除了热透镜效应之外还有高功率密度所引进的非线性效应,这就更加加剧了光漩涡的产生,因此在脉冲激光中可以较早地得到光漩涡。此外,在1.36μm的被动调Q实验中,我们所用的可饱和吸收体为石墨烯,该过程证实石墨烯在对激光进行脉冲调制时不影响拓扑电荷的变化,可以作为光漩涡脉冲调制器件。本章研究的这种结构紧凑、轨道角动量可连续改变的光漩涡激光脉冲将在很多领域有潜在的应用。
As a key part of the laser, laser materials are always in the spotlight of scientific interest. Up to now, Nd-doped vanadate and silicate crystals have been demonstrated to be two prominent gains mediums, since they have excellent optical, mechanical and chemical properties. For the vanadate crystals, such as Nd:YVO4, Nd:LuVO4and Nd:GdVO4, they are the primary materials in the diode pumped solid state laser with middle to low output power, because of their large absorb and emission cross-sections. However, the relatively large emission cross-section and short up-level lifetime have constrained their application in Q-switched lasers because it requires a large energy storage capacity, which in turn demands a small emission cross section and a long fluorescence lifetime. So, the vanadate mixed crystals (including Nd:GdxY1-xVO4、 Nd:Lux-Gd1-xVO4and Nd:LuxY1-xVO4) were grown and researched recently. Previous laser experiments have demonstrated that the stimulated emission cross-sections decreased and fluoresces lifetime increased in the mix crystals, which can enhance the energy storage capacity. In essence, it is caused by the inhomogeneous spectrum broadening of Nd3+ions in the mixed crystals. However, the direct research on the inhomogeneous spectrum broadening effect has never been reported. In chapter2, a study of inhomogeneous spectrum broadening in Nd3+-doped mixed crystals (GdxY1-xVO4, LuxGd1-xVO4and LuxY1-xVO4) is reported for the first time. Due to the random placement of different cations in the lattice, the spectra are inhomogeneously broadened, which is beneficial for both Q-switching and mode locking. For all the samples, as increasing the temperature, the spectrum broadened and emission peak presented "red shifted". Using traditional crystals (Nd:LuVO4, Nd:YVO4or Nd:GdVO4) as the reference, the inhomogeneous spectrum broadening caused by the random replacement can be obtained at77K. The largest spectrum width and longest lifetime are obtained by the same component. They are Nd:Gd0.63Y0.37VO4, Nd:Lu0.5Gd0.5VO4and Nd:Lu0.61Y0.39VO4crystals, respectively. All the results indicate that the random placement of different cations at the same lattice site is an efficient technology for the modification of emission properties that fulfill different requirements of laser applications.
     Recently, some research have demonstrated the large energy storage capacity and short mode-locking laser pulses of the Nd:GdxY1-xVO4and Nd:LuxGd1-xVO4mixed crystals. Combine with the property of the emission spectrum, we reported the Q-switching, mode-locking and self-stimulated Raman laser characteristics of the novel Nd:LuxY1-xVO4crystal in chapter3. For the1.06μm passively Q-switched laser, the shortest pulse width, the largest pulse energy and the highest peak power were found to be1.9ns,104.7μJ and55.1kW, respectively, using c-cut Nd:Lu0.1Y0.9VO4crystal as the laser gain and a Cr4+:YAG crystal as the saturable absorber. For the1.3μm acousto-optic (A-O) Q-switching laser operation, the shortest pulse width, largest pulse energy, and highest peak power were23.8ns,124μJ, and5.21kW, respectively, obtained by the a-cut Nd:Lu0.1Y0.9VO4crystal. In this chapter, the1175-nm A-0Q-switched self-Raman laser of Nd:LuxY1-xVO4crystal was also demonstrated for the first time. Combining the advantages of mixed vanadate crystal and c-cut orientation, the c-cut Nd:Lu0.1Y0.9VO4crystal exhibited prominent self-Raman laser characteristics, such as101μJ single pulse energy,1.3ns pulse width, and78kW peak power. With the largest thermal conductivity, excellent energy storage capability and moderate Raman gain coefficient, the a-cut Nd:Lu0.26Y0.74VO4crystal presented the largest average output power of2.3W. With a semiconductor saturable absorber mirror (SESAM), the passively mode-locking of this series crystal was carried out under the same condition. The shortest pulse was obtained by the Nd:Lu0.61Y0.39VO4crystal, which indirectly manifested the widest line-width of this component and its excellent properties for pulse laser applications.
     Previous researches about LYSO have been focused on scintillator applications and Yb-doped lasers. Research about the Nd-doped LYSO was mainly focus on the crystal growth and simple laser experiment. Chapter4mainly discussed the the anisotropy of laser emission in the monoclinic, disordered crystal Nd:LYSO. According to the polarized emission spectrum, we calculated the spatial distribution of the stimulated emission cross-sections for the first time. Then the output characteristic is well explained by a theoretical analysis on the stimulated emission cross-section. This work reveals that the intrinsic anisotropy in disordered laser crystal can be utilized to elevate the emission controllability. Accordantly, the material's application scopes can be extended. Using multilayered graphene as the saturable absorber (SA), Nd:LYSO crystal as the laser material, we demonstrated a laser-diode (LD) pumped, dual-wavelength passively Q-switched solid-state laser. The maximum average output power is1.8W, the largest pulse energy and highest peak power is11.3μJ,118W, respectively. The results are2-4orders of magnitude of the corresponding values that obtained in the fiber laser. As we have known, they are also the best results for passively Q-switched operation of grapheme in all solid-stated lasers. The pulse laser is strong enough to realize extra-cavity frequency conversions, which manifests the synchronous modulation to the dual-wavelength with multi-layered grapheme, and the possibility of its practical.
     Chapter5demonstrated the direct generation of1.08μm optical vortex pulses in a simple and compact two-mirror laser cavity for the first time, with Nd:LYSO crystal as laser gain material. Single Laguerre-Gaussian (LG0,1) laser modes were directly generated using a laser diode with output intensity profile of doughnut distribution. With passive Q-switching, vortex pulses with stable energy were obtained. Moreover, the topological charge was changeable by variation of the pump power. By a mode-converter and second harmonic generation, the LG0,21mode was identified. In order to know the generation of the vortex and its changing, we demonstrated the continuous-wave (cw) and pulse optical vortex operation at1.36μm. During the lasing process, the topological charges were changeable by the thermal-induced lens and selected by the mode-matching between the pump and oscillating beams. With a graphene sample as the saturable absorber, the pulsed optical vortex was achieved, which identified that graphene could be used as a pulse modulator for the generation of pulsed optical vortex. It could be believed that the thermally driven cw and pulsed optical vortex should have various promising applications based on the compact structure, changeable topological charges and specific wavelength.
引文
[1]T. H. Maiman, "Stimulated optical radiation in ruby," Nature 187,493-494 (1960).
    [2]N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, " Laser action in strongly scattering media," Nature 388,436-438 (1994).
    [3]D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54,4256-4265 (1996).
    [4]S. Meech, "Living lasers," Nat. Photonics 5,387-388 (2011).
    [5]M. C. Gather, S. H. Yun, "Single-cell biological lasers," Nat. Photonics 5, 406-410 (2011).
    [6]E. Snitzer, "Optical maser action of Nd3+ in a barium crown glass," Phys. Rev. Lett.7,444-446 (1961).
    [7]E. Carnall, S. E. Hatch, and W. F. Parsons, "Optical Studies on Hot-Pressed Poly crystalline CaF2 with Clean Grain Boundaries," Mater. Sci. Res 3,165-1732 (1966).
    [8]A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, "Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers," J. Am. Ceram. Soc.78,1033-1040 (1995).
    [9]R. Won, "View from...ASSP 2008:Ceramic future," Nature Photonics 2, 216-217 (2008).
    [10]E. Stiles, "New developments in IPG fiber laser technology," 5th International Workshop on Fiber Lasers, Dresden, Germany (2009)
    [11]姚蕾“长脉宽Nd:YAG激光治疗草莓状血管瘤疗效分析”吉林大学硕士学位论文(2008)。
    [12]A. Kruusing, "Underwater and water-assisted laser processiong," Opt. Laser. Eng.41,307-327 (2004).
    [13]李适民,激光器件原理与设计,国防工业出版社(1998)。
    [14]P. F. Moulton, "Ti-doped sapphire:tunable solid-state laser," Opt. News 8,9-10 (1982).
    [15]A. Hoffstadt, "Design and performance of a high-average-power flash lamp pumped Ti:sapphire laser and amplifier," IEEE J. Quantum Electron.33, 1850-1863 (1997).
    [16]P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3,125-133 (1986).
    [17]A. Leitenstorfer, C. Furst, and A. Laubereau, "Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs," Opt. Lett.15, 916-918(1995).
    [18]M. Nisoli, S. D. Silvestri, O. Svelto, R Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett.16,522-524 (1997).
    [19]U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G Fujimoto, E. P. Ippen, V. Scheuer, G Angelow, and T. Tschudi, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett.24,411-413 (1999).
    [20]R. Ell, U. Morgner, F. X. Kartner, J. G Fujimoto, E. P. Ippen, V. Scheuer, G Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett.26,373-376 (2011).
    [21]A. Fernandez, T. Fuji, A. Poppe, A. Fiirbach, F. Krausz, and A. Apolonski, "Chirped-pulse oscillators:a route to high-power femtosecond pulses without external amplification," Opt. Lett.29,1366-1368 (2004).
    [22]Y. X. Chu, X. Y. Liang, L. H. Yu, Y. Xu, L. Xu, L. Ma, X. M. Lu, Y. Q. Liu, Y X. Leng, R. X. Li, and Z. Z. Xu, "High-contrast 2.0 Petawatt Ti:sapphire laser system," Opt. Express 21,29231-29239 (2013).
    [23]X. Li, X. Yu, J. Gao, F. Chen, J. Yu, and D. Chen, "Laser operation at high repetition rate of 100 kHz in Nd:GdVO4 under 879 nm diode-laser pumping" Appl. Phys. B 92,199-202 (2008).
    [24]J. Kemp, G J. Valentine, and D. Burns, "Progress towards high-power, high-brightness neodymium-based thin-disk lasers," Prog, in Quantum Electron. 28,305-344 (2004).
    [25]A. K. Potemkin, E. V. Katin, A. Kirsanov, G A. Luchinin, A. N. Mal'shakov, M. A. Mart'yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, A. A. Shaikin, "Compact neodymium phosphate glass laser emitting 100-J,100-GW pulses for pumping a parametric amplifier of chirped pulses," Quantum Electronics 35, 302-310(2005).
    [26]D. Nodop, J. Limpert, R Hohmuth, W. Richter, M. Guina, and A. Tunnermann, "High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime," Opt. Lett.32,2115-2117 (2007).
    [27]H. H. Yu, X. F. Chen, H. J. Zhang, X. G Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, "Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide," ACS Nano 4,7582-7586 (2010).
    [28]H. H. Yu, H. Zhang, Y C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, "Topological insulator as an optical modulator for pulsed solid-state lasers," Laser Photonics Rev.7, L77-L83 (2013).
    [29]R. L. Fork, B. I. Greene, and C. V. Shank, "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking," Appl. Phys. Lett.38,671-672 (1981).
    [30]R L. Fork, G H. Brito Cruz, P. C. Becker, and C. V. Shank, "Compression of optical pulses to six femtoseconds by using cubic phase compensation," Opt. Lett.12,483-485 (1987).
    [31]D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett.16,42-44 (1991).
    [32]D. Kopf, F. X. Kartner, U. Keller, and K. J. Weingarten, "Diode-pumped mode-locked Nd:glass with an antiresonant Fabry-Perot saturable absorber," Opt. Lett.23,1169-1171 (1995).
    [33]A. Agnesi, A. Greborio, F. Pirzio, and G Reali, "80-fs Nd:silicate glass laser pumped by a single-mode 200-mW diode," Opt. Express 18,10098-10103 (2010).
    [34]A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, "Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses," Opt. Lett.36,4425-4427 (2011).
    [35]S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol.22, 51-56 (2004).
    [36]Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y Yan, Z. X. Shen, K. P. Loh, and D. Y Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Funct. Mater.19,3077-3083 (2009).
    [37]Y W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction," Appl. Phys. Lett.96, 051122(2010).
    [38]B. B. Zhou, Z. Y. Wei, Y. D. Zhang, X. Zhong, H. Teng, L. Zheng, L.B. Su, and J. Xu, "Generation of 210 fs laser pulses at 1093 nm by a self-starting mode-locked Yb.GYSO laser," Opt. Lett.34,31-33 (2009).
    [39]B. K. Brickeen and E. Geathers, "Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO," Opt. Express 17,8461-8466 (2009).
    [40]Y. G Zhao, S. D. Zhuang, X. D. Xu, J. Xu, H. H. Yu, Z. P. Wang, and X. G Xu, "Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO," Opt. Express 22,2228-2235 (2014).
    [41]T. Jensen, V. G Ostroumov, J. P. Meyn, G Huber, A. I. Zagumennyi, and I. A. Shcherbakov, "Spectroscopic Characterization and Laser Performance of Diode Laser Pumped Nd:GdVO4," Appl. Phys. B 58,373-379 (1994).
    [42]T. S. Lomheim, and L. G DeShazer, "Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate," J. Appl. Phys.49, 5517-5522 (1978).
    [43]C. Maunier, J. L. Doualan, R Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, "Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping," J. Opt. Soc. Am. B 19,1794-1800 (2002).
    [44]P. L. Boulanger, J. L. Doualan, S. Girard, J. Marjeric, and R Moncorge', "Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass," Phys. Rev. B 60,11380-11390 (1999).
    [45]J. H. Liu, Z. P. Wang, X. L. Meng, Z. S. Shao, B. Ozygus, A. Ding, and H. Weber, "Improvement of passive Q-switching performance reached with a new Nd-doped mixed vanadate crystal NdGd0.64Y0.36VO4," Opt. Lett.28,2330-2332 (2003).
    [46]J. H. Liu, X. L. Meng, Z. S. Shao, M. H. Jiang, B. Ozygus, A. Ding, and H. Weber, "Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals," Appl. Phys. Lett.83,1289-1291 (2003).
    [47]T. Omatsu, M. Okida, A. Minassian, and M. J. Damzen, "High repetition rate Q-switching performance in transversely diode-pumped Nd doped mixed gadolinium yttrium vanadate bounce laser," Opt. Express 14,2727-2734 (2006).
    [48]T. Omatsu, A. Minassian, and M. J. Damzen, "Passive Q-switching of a diode-side-pumped Nd-doped mixed gadolinium yttrium vanadate bounce laser," Appl. Phys. B 90,445-449 (2008).
    [49]Y. He, X. Y. Hou, L. J. Qin, Y M. Sun, Y. F. Li, H. J. Qi, and L. Pan, "Laser-diode pumped passively Q-switched Nd:YxGd1-xVO4 laser with a GaAs saturable absorber," Opt. Commun.234,305-308 (2004).
    [50]S. P. Ng, D. Y Tang, A. Q. Liu, L. J. Qin, and X. L. Meng, "Short pulse passively Q-switched Nd:GdYVO4 laser using a GaAs mirror," Opt. Commun. 259,256-260 (2006).
    [51]Y. F. Chen, M. L. Ku, L. Y Tsai, and Y C. Chen, "Diode-pumped passively Q-switched picosecond Nd:GdxY1-xVO4 self-stimulated Raman laser," Opt. Lett. 29,2279-2281 (2004).
    [52]S. P. Ng, D.Y Tang, J. Kong, L. J. Qin, X. L. Meng, and Z. J. Xiong, "Q-switched and continuous-wave mode-locking of a diode-pumped Nd:Gdo.64Yo.36V04-Cr4+:YAG laser," Appl. Phys. B 81,511-515 (2005).
    [53]Y G Wang, X. Y Ma, Y X. Fan, and H. T Wang, "Passively mode-locking Nd:Gdo.5Yo.5V04 laser with an Ino.25Gao.75As absorber grown at low temperature," Appl. Optics 44,4384-4387 (2005).
    [54]J. L. He, Y. X. Fan, J. Du, Y G Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, "4-ps passively mode-locked Nd.Gdo.5Yo.5VO4 laser with a semiconductor saturable-absorber mirror," Opt. Lett.29,2803-2805 (2004).
    [55]A. A. Sirotkin, S. A. Kutovoi, Y D. Zavartsev, V. A. Mikhailov, A. I. Zagumennyi, Y L. Kalachev, I.A. Shcherbakov, R. Renner-Erny, W. Luthy, and T. Feurer, "Hybrid mode-locked, diode-pumped Nd:Gd0.7Y0.3VO4 laser," Laser Phys. Lett.9,652-655 (2007).
    [56]P. Li, Y F. Li, Y. M. Sun, X. Y Hou, H. J. Zhang, and J. Y Wang, "Passively Q-switched 1.34μm Nd:YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber," Opt. Express 14,7730-7736 (2006).
    [57]Y T. Chang, Y. P. Huang, K. W. Su, and Y F. Chen, "Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission," Opt. Express 16,8286-8291 (2008).
    [58]H. H. Yu, Y. G Yu, H. J. Zhang, Z. P. Wang, J. Y Wang, X. F. Cheng, Z. S. Shao, and M. H. Jiang, "Growth, laser characterization of new series laser crystals Nd:LuxGd1-xVO4," J. Cryst. Growth 293,394-397 (2006).
    [59]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y Wang, Y. G Yu, J. H. Liu, Z. S. Shao, and M. H. Jiang, "Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals," Opt. Lett.32,2152-2154 (2007).
    [60]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y G Yu, Z. S. Shao, M. H. Jiang, and X. Y. Zhang, "Continuous wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Luo.5Gdo.5VO4," Appl. Phys. Lett.90,231110 (2007).
    [61]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G Yu, W. L. Gao, X. T. Tao, J. H. Liu, X. Y Zhang, and M. H. Jiang, "Cr5+:GdVO4 as a saturable absorber for a diode-pumped Nd:Luo.5Gdo.5V04 laser," Opt. Express 15,11679-11684 (2007).
    [62]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G Yu, and M. H. Jiang, "Continuous-wave laser performance of Nd:LuxGd1-xVO4 operating at 1.34μm," Laser Phys. Lett.5,181-184 (2008).
    [63]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G Yu, D. Y Tang, G Q. Xie, H. Luo, and M. H. Jiang, "Passive mode-locking performance with a mixed Nd:Lu0.5Gd0.5VO4 crystal," Opt. Express 17,3264-3269 (2009).
    [64]T. Li, S. Z. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. J. Yang, "Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser," J. Opt. Soc. Am. B 26,2445-2448 (2009).
    [65]S. Y Zhang, L. Xu, Y Wang, M. J. Wang, H. Y Peng, J. Q. Xu, and B. Zhao, "Q-Switched Performance of Diode Pumped Nd:Lux(X=0.15)Y1-xVO4 Lasers," IEEE Photonic. Tech. Lett.22,556-558 (2010).
    [66]G Zhang, S. Z. Zhao, G Q. Li, D. C. Li, K. J. Yang, K. Cheng, C. Han, and B. Zhao, "Improvement of stability and pulse energy in a diode-pumped dual-loss-modulated QML Nd:Luo.2Yo.sV04 laser with EO modulator and GaAs," Opt. Commun.285,3289-3294 (2012).
    [67]Z. Zhuo, S. G Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, "Study of the laser performance of a novel mixed Nd:Yo.8Luo.2V04 crystal," Laser Phys. Lett.7,116-119 (2010).
    [68]S. Y Zhang, H. T. Huang, L. Xu, M. J. Wang, F. Chen, J. Q. Xu, J. L. He, and B. Zhao, "Continuous wave and passively Q-switched Nd:LuxY1-xVO4 laser at 1.34 μm with V3+:YAG as the saturable absorber," Opt. Express 19,1830-1835 (2011).
    [69]H. T. Huang, S. Y Zhang, J. L. He, J. Q. Xu, and B. Zhao, "Diode-Pumped Passively Q-Switched Nd:Lu0.5Y0.5VO4 Laser at 1.34μm With Co2+:LaMgAl11O19 as the Saturable Absorber," IEEE Photonic. Tech. Lett.23, 112-114(2011).
    [70]X. Li, G Q. Li, S. Z. Zhao, C. Xu, and G L. Du, "Diode-pumped passively Q-switched Nd:LuxY1-xVO4 laser at 1.34μm with two V:YAG saturable absorbers," Opt. Commun.284,1307-1311 (2011).
    [71]C. Han, S. Zhao, G Li, D. Li, K. Yang, G Zhang, K. Cheng, and B. Zhao, "Diode-pump passively Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 Laser with a GaAs saturable absorber," Laser Phys.21,1769-1774 (2011).
    [72]Z. Zhuo, S. G Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, J. Z. Chen, "Diode-end-pumped passively Q-switched Nd:Yo.sLuo.2V04 laser with Cr4+:YAG crystal," Opt. Commun.283,1886-1888 (2010).
    [73]S. Zhang, L. Xu, M. Wang, H. Peng, F. Chen, J. Xu and B. Zhao, "Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lu0.15Y0.85V04," Laser Phys. Lett.7,339-342 (2010).
    [74]R Beach, M. D. Shinn, L. Davis, R W. Solarz, and W. F. Krupke, "Optical absorption and stimulated emission of neodymium in yttrium orthosilicate," IEEE J. Quantum. Electron.26,1405-1412 (1990).
    [75]D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, "Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO," Laser Phys. Lett.7,798-804 (2010).
    [76]M. Tkachuk, A. K. Przhevusskii, L. G Morozova, A. V Poletimova, M. V Petrov, and A.M. Korovkin, "Nd3+ optical centers in lutecium, yttrium, and scandium silicate crystals and their spontaneous and stimulated emission," Opt. Spectrosc 60,176-181 (1986).
    [77]B. Comaskey, G F. Albrecht, R J. Beach, B. D. Moran, and R. W. Solarz, "Flash-lamp-pumped laser operation of Nd3+:Y2SiO5 at 1.074μm," Opt. Lett.18, 2029-2031 (1993).
    [78]C. Borel, N. Herlet, R Templier, C. Calvat, and C. Wyon, "Comparison of the laser performance of various neodymium doped materials in a compact diode pumped cavity," J. De. Phys.4,549-552 (1994).
    [79]A. Kaminskii, S. N. Bagayev, K. Ueda, J. Dong, and H. J. Eichler, "New passively Q-switched LD-pumped self-Raman laser with single-step cascade SE→SRS wavelength conversion on the base of monoclinic Nd3+:Y2SiO5 crystal," Laser Phys. Lett.7,270-279 (2010).
    [80]D. Z. Li, X. D. Xu, D. H. Zhou, C. T. Xia, F. Wu, J. Xu, Z. H. Cong, J. Zhang, and D. Y. Tang, "Crystal growth, optical properties, and continuous-wave laser operation of Nd3+-doped Lu2SiO5 crystal," Laser Phys. Lett.8,32-37 (2011).
    [81]Z. H. Cong, X. Y Zhang, Q. P. Wang, D. Y Tang, W. D. Tan, J. Zhang, X. D. Xu, D. Z. Li, and J. Xu, "LD pumped Nd:Lu2SiO5 passively mode-locked laser with a SESAM," Laser Phys. Lett.8,107-110 (2011).
    [82]S. D. Zhang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G Zhao, and X. G Xu, "Contunuous-wave and passively Q-switched Nd:LYSO laser," Laser Phys.21,684-689 (2011).
    [83]L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo,Y G Zhao, and X. G Xu, "Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak," Chin. Opt. Lett.9,071403 (2011).
    [84]Z. H. Cong, D. Y. Tang, W. D. Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, "Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM," Opt. Express 19,3984-3989 (2011).
    [1]J. T. Karpick, and B. D. Bartolo, "Thermal dependence of the positions and widths of the fluorescence lines of Cr3+ and Er3+ in YAG," Nuovo Cimento B 7,62-70 (1972).
    [2]R. C. Powell, B. D. Bartolo, B. Birang, and C. S. Naiman, "Temperature dependence of the widths and positions of the R and N lines in heavily doped ruby," J. Appl. Phys.37,4973-4978 (1966).
    [3]W. M. Yen, W. C. Scott, and A. L. Schawlow, "Phonon-induced relaxation in excited optical states of trivalent praseodymium in LaF3," Phys. Rev.136, A271-A283 (1964).
    [4]Y. Yu, J. Wang, H. Zhang, H. Yu, Z. Wang, M. Jiang, H. Xia, and R. I. Boughton, "Growth and characterization of Nd:YxGd1-xVO4 series laser crystals," J. Opt. Soc. Am. B 25,995-1001 (2008).
    [5]H. Yu, Y. Yu, H. Zhang, Z. Wang, J. Wang, X. Cheng, Z. Shao, and M. Jiang, "Growth and laser characterization of mixed Nd:LuxGd1-xVO4 laser crystals," J. Cryst. Growth 293,394-397 (2006).
    [6]L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen,Y. G Zhao, X. Sun, and X. G Xu, "Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals," AIP Adv.1,0421431 (2011).
    [7]J. Liu, X. Meng, Z. Shao, and M. Jiang, "Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals," Appl. Phys. Lett. 83,1289-1291 (2003).
    [8]H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, D. Tang, G Xie, H. Luo, and M. Jiang, "Passive mode-locking performance with a mixed Nd.Lu0.5Gd0.5VO4 crystal," Opt. Express 17,3264-3269 (2009).
    [9]T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. Yang, "Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser," J. Opt. Soc. Am. B 26, 2445-2448 (2009).
    [10]D. K. Sardar, and R. M. Yow, "Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12," Opt. Mater.10,191-199 (1998).
    [11]X. Chen, and B. D. Bartolo, "Phonon effects on sharp luminescence lines of Nd3+ in Gd3Sc2Ga3O12 garnet (GSGG)," J. Lumin.54,309-318 (1993).
    [12]X. Chen, and B. D. Bartolo, "Temperature dependence of spectral linewidths and lineshifts of Nd3+ ions in CaY2Mg2Ge3O12 laser crystal" J. Appl. Phys.75, 1710-1714(1994).
    [13]T. Kushida, "Linewidths and Thermal Shifts of Spectral Lines in Neodymium-Doped Yttrium Aluminum Garnet and Calcium Fluorophosphate," Phys. Rev.185,500-508 (1969).
    [14]M. Zuker, A. G. Szabo, L. Bramall, and D. T. Kraiacarski, "Delta function convolution method (DFCM) for fluorescence decay experiments," Rev. Sci. Instrum.56,14-22 (1985).
    [15]O. Guillot-Noel, B. Viana, B. Bellamy, D. Gourier, G. B. Zogo-Mboulou, and S. Jandl, "Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4 crystals," Opt. Mater.13,427-437 (2000).
    [16]L. Fornasiero, S. Kuck, T. Jensen, G. Huber, and B. H. T. Chai, "Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2:YVO4, GdVO4, and Sr5 (PO4)3F," Appl. Phys. B 67,549-553 (1998).
    [17]A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. DeShazer, "Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34μm," J. Appl. Phys.47,232-234 (1976).
    [18]Y. L. Mao, M J. Huang, and C. S. Wang, "Temperature effect on emission lines and fluorescence lifetime of the 4F3/2 state of Nd:YVO4," Chin. Opt. Lett.2,102-105 (2004).
    [19]G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, "Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals," J. Opt. Soc. Am. B 26,2084-2088 (2009).
    [20]D. Sardar, and R. C. Powell, "Energy transfer processes in YVO4:Nd3+," J. Appl. Phys.51,2829-2835 (1980).
    [21]X. Delen, F. Balembois, and P. Georges, "Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation," J. Opt. Soc. Am. B.28,972-976 (2011).
    [22]D. K. Sardar, and R M. Yow, "Stark components of 4F3/2,4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4," Opt. Mater.14,5-11 (2000).
    [23]G. V. Vazquez, M. E. Sanchez-Morales, and E. B. Mejia, "Laser oscillation in Nd:YVO4 channel waveguides fabricated by ion implantation," Proc. of SPIE 7099, 7099111 (2008).
    [24]B. F. Aull, and H. P. Jenssen, "Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections," IEEE J. Quantum Electron QE-18,925-930 (1982).
    [25]A. W. Tucker, M. Birnbaum, C. L. Fincher, and J. W. Erler, "Stimulated-emission cross section at 1064 and 1342 nm in Nd:YVO4," J. Appl. Phys.48,4907-4911 (1977).
    [26]K. Wu, B. Yao, H J. Zhang, H. H. Yu, Z. P. Wang, J. Y. Wang, and M. H. Jiang, "Growth and properties of Nd:Lu3Gs5O12 laser crystal by floating-zone method," J. Cryst. Growth 312,3631-3636 (2010).
    [27]T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, "Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4," Appl. Phys. B 58,373-379 (1994).
    [28]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett.29,2632-2634 (2004).
    [29]Y. Sato, and T. Taira, "Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials," Opt. Mater. Express 2,1076-1087 (2012).
    [30]H. H Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y G Yu, Z. S. Shao, and M. H. Jiang, "Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals," Opt. Lett.32,2152-2154 (2007).
    [31]C. Maunier, J. L. Doualan, and R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, "Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping," J. Opt. Soc. Am. B 19,1794-1800 (2002).
    [32]L. J. Chen, Z. P. Wang, H. H. Yu, S. D. Zhuang, S. Han, Y G Zhao, and X. G Xu, "High-Power Single- and Dual-Wavelength Nd:GdVO4 Lasers with Potential Application for the Treatment of Telangiectasia," Appl. Phys. Express 5,112701 (2012).
    [33]Y. P. Huang, C. Y Cho, Y. J. Huang, and Y F. Chen, "Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm," Opt. Express 20, 5644-5651 (2012).
    [34]S. A. Johnson, H G Freie, A. L. Schawlow, and W. M. Yen, "Thermal shifts in the energy levels of LaF3:Nd3+," J. Opt. Soc. Am. B 57,734-737 (1967).
    [35]K. Wu, L. Z. Hao, H. J. Zhang, H H Yu, H. J. Cong, and J. Y Wang, "Growth and characterization of Nd:Lu3ScxGa5-xO12 series laser crystals," Opt. Comm.284, 5192-5198(2011).
    [36]Y. G Zhao, S. Han, Z. P. Wang, D. W. Hu, X. Sun, and X. G Xu, "Inhomogeneous spectrum broadening in Nd3+:LuxY1-xVO4 series crystals and consequences on mode-locking laser operation," Opt. Mate. Express 3,1233-1241 (2013).
    [37]Y. G Zhao, H. H. Yu, Z. P. Wang, H. J. Zhang, X. G Xu, and J. Y. Wang, "Direct investigation of inhomogeneous spectrum broadening in Nd3+:GdxY1-xVO4 series crystals," J. Opt. Soc. Am. B 30,1241-1247 (2013).
    [38]V. Ostroumov, T. Jensen, J. P. Meyn, G Huber, and M. A. Noginov, "Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals," J. Opt. Soc. Am. B 15, 1052-1060 (1998).
    [39]I. Musgrave, "Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4," University of Southampton PhD thesis,50-79 (2003).
    [40]P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 30,125-133 (1986).
    [41]D. K. Sardar and S. C. Stubblefield, "Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host," J. Appl. Phys.83,1195-1199 (1998).
    [1]J. H. Liu, X. L. Meng, Z. S. Shao, and M. H. Jiang, "Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals," Appl. Phys. Lett.83,1289-1291 (2003).
    [2]Y G Yu, J. Y Wang, H. J. Zhang, H. H. Yu, Z. P. Wang, M. H. Jiang, H. R. Xia, and R. I. Boughton, "Growth and characterization of Nd:YxGd1-xVO4 series laser crystals," J. Opt. Soc. Am. B.25,995-1001 (2008).
    [3]X. Li, G Q. Li, S. Z. Zhao, C. Xu, Y. F. Li, H. Liu, and H. J. Zhang, "Enhancement of passively Q-switched performance at 1.34μm with a class of Nd:GdxY1-xVO4 crystals," Opt. Express 18,21551-21556 (2010).
    [4]J. Liu, Y Wan, W. Han, H. Yang, H. Zhang, and J. Wang, "Actively Q-switched laser performance of Nd:GdxY1-xVO4:a class of mixed vanadate crystals," Appl. Phys. B 98,69-76 (2010).
    [5]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y Wang, Y G Yu, Z. S. Shao, and M. H. Jiang, "Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals," Opt. Lett.32,2152-2154 (2007).
    [6]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y Wang, Y G Yu, and M. H. Jiang, "Continuous-wave laser performance of Nd:LuxGd1-xVO4 operating at 1.34μm," Laser Phys. Lett.5,181-184 (2008).
    [7]S. P. Ng, D. Y. Tang, J. Kong, L. J. Qin, X. L. Meng, and Z. J. Xiong, "Passive mode locking of a diode-pumped Nd:Gd0.64Y0.36VO4 laser with a GaAs saturable absorber mirror," Appl. Phys. B 80,475-477 (2005).
    [8]S. Zhang, L. Xu, Y Wang, M. Wang, H. Peng, J. Xu, and B. Zhao, "Q-switched performance of diode pumped Nd:Lux(x=0.15)Y1-xVO4 lasers," IEEE Photon. Technol. Lett.22,556-558 (2010).
    [9]S. Zhang, L. Xu, M. Wang, H. Peng, F. Chen, J. Xu, and B. Zhao, "Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lu0.15Y0.85VO4," Laser Phys. Lett.7,339-342 (2010).
    [10]T. Li, S. Z. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. J. Yang, "Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser," J. Opt. Soc. Am. B 26,2445-2448 (2009).
    [11]S. Y. Zhang, H T. Huang, M. J. Wang, L. Xu, J. Q. Xu, W. B. Chen, J. L. He, and B. Zhao, "Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lu(x=0.5)Y1-xVO4," Optics Commun.284,1342-1345 (2011).
    [12]H. T. Huang, S. Y Zhang, J. L. Xu, J. Q. Xu, B. Zhao, and J. L. He, "the continuous-wave passive mode-locking operation of a diode-pumped mixed Nd:Luo.5Yo.5VO4 laser," Laser Phys. Lett.8,197-200 (2011).
    [13]Z. Zhuo, S. G Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, "Study of the laser performance of a novel mixed Nd:Yo.8Luo.2V04 crystal," Laser Phys. Lett.7,116-119(2010).
    [14]Z. Zhuo, S. G Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, "Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal," Optics Commun.283,1886-1888 (2010).
    [15]X. Li, G Li, S. Zhao, C. Xu, G Du, and T. Li, "Passively Q-switched laser performance of Nd:Lu0.15Y0.85VO4 operating at 1.34μm with a V:YAG, saturable absorber," Laser Phys.21,61-65 (2011).
    [16]X. Li, G Q. Li, S. Z. Zhao, C. Xu, and G L. Du, "Diode-pumped passively Q-switched Nd:LuxY1-xVO4 laser at 1.34μm with two V:YAG saturable absorbers," Opt. Commun.284,1307-1311 (2011).
    [17]H. T. Huang, S. Y. Zhang, J. L. He, J. Q. Xu, and B. Zhao, "Diode-pumped passively Q-switched Nd:Lu0.5Y0.5VO4 laser at 1.34μm with Co2+:LaMgAl11O19 as the saturable absorber," IEEE Photon. Technol. Lett.23,112-114 (2011).
    [18]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y G Yu, Z. S. Shao, and M. H. Jiang, "Continuous wave and passively Q-switched laser performance of a Nd-doped mixed crystal Nd:Luo.5Gdo.5V04," Appl. Phys. Lett.90,231110 (2007).
    [19]T. Omatsu, M. Okida, A. Minassian, and M. J. Damzen, "High repetition rate Q-switching performance in transversely diode-pumped Nd doped mixed gadolinium yttrium vanadate bounce laser," Opt. Express 14,2727-2734 (2006).
    [20]S. P. Ng, D. Y Tang, A. Q. Liu, L. Qin, and X Meng, "Short pulse passively Q-switched Nd:GdYVO4 laser using a GaAs mirror," Opt. Commun.259,256-260 (2006).
    [21]Y D. Zavartsev, A. I. Zagumennyi, Y. L. Kalachev, S. A. Kutovoi, V A. Mikhailov, A. A. Sirotkin, I. A. Shcherbakov, R. R.Erny, W. Luthy, and T. Feurer, "Active and passive mode locking in a diode-pumped Nd:Gd0.7Y0.3VO4 laser," Quantum Electron.37,315-318 (2007).
    [22]G Zhang, S. Z. Zhao, D. C. Li, K. J. Yang, G Q. Li, K Cheng, Y. Zhang, and B. Zhao, "Characteristics of diode-pumped dual-loss-modulated Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 laser," Laser Phys.21,1539-1544 (2011).
    [23]S. Zhang, L. Xu, M. Wang, H. Peng, F. Chen, J. Xu, and B. Zhao, "Continuous wave and passively Q-switched laser performance of the mixed crystal Nd:Lu0.15Y0.85VO4," Laser Phys. Lett.7,339-342 (2010).
    [24]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Z. S. Shao, and M. H. Jiang, "CW and Q-switched laser output of LD-end-pumped 1.06μm c-cut Nd:LuVO4 laser," Opt. Express 15,3206-3211 (2007).
    [25]J. Liu, J. M. Yang, and J. L. He, "Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser," Opt. Commun.219,317-321 (2003).
    [26]N. Mermilliod, R Romero, I. Chartier, C. Garapon, and R. Moncorge, "Performance of various diode-pumped Nd:laser materials:influence of inhomogeneous broadening," IEEE J. Quantum. Elect.28,1179-1187 (1992).
    [27]L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G Zhao, X. Sun, and X. G Xu, "Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals," AIP. Advances.1,042143 (2011).
    [28]Y. F. Chen, and Y. P. Lan, "Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a Cr4+:YAG saturable absorber," Appl. Phys. B 74, 415-418(2002).
    [29]X. Y. Zhang, S. Z. Zhao, Q. P. Wang, Q. D. Zhang, L. K. Sun, and S. J. Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers," IEEE J. Quantum. Elect.33,2286-2294 (1997).
    [30]C. Maunier, J. L. Doualan, R. Moncorge, A. Speghini, M. Bettinelli, and E. Cavalli, "Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping," J. Opt. Soc. Am. B 19,1794-1800(2002).
    [31]B. T. Zhang, H. T. Huang, J. L. He, J. F. Yang, J. L. Xu, C. H. Zuo, and S. Zhao, "Diode-end-pumped passively Q-switched 1.34 μm Nd:Gd0.5Y0.5VO4 aser with Co2+:LMA saturable absorber," Opt. Mater.31,1697-1700 (2009).
    [32]J. Liu, C. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao, and M. Jiang, "High-power actively Q-switched Nd:GdVO4 laser end-pumped by a fiber-coupled diode-laser array," Opt. Commun.188,155-162 (2001).
    [33]G Baldwin, "Output power calculations for a continuously pumped Q-switched YAG:Nd+3 laser," IEEE J. Quantum. Electron.7,220-224 (1971).
    [34]K. Andrjunas, J. Vistchakas, V. Kabelka, I. V. Mochalov, A. A. Pavljuk, Petrovskii G T and Syrus V, "WRC-Reinvent laser Nd3+ in crystals of double tungstates" JETP Lett.42 333-335 (1985).
    [35]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G. I. Ryabtsev, and A, A. Demidovich, "All solid-state diode-pumped Raman laser with self-frequency conversion," Appl. Phys. Lett.75,3742-3744 (1999).
    [36]H. Jel'inkov'a, J. Sulc, T. T. Basiev, P. G. Zverev, and S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett.2,4-11 (2005).
    [37]A. A. Lagatsky, A. Abdolvand, and N. V. Kuleshov, "Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd (WO4)2 laser," Opt. Lett.25,616-618(2000).
    [38]A. S. Grabtachikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, M. B. Danailov, H. J. Eichler, A. Bednarkiewicz, W. Strek, and A. N. Titov, "Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser," Appl. Phys. B 75,795-797 (2002).
    [39]A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. Garcia-Sole, J. Fernandez, and R. Balda, "Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals," Appl. Optics 21,4533-4547 (1999).
    [40]T. T. Basiev, M. E. Doroshenko, L. Voronina, V. A. Konjushkin, V. V. Osiko, and S. Vasilyev, "Demonstration of high self-Raman laser performance of a diode-pumped SrMoO4:Nd3+ crystal," Opt. Lett.34,1102-1104 (2009).
    [41]T. T. Basiev, S. V. Vassiliev, M. E. Doroshenko, V. V. Osiko, V. M. Puzikov, and M. B. Kosmyna, "Laser and self-Raman-laser oscillations of PbMoO4:Nd3+ crystal under laser diode pumping," Opt. Lett.31,65-67 (2006).
    [42]M. Weitz, C. Theobald, R. Wallenstein, and A. Lhuilier, "Passively mode-locked picosecond Nd:YVO4 self-Raman laser," Appl. Phys. Lett.92,091122 (2008).
    [43]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett.6,26-29 (2009).
    [44]Y F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett.29,2632-2634 (2004).
    [45]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett.1,237-240 (2004).
    [46]H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quant. Electron.27,3-56 (2003).
    [47]A. A. Kaminskii, H. Rhee, H. J. Eichler, K. Ueda, K. Oka, and H. Shibata, "Newχ(3)-nonlinear-laser manifestations in tetragonal LuVO4 crystal:more than sesqui-octave Raman-induced Stokes and anti-Stokes comb generation and cascaded self-frequency "tripling"," Appl. Phys. B 93,865-872 (2008).
    [48]A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficientχ(3)-materials for Raman lasers," Opt. Commun. 194,201-206 (2001).
    [49]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G Yu, and M. H. Jiang, "Four-photon laser spectroscopy of solids in 0-0.15 THz," Laser Phys. Lett.3, 181-184 (2006).
    [50]Y. F. Chen, M. L. Ku, L. Y. Tsai, and Y. C. Chen, "Diode-pumped passively Q-switched picosecond Nd:GdxY1-xVO4 self-stimulated Raman laser," Opt. Lett.29,2279-2281 (2004).
    [51]F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5," Appl. Phys. Lett.32,34-35 (1978).
    [52]Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, H. Wang, S. Z. Fan, W. J. Sun, X. T. Tao, S. J. Zhang, and H. J. Zhang, "1120 nm second-Stokes generation in KTiOAsO4," Laser Phys. Lett.6,121-124 (2009).
    [53]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser:influence of dopant concentration," Opt. Lett.29,1915-1917 (2004).
    [54]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B 78,685-687 (2004).
    [55]M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, "Thermal modeling of continuous-wave end pumped solid-state lasers," Appl. Phys. Lett.56,1831-1833 (1990).
    [56]C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, "3.1 W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm," Appl. Phys. B 101,743-746 (2010).
    [57]A. A. Kaminskii, M. Bettinelli, J. Dong, D. Jaque, and K. Ueda, "Nanosecond Nd3+:LuVO4 self-Raman laser," Laser Phys. Lett.6,374-379 (2009).
    [58]M. Haiml, R Grange, and U. keller, "Optical characterization of semiconductor saturable absorbers," Appl. Phys. B 79,331-339 (2004).
    [59]U. Keller, "Recent developments in compact ultrafast lasers," Nature 38,831-838 (2003).
    [60]G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, "High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser," Laser Phys. Lett.5,647-650 (2008).
    [1]A. M. Tkachuk, A. K. Przhevusskii, L. G. Morozova, A. V. Poletimova, M. V. Petrov, and A.M. Korovkin, "Nd3+ optical centers in lutecium, yttrium, and scandium silicate crystals and their spontaneous and stimulated emission," Opt. Spectrosc.60,176-181 (1986).
    [2]T. Kimble, M. Chou, and B. H. T. Chai, "Scintillation Properties of LYSO Crystals," IEEE Nucl. Sci. Symp. Conf. Record 3,1434-1437 (2002).
    [3]D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, "Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5," J. Appl. Phys.88,7360-7362 (2000).
    [4]L. Qin, H. Li, S. Lu, D. Ding, and G. Ren, "Growth and characteristics of LYSO (Lu2(1-x-y)Y2xSi05:Cey) scintillation crystals," J. Cryst. Growth 281,518-524 (2005).
    [5]W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, "Efficient tunable diode-pumped Yb:LYSO laser," Opt. Express 14, 6681-6686(2006).
    [6]L. Su, D. Zhang, H. Li, J. Du, Y. Xu, X. Liang, G. Zhao, and J. Xu, "Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber," Opt. Express 15,2375-2379 (2007).
    [7]B. K. Brickeen, and E. Geathers, "Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO," Opt. Express 17,8461-8466 (2009).
    [8]J. Liu, W. W. Wang, C. C. Liu, X. W. Fan, L. H. Zheng, L. B. Su, and J. Xu, "Efficient diode-pumped self-mode-locking Yb:LYSO laser," Laser Phys. Lett. 7,104-107(2010).
    [9]D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, "Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO," Laser Phys. Lett.7,798-804 (2010).
    [10]L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo, Y. G. Zhao, and X. G. Xu, "Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak," Chin. Opt. Lett.9,071403(2011).
    [11]S. D. Zhang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G. Zhao, and X. G. Xu, "Contunuous-wave and passively Q-switched Nd:LYSO laser," Laser Phys.21,684-689 (2011).
    [12]Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, "Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM," Opt. Express 19,3984-3989 (2011).
    [13]庄世栋,“LD泵浦Nd:LYSO、Nd:LuGdAG激光特性研究”,山东大学博士毕业论文(2012)。
    [14]Y. G. Zhao, X. L. Li, M. M. Xu, H. H. Yu, Y. Z. Wu, Z. P. Wang, X. P. Hao, and X. G. Xu, "Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber," Opt. Express 21,3516-3522 (2013).
    [15]Y. G. Zhao, S. D. Zhuang, X. D. Xu, J. Xu, H. H. Yu, Z. P. Wang, and X. G. Xu, "Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO," Opt. Express 22,2228-2235 (2014).
    [16]A. Brenier, Y. Wu, J. Zhang, and Y. Wu, "Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19," Appl. Phys. B 107,59-65 (2012).
    [17]Y. Petit, B. Boulanger, P. Segonds, C. Felix, B. Menaert, J. Zaccaro, and G. Aka, "Absorption and fluorescence anisotropies of monoclinic crystals:the case of Nd:YCOB," Opt. Express 16,7997-8002 (2008).
    [18]P. G. O'Shea, and H. P. Freund, "Free-electron lasers:status and applications," Science.292,1853-1857(2001).
    [19]H. J. Joyce, J. W. Leung, C. K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. L. Hughes, L. M. Herz, and M. B. Johnston, "Ultralow surface recombination velocity in InP nanowires probed by Terahertz spectroscopy," Nano Lett.12,5325-5330 (2012).
    [20]F. Junginger, B. Mayer, C. Schmidt, O. Schubert, S. Mahrlein, A. Leitenstorfer, R. Huber, and A. Pashkin, "Non perturbative inter band response of a bulk InSb semiconductor driven off resonantly by Terahertz electromagnetic few-cycle pulses," Phy. Rev. Lett.109,147403 (2012).
    [21]T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa, and T. Idehara, "Observation of dynamic interactions between fundamental and second-Harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-Excitation," Phy. Rev. Lett.109,155001 (2012).
    [22]K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett.89,141119 (2006).
    [23]D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, "Compact, high average power, fiber-pimped terahertz source for active real-time imaging of concealed objects," Opt. Express 15,6478-6483 (2007).
    [24]P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, "Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers," Appl. Phys. Lett.98,131106 (2011).
    [25]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, "Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector," Appl. Phys. Lett.94,041126 (2009).
    [26]K. Spariosu, W. Chen, R. Stultz, M. Birnbaum, and A. V. Shestakov, "Dual Q switching and laser action at 1.06 and 1.44 μm in a Nd3+:YAG-Cr4+:YAG oscillator at 300 K," Opt. Lett.18,814-816 (1993).
    [27]K. V. Yumashev, N. V. Kuleshov, A. M. Malyarevich, P. V. Prokoshin, V. G. Shcherbitsky, N. N. Posnov, V. P. Mikhailov, and V. A. Sandulenko, "Ultrafast dynamics of excited-state absorption in V3+:YAG crystal," J. Appl. Phys.80, 4782-4784 (1996).
    [28]P. Li, Y. Li, Y. Sun, X. Hou, H. Zhang and J. Wang, "Passively Q-switched 1.34 μm Nd:YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber," Opt. Express 14,7730-7736 (2006).
    [29]F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, "Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm," Opt. Lett.37,2817-2819 (2012).
    [30]H. P. H. Cheng, P. Tidemand-Lichtenberg, O. B. Jensen, P. E. Andersen, P. M. Petersen, and C. Pedersen, "All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser," Opt. Express 18, 23987-23993 (2010).
    [31]H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, "Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide," ACS Nano.4,7582-7586 (2010).
    [32]Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q, Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, "Graphene mode-locked ultrafast laser," ACS Nano.4,803-810(2010).
    [33]E. Ugolotti, A. Schmidt, V. Petrov, J. Kim, D. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguilo, F. Diaz, and U. Griebner, "Graphene mode-locked femtosecond Yb:KLuW laser,Appl.Phys. Lett.101,161112(2012).
    [34]P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, "Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination Dynamics in epitaxial graphene," Nano. Lett.8,4248-4251 (2008).
    [35]J. M Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, "Measurement of ultrafast carrier dynamics in epitaxial graphene," Appl. Phys. Lett.92,042116(2008).
    [36]Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, "Graphene mode-lockers for fiber lasers functioned with evanescent field interaction," Appl. Phys. Lett.96, 051122(2010).
    [37]Q. L. Bao, H. Zhang, Y. Wang, Z. Nr, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Funct. Mater.19,3077-3083 (2009).
    [38]Z. Q. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, "Graphene -based passively Q -switched dual-wavelength erbium-doped fiber laser," Opt. Lett.35,3709-3711 (2010).
    [39]Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, "Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber," IEEE Photonics Journal 4,869-876 (2012).
    [40]X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, "Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser," Opt. Express 19,9950-9955(2011).
    [41]F. Pallas, E. Herault, J. Zhou, J. F. Roux, and G. Vitrant, "Stable dual-wavelength micro laser controlled by the output mirror tilt angle," Appl. Phys. Lett.99,241113 (2011).
    [42]H. H. Yu, X. F. Chen, X. B. Hu, S. D. Zhuang, Z. P. Wang, X. G. Xu, J. Y. Wang, H. J. Zhang, and M. H. Jiang, "Graphene as a Q-switcher for neodymium-doped lutetium vanadate Laser," Appl. Phys. Express 4,022704 (2011).
    [43]J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Yang, Y. Z. Wu, S. D. Liu, and B. T. Zhang, "Efficient graphene Q-switching and mode locking of 1.34 μm neodymium lasers," Opt. Lett.37,2652-2654 (2012).
    [1]P. Nemec, E. Rozkotova, N. Tesarova, F. Trojanek, E. De Ranieri, K. Olejnik, J. Zemen, V. Novak, M. Cukr, P. Maly, and T. Jungwirth, "Experimental observation of the optical spin transfer torque," Nature Phys.8,411-415 (2012).
    [2]J. Scheuer, and M. Orenstein, "Optical Vortices Crystals:Spontaneous Generation in Nonlinear Semiconductor Microcavities," Science 285,230-233 (1999).
    [3]L. T. Vuong, T. D. Grow, A. Ishaaya, and A. L. Gaeta, "Collapse of Optical Vortices," Phys. Rev. Lett.96,133901 (2006).
    [4]D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., "Propagation dynamics of optical vortices," J. Opt. Soc. Am. B 14,3054-3065 (1997).
    [5]M. F. Andersen, C. Ryu, P. Clad e, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, "Quantized Rotation of Atoms from Photons with Orbital Angular Momentu," Phys. Rev. Lett.97,170406 (2006).
    [6]J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, "Laser beams:Knotted threads of darkness," Nature 432,165-165 (2004).
    [7]J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, "Entangled Optical Vortex Links," Phys. Rev. Lett.106,100407 (2011).
    [8]L. Allen, M. W. Beijersbergen, R J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45,8185-8189 (1992).
    [9]H. C. Liang, Y. J. Huang, Y. C. Lin, T. H. Lu,Y F. Chen, and K. F. Huang, "Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd:GdVO4 lasers," Opt. Lett.34,3842-3844 (2009).
    [10]D. L. Andrews, L. C. Davila Romero, and M. Babiker, "On optical vortex interactions with chiral matter," Opt. Commun.237,133-139 (2004).
    [11]K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, "Second-harmonic generation and the orbital angular momentum of light," Phys. Rev. A 54, R3742 (1996).
    [12]K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schatzel, and H. Walther, "Vortices in femtosecond laser fields," Opt. Lett.29,1942-1944 (2004).
    [13]A. A. Ishaaya, N. Davidson, and A. A. Friesem, "Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser," Opt. Express 13,4952-4962 (2005).
    [14]Y. J. Huang, P. Y. Chiang, H. C. Liang, K. W. Su, Y F. Chen, "High-power Q-switched laser with high-order Laguerre-Gaussian modes:application for extra-cavity harmonic generations," Appl. Phys. B 105,385-390 (2011).
    [15]M. D. Wei, C. C. Cheng, and S. S. Wu, "Instability and satellite pulse of passively Q-switching Nd:LuVO4 laser with Cr4+:YAG saturable absorber," Opt. Commun. 281,3527-3531(2008).
    [16]S. M. Baumann, D. M. Kalb, L. H. MacMillan, and E. J. Galvez, "Propagation dynamics of optical vortices due to Gouy phase," Opt. Express 17,9818-9827 (2009).
    [17]X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers," IEEE J. Quantum. Electron.33, 2286-2294(1997).
    [18]Y. F. Chen, and Y. P. Lan, "Observation of laser transverse modes analogous to a SU (2) wave packet of a quantum harmonic oscillator," Phys. Rev. A 66,053812 (2002).
    [19]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Z. B. Pan, S. D. Zhuang, and D. Y. Tang, "Experimental observation of optical vortex in self-frequency-doubling generation," Appl. Phys. Lett.99,241102 (2011).
    [20]J. Freiberg and A. S. Halsted, "Properties of low order transverse modes in Argon ion lasers" Appl. Optics 8,355-362 (1969).
    [21]F. Song, C. Zhang, X. Ding, J. Xu, G Zhang, M. Leigh, and N. Peyghambarian," Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers" Appl. Phys. Lett.81,2145-2147 (2002).
    [22]R. C. C. Leite, S. P. S. Porto, and T. C. Damen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett.10,100-101 (1967).