单斜Nd:LaVO_4晶体的生长和特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光现在已经广泛应用于工业、军事、通信和医疗等众多领域,并带动了许多新兴学科的发展,现在它已经在我们的日常生活中发挥越来越重要的作用。激光器一般由三部分组成:工作物质、激励能源、光学共振腔。激光工作物质是激光器的核心部分,产生激光的介质有气体、液体和固体等。固体激光物质主要以激光晶体为主,以稀土为激活离子的晶体被广泛研究。随着激光二极管(LD)技术的发展,LD泵浦的固体激光器具有泵浦效率高,方向性和单色性好等特点。因此寻找适合LD泵浦的激光晶体成为研究热点。开始主要集中在对高对称性立方晶系和中对称性四方晶系的激光晶体的研究,其中Nd:YAG和Nd:YVO4现在已经商业化。但是Nd3+离子在这两种晶体中对LD泵浦波长的吸收带较窄,又难以获得更大的掺杂浓度。后来人们又对Nd:GGG, Nd:YVO4, Nd:GdVO4, Nd:LuVO4和Yb:YVO4等激光晶体进行了深入研究,从生长成本和综合性能上都不如上面两种晶体。
     近些年人们开始探索研究低对称激光晶体,像Nd:YCOB, Nd:GdCOB, Nd: KLu(WO4)2等,由于晶体的对称性降低,使得晶体的吸收光谱展宽,适合LD泵浦,但是它们的热学性质较差。LaVO4晶体在钒酸盐晶体中比较特殊,常温下是单斜的独居石结构,具有低对称性,其各向异性结构在光学上必然有其独特的性能。因此值得我们对LaVO4晶体进行深入的研究。
     1976年用熔盐法生长了LaVO4晶体,并对晶体结构进行了分析,发现晶体是与CePO4相同的独居石结构。此后很长时间没有关于LaVO4晶体的相关报道,至到2004年首次采用提拉法生长了Nd:LaVO4晶体,发现晶体在808nm处的半峰宽(FWHM)为20nm, Nd3+离子的荧光寿命为137μs,适合作为激光晶体。2006年用X粉末衍射对LaVO4结构重新进行了分析,证明晶体的空间群确实为P21/n(14)。同年用提拉法生长出Yb:LaVO4晶体。2009年又对Nd:LaVO4晶体生长中遇到的螺旋生长,以及晶体形貌进行了研究,2010年利用第一性原理对四方和单斜结构的LaVO4的能带和光谱进行了计算。同年Gavrichev等研究了LaVO4的比热和热力学函数。2012年又用浮区法生长出Nd:LaVO4晶体,掺杂浓度为5at.%,Nd3+离子的荧光寿命为80μs,并对折射率进行了定向。2013年用固相反应合成LaVO4晶体,对其结构进行了分析,测量了拉曼光谱。2010年首次报道了在Nd:LaVO4晶体中实现了1.064μm的连续激光输出,最大输出功率为45mW。
     可见对于LaVO4晶体的生长和研究不多,这主要是它是单斜晶体,而且较难生长,也没有对其进行很好地系统的研究。基于此,本论文系统的研究了Nd:LaVO4晶体生长、光学、热学和激光等性能,主要工作如下:
     1、Nd:LaVO4晶体的生长和结构
     采用提拉法生长出Nd:LaVO4晶体,并对影响晶体生长的因素和晶体生长过程中出现的螺旋问题进行了讨论。利用X射线粉末衍射得到晶体的结构,获得其晶胞参数,用浮力法对晶体的密度进行了测量,结果为5.07g/cm3与理论密度(5.061g/cm3)相近。对单斜晶体中不同的坐标系与晶体的结晶学轴之间的相互关系进行了详细的说明。
     2. Nd:LaVO4晶体折射率的测量
     利用最小偏向角法测量了晶体的折射率,计算了折射率主轴与结晶学轴之间的关系,拟合了随波长的变化关系:18.69643-7.39838λ+2.63972λ2,在测量波长范围内,有2.7。左右的旋转。计算了光轴角,晶体为正光性双轴晶,计算了光轴角随波长的变化关系。用Sellmerier方程拟合了折射率随波长的变化,拟合计算结果与测量结果比较吻合。
     3、Nd:LaVO4晶体光谱性质研究
     利用菲涅尔方程证明对于六方,四方,正交和三方各向异性的晶体可以在折射率主轴下测量连续波长偏振光的吸收。但是对于单斜晶体,复介电常数的实部ε二阶张量在折射率(介电)主轴下是对角化的,而虚部8’是非对角化的,吸收主轴和荧光主轴与折射率主轴存在一定夹角,复介电常数ε的虚部对于吸收来说只有在吸收主轴下是对角化的,对于荧光来说只有在荧光主轴下是对角化的,而且单斜晶体的折射率主轴有可能随波长发生变化。因此对于单斜晶体,不能像四方、正交等晶系的晶体一样在介电主轴下测量连续波长的偏振吸收。测量了Nd:LaVO4晶体沿不同方向的吸收光谱,在808nm处的半峰宽(FWHM)达到17nm,可能是由于La离子周围有9个配位O离子,而Nd离子在NdVO4晶相时周围有8个配位O离子,当Nd离子掺杂到LaVO4时,部分La离子被Nd离子取代,对于Nd离子,有从9配位向8配位转化的趋势,从而导致晶格场的振动和光谱的非均匀展宽。用Judd-Oflet (J-O)理论分析了光谱参数,晶体的三个唯象参数分别为:Ω2=2.142×10-20cm2, Ω4=3.704×10-20cm2,和Ω6=2.948×10-20cm2,808nm处的吸收截面为1.67×10-20cm2,并与其它晶体进行了比较。测量了Nd:LaVO4晶体荧光光谱和荧光寿命,测得的荧光寿命为154.90μs,荧光效率为80.1%。大的荧光量子效率说明晶体中的非辐射跃迁几率小。
     4、Nd:LaVO4晶体的拉曼光谱研究
     从因子群方法和位置对称性方法两个方面计算了Nd:LaVO4晶体的简正振动模式的对称性分类为:18Ag+18Bg+18Au+18Bu。共有72个简正模,与24个原子的运动自由度相等。测量了不同偏振配置Z(YY)Z和Y(ZX)Y下的拉曼光谱,对观测到的拉曼峰分内振动和外振动进行了详细的指认,钒酸根离子VO43-的内振动在晶体场中其晶格振动峰与溶液状态下有所变化,表明在晶体中四面体结构有畸变。不同配置下最强峰857cm-1和819cm-1的半峰宽分别为7.6cm-1和8.6cm-1,弛豫时间分别是1.39ps和1.23ps,说明Nd:LaVO4可作为拉曼激光晶体。半峰宽小说明晶体具有良好的结晶度,与有畸变并不矛盾,因为峰的位置与短程有序有关,而半峰宽与结晶度,缺陷,粒子尺寸等有关。
     5、Nd:LaVO4晶体的热学性质研究
     系统的研究了晶体的热学性质:比热、热膨胀、热扩散和热导率。计算了密度随温度的变化关系。对热扩散和热导率进行了主轴化,并计算了它们随温度的变化关系,室温下三个主轴热导率系数分别为:2.731W/m-K,2.966W/m·K,3.388W/m-K,具有最大热导率的主轴方向为沿c方向逆时针旋转19.82°。并且随温度的升高这个角度是不断变化的。利用热导率随浓度变化模型,计算出Nd:LaVO4晶体的主轴热导率随掺杂浓度变化关系,发现随着浓度的增加热导率变化较小,与质量方差变化较小有关。
     6、Nd:LaVO4晶体的激光研究
     实现了Nd:LaVO4晶体沿Y和Z切晶体的连续激光输出,Z切晶体的阈值功率是0.21W,最大输出功率是3.05W,斜效率是34.4%,光光转化效率是33.3%。Y切晶体的阈值功率是0.14W,最大输出功率是3.56W,斜效率是41.4%,光光转化效率是40.3%。利用被动调Q技术在Y切晶体实现了最大重复频率为14.6kHz,最小脉冲宽度为10.9ns,最大脉冲能量为38.3μJ,最高峰值功率为3.52kW的脉冲激光。
Nowadays, Laser has been widely used in many fields such as industry, military, communication, medicine etc. and drives the development of many emerging disciplines. It now in our daily life plays an increasingly important role. Laser generally consists of three'parts:material, excitation energy, optical resonance cavity. Laser material is the core part of the laser. Laser materials are divided gas, liquid and solid etc. Solid laser materials mainly are laser crystals, the rare earth-doped crystals have been investigated widely. With the development of the laser diode (LD), LD pumped solid state laser has the characteristics of high pumping efficiency, good directionality and monochromaticity etc. So the search for laser crystals suitable LD pumped has become a hotspot. At first, the study mainly was focused on the laser crystals which belong to high symmetry and Intermediate symmetry such as cubic and tetragonal, the Nd:YAG and Nd:YVO4have been commercialized, but Nd3+ion can not be obtained greater doping concentration in the two kinds of crystals, and has a narrow bandwidth in the LD pump wavelength of808nm. Other laser crystals such as Nd:GGG, Nd:YVO4, Nd:GdVO4, Nd:LuVO4and Yb:YVO4were also investigated deeply which are not better than the two crystals above mentioned from the view point of growth cost and comprehensive performances.
     In recent years, people have began to explore and study the low symmetrical crystals, such as Nd:YCOB, Nd:GdCOB, Nd:KLu(WO4)2etc. The absorption spectra of the crystals are broadening due to the low symmetry, which indicates the crystals are suitable for LD pumped, but the thermal properties of them are poor. LaVO4crystal is special in vanadate crystals, it belongs to monoclinic monazite structure with low symmetry at room temperature, it must have its own unique optical properties due to the anisotropic structure. Therefore, it is worthy of our in-deep investigation on LaVO4crystal.
     LaVO4crystal was firstly grown by flux method in1976, and the structure of crystal was analyzed, the crystal belongs to monazite structure and is same with CePO4. There has been no reports about LaVO4crystal for a long time. Nd:LaVO4crystal was grown firstly by Czochralski method in2004, it has large FWHM of20nm at808nm, longer fluorescence lifetime of137μs, which is available for laser diode pumped. The structure of LaVO4was analyzed by the X-powder diffraction in2006, which proved that the crystal space group is P21/n(14). Yb:LaVO4crystal was grown firstly by Czochralski method in2006. In2009, the spiral growth encountered during crystal growth and crystal morphology were studied. In2010, energy band and optical properties of tetragonal and monoclinic structure of LaVO4were studied by the first-principle, and specific heart and thermodynamic functions of LaVO4crystal were investigated by Gavrichev. Nd:LaVO4crystal was grown by floating zone method in2012, the Nd-concentrations is5at.%, the fluorescence lifetime of Nd3+ion is80μs, The optic elasticity axes were determined by the conoscopic figures with a polarizing microscope.
     There were not many reports about growth and research for LaVO4crystal. Maybe, because it is monoclinic crystal, and difficult for growth, of course there were not systemic research about it. So, the growth, optical properties, thermal properties and laser performances of Nd:LaVO4crystal have been investigated in this work, and can be overviewed as follows:
     1. The growth and structure of Nd:LaVO4crystal
     The Nd:LaVO4crystals was grown by the Czochralski method, and the influencing factors of the crystal growth and spiral growth encountered during crystal growth were discussed. By using X-ray powder diffraction, the structure of crystal and the lattice parameters were gained, the density of crystal with a buoyancy method was measured, result for5.07g/cm3and was similar to theoretical density (5.061g/cm3). The relationship between the crystallographic axis coordinate system and other different coordinate systems in monoclinic crystal was discussed in detail.
     2. Measurement of refractive indices of Nd:LaVO4crystal
     The minimum deviation angle method was used to measure the refractive indices of the crystal. The relationship between the crystallographic axis coordinate system and the refractive principal axis coordinate systems was calculated. And the change of relationship with different wavelengths was fitted. There was a rotation of2.70during the different wavelengths. The optic axial angles were calculated which indicated the crystal belongs to positive biaxial crystal and the change of optic axial angles with wavelengths was calculated. The variation of the refractive indices with wavelengths was fitted with Sellmeier's equations, and the differences between experimental and calculated values were very small.
     3. Optical properties of Nd:LaVO4crystal
     It has been proved with Fresnel equation that for hexagonal, tetragonal, trigonal and orthormbic crystals, the continuous wavelength polarized absorptions can be measured along refractive principal axes. But for monoclinic crystal, the real part of complex permittivity is diagonal in the dielectric frame, the imaginary of complex permittivity is not diagonal. There is a certain angle between absorption principal axes (and fluorescence principal axes) with refractive principal axes. So, the imaginary of complex permittivity is diagonal only in absorption principal axes for absorption, and in fluorescence principal axes for fluorescence. In addition, the refractive principal axes change with the different wavelengths. As a consequence, the continuous wavelength polarized absorptions can not be measured in the dielectric frame for monoclinic crystal. The absorption spectra of Nd:LaVO4were measured along different directions, it has large FWHM of17nm at808nm, The wider width may be generated by the following reasons: in the Nd:LaVO4crystal, the La possesses oxygen coordination number of nine. However, Nd has oxygen coordination number of eight in NdVO4phase. When the Nd ions are doped in LaVO4, a part of La ions are replaced by Nd, therefore, for Nd ions, there is a tendency from oxygen coordination number of nine to eight, which would induce the variation of crystal field and inhomogenously broadening in the spectra. Spectral parameters of Nd:LaVO4were analyzed using Judd-Oflet (J-O) theory, and were in comparison with other crystals, the three intensity parameters were2.142×10-20cm2,3.704×10-20cm2and2.948×10-20cm2respectively, the absorption cross section was1.67×10-20cm2. The fluorescence spectrum and lifetime were measured. The fluorescence lifetime of Nd3+was154.90μs, the fluorescence efficiency was80.1%which indicated that the nonradiative transition rate was very low in this crystal.
     4. Raman spectra of Nd:LaVO4crystal
     The irreducible representations of the lattice vibration in crystal calculated with meth-ods of factor group and coordination symmetry, were18Ag+18Bg+18Au+18Bu.There were72lattice vibration modes, which were same with vibration freedom degrees of24atoms. The Raman spectra were measured for different polarized geometries Z(YY)Z and Y(ZX)Y. The observed peaks were assigned in detail based on internal vibration and external vibration. The frequencies of internal vibrations of VO43-ion were different in crystal and in solution which indicated that the tetrahedron VO43-ion has a distorted structure in crystal. Two most intense lattice vibration frequency were857cm-1and819cm-1, respectively for geometries Z(YY)Z and Y(ZX)Y, the FWHM of the two peaks were7.6cm-1and8.6cm-1corresponding to the relaxation time of1.39ps and1.23ps, respectively. The results indicated the crystal can be used as Raman laser crystal. The FWHM was smaller which meaned the crystal had good degree of crystallinity. It was not in contradiction with distorted structure in crystal, because the Raman band positions are very sensitive to the short-range order, whereas the Raman widths are more sensitive to the degree of crystallinity, defects and particle size etc.
     5. Thermal properties of Nd:LaVO4crystal
     The thermal properties of Nd:LaVO4crystal including specific heat, thermal expansion, thermal diffusivity, thermal conductivity, were investigated systematically. The change of density with temperature was calculated. The principal coordinates for thermal diffusion and thermal conductivity were calculated and the changes of them with the change of temperature were calculated. The three principal thermal conductivity were2.731W/m·K,2.966W/m·K and3.388W/m·K at room temperature. There was a anticloc-kwise rotation angle19.82°between the most largest thermal conductivity and c coordination. The angle changed with different temperatures. The change of principal thermal conductivity with Nd concentration was calculated by the thermal conductivity model, and the change was small because the mass variance was small.
     6. Laser performance of Nd:LaVO4crystal
     The continuous-wave(CW) laser experiments were carried out along Y-cut and Z-cut, For Z-cut crystal, The pump threshold was0.21W, the maximum output power was3.05W, the optical conversion efficiency was33.3%,the slope efficiency was34.3%. For Y-cut crystal, The pump threshold was0.14W, the maximum output power was3.56W, the optical conversion efficiency was40.3%,the slope efficiency was41.4%. The pulse laser was carried out in passively Q-switched laser operation for Y-cut crystal, the maximum repetition rate was14.6kHz, the minimum pulse width was10.9ns, the maximum pulse energy was38.3μJ and the highest peak power was3.52kW.
引文
[1]T.H. Maiman, Stimulated optical radiation in ruby, Nature,187,493-494 (1960).
    [2]许祖彦,光电子晶体与全固态激光器及其应用,中国工程科学,1,72-76(1999).
    [3]刘光华 徐彤 稀土固体材料学 北京:机械工业出版社,1997.
    [4]Bingkun Zhou, Thomas J. Kane, George J. Dixon, and Robert L. Byer, Efficient, frequency-stable laser-diode-pumped Nd:YAG laser, Phys. Lett.10(2),62-64(1985).
    [5]Battou K, Ziane o, and Ait-Ameur K, Modelling of a Nd:YAG laser Q-switched by a scanning interferometric mirror, Opt.Commun.,281(4),696-704 (2008).
    [6]G Hollemann, E Peik, and H Walther, Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237nm, Opt. Lett.,19(3),192-194(1994).
    [7]M. Seguchi, and K. Kuba,1.4-kW Nd:YAG slab laser with a diffusive closed-coupled pump cavity, Opt. Lett.,20,300-302(1995).
    [8]N. Hodgson, S. Dong, and Q.Lu, Performance of a 2.3-kW Nd:YAG slab laser system, Opt.Lett.,18,1727-1729(1999).
    [9]M.S. Bowers, ASSL showcases latest solid-state laser research, Laser Focus World, 37(5)34(2001).
    [10]S. Konno, T. Kojima, S. Fujikawa, K. Yasui, High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett.,25,105-107(2000).
    [11]R. Gaume, B. Viana, and D. Vivien, A simple model for the prediction of thermal conductivity in pure and doped insulating crystals, Appl. Phys. Lett.,83,1355-1357 (2003).
    [12]E.C.Honea, and R.J. Beach, High-Power Dual-rod Yb:YAG Laser. Opt.Lett.,25(11), 805-807(2000).
    [13]C. Honninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U.Keller, Diode-pumped thin-disk Yb:YAG regenerative amplifer, Appl.Phys.B65(3),423-426(1997).
    [14]E.D.Patel, E.C.Honea, J. Speth, S.A. Payne, R. Hutcheson and R.Equall, Laser demonstration of Yb3Al5O12(YbAG) and materials properties of highly doped Yb:YAG, IEEE J.Quantum Electron.,37,135-144(2001).
    [15]左春华 掺钕钆镓石榴石晶体(Nd:GGG)激光特性研究山东大学博士论文2009.
    [16]王爱国,王君光,李永亮 498nm全固态腔内和频Nd:GGG激光器,41(12),1310-1313(2011).
    [17]S. Chenais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G Boulon, Diode-pumped Yb:GGG laser:comparison with Yb:YAG, Opt.Mater.,22(2),99-106(2003).
    [18]D. Y. Shen, J. K. Sahu, and W. A. Clarkson, Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm, Opt.Lett.,31(6),754-756(2006).
    [19]J. Liu, M. Rico,U.. Griebner, V. Petrov, V. Peters, K. Petermann, and G. Huber, Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm, Phys. stat. sol. (a),202(3), R19-R21 (2005).
    [20]Liangzhen Hao, Kui Wu, Hengjiang Cong, Haohai Yu, Huaijin Zhang, Zhengping Wang, and Jiyang Wang, Spectroscopy and laser performance of Nd:Lu2O3 crystal, Opt. Express.,19(18),17774-17779(2011).
    [21]Yan Wang, Zhenyu You, Jianfu Li, Zhaojie Zhu and Chaoyang Tu, Optical properties of Dy3+ion in GGG laser crystal, J. Phys. D:Appl. Phys.,43,075402 (2010).
    [23]S. G Anderson, Review and forecast of laser markets-Part I, Laser Focus World, 35(1)80-100(1999).
    [22]V.I. Donin, D.V. Yakovin, and M.D. Yakovin, Efficient single-mode (TEMOO) Nd: YVO4 laser with longitudinal 808-nm diode pumping, Quantum Electronics.,43 (10) 903-906(2013).
    [25]H.J. Zhang, X.L. Meng, J. H. Liu, L. Zhu, C.Q. Wang, Z.S. Shao. J.Y. Wang, and Y. G.Liu, Growth of lowly Nd doped GdVO4 single crystal and its laser properties, J. Cryst. Growth.,216,367-371(2000).
    [26]A.J. Kemp, G. J. Valentine, D. Bums, Progress Towards High-power High-brightness Neodymium-based Thin-disk lasers, Prog, in Quantum Electron.,28,305-344(2004).
    [27]Junhai Liu, Xavier Mateos, Huaijin Zhang, Jiyang Wang, Minhua Jiang, Uwe Griebner, and Valentin Petrov, Characteristics of a continuous-wave Yb:GdVO4laser end pumped by a high-power diode, Opt. Lett.,31(17) 2580-2582 (2006).
    [28]M. Xu, H.H. Yu, H.J. Zhang, Z.P. Wang, X.G Xu, J.Y. Wang, and C.Q. Ma, Continuous-wave laser performance of composite Nd:LuVO4 crystals, Laser Phys. Lett.,8(4)269-273 (2011).
    [29]J. Liu, V. Petrov, H. Zhang, J. Wang, and M. Jiang, High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals,Opt. Lett.,31(22),3294-3296(2006).
    [30]Junhai Liu, Xavier Mateos, Huaijin Zhang, Jing Li, Jiyang Wang, and Valentin Petr ov, High-Power Laser Performance of Yb:YAl3(BO3)4 Crystals Cut Along the Crysta-llographic Axes, IEEE J. Quantum Electron.,43(5),385-390(2007).
    [31]Y J Chen, Y F Lin, Y Q Zou, Z D Luo and Y D Huang, Passive Q-switching of a diode-pumped 1520 nm Er:Yb:YAl3(BO3)4 micro-laser with a Co2+:Mgo.4Al2.4O4 satu-rable absorber, Laser Phys. Lett.,10,095803 (2013).
    [32]D.H.Sutter, L. Gallmann, N. Matuschek, F. Morier-Genoud, V. Scheuer, G.Angelow, T.Tschudi, G. Steinmeyer, and U. Keller, Sub-6-fs pulses from a SESAM-assisted Kerr-lens modelocked Ti:sapphire laser:at the frontiers of ultrashort pulse generation, Appl. Phys. B,70,5-12(2000).
    [33]Kong,H.K., Wang, J.Y, Zhang, H.J., Liu, J.H., Lin, Y.T.,Cheng, X.F.,Hu,X.B., Xu,X.G, Shao, Z.S., and Jiang, M.H., Growth and laser properties of Nd3+doped La3Ga5.5Tao.5014 crystal, J. Cryst. Growth.,263,344-347(2004).
    [34]S. Chenais, F. Druon, F. Balembois, P. Georges, R. Gaume, P. H. Haumesser, B. Viana, G. P. Aka, and D. Vivien, Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal:Yb3+:Sr3Y(BO3)3, J. Opt. Soc. Am. B, 19(5),1083-1091(2002).
    [35]Wang Zengmei, and Yuan Duorong. Crystal Growth and Optical Properties of Dy: La3 Ga5 SiO14 Single Crystals, J. Cryst. Growth.,263,246-250 (2004).
    [36]Ming He, X. L. Chen, Y. P. Sun, and J. Liu, Growth and optical properties of YBa3B9O18:Ce crystals, J. Cryst. Growth.,307(2),427-431 (2007).
    [37]Zhongben Pan, Hengjiang Cong, Haohai Yu,Li Tian,Hao Yuan,Huaqiang Cai,Huaijin Zhang, Hui Huang, Jiyang Wang,Qing Wang, Zhiyi Wei,and Zhiguo Zhang, Growth, thermal properties and laser operation of Nd:Ca3La2(BO3)4:A new disordered laser Crystal, Opt.Express.,17(21),19015-19020(2009).
    [38]A. Brenier, C. Y. Tu, Y. Wang, Z. Y. You, Z. J. Zhu, and J. F. Li, Diode-pumped laser operation of Yb3+-doped Y2Ca3B4O12 crystal, J. Appl. Phys.,104(1),013102 (2008).
    [39]Chaoyang Tu, Yan Wang, Zhenyu You, Jianfu Li, Zhaojie Zhu, and Baichang Wu,The growth and spectroscopic characteristics of Ca3Y2(BO3)4:Tm3+crystal, J. Alloys Compd.,368,123-125(2004).
    [40]M. Pollnau, E. Heumann, T. Danger, and G. Huber, Experimental determination of radiative-transition rates and quantum efficiencies in Er3+:YA1O3, Opt. Commun., 118,250-254(1995).
    [41]S.F. Wang, and L.F. Sang, Diode-Pumped Nd:YCOB Self-Frequency-Doubling Green Laser at 530nm, Laser Physics.,21(8),1347-1349(2011).
    [42]Yu Haohai, Zong Nan, Pan Zhongben, Zhang Huaijin, Wang jiyang, Wnag Zhengping, Xu Zuyan, Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm, Opt. Lett.,36(19),3852-3854(2011).
    [43]Hongbin Shen, Qingpu Wang, Xingyu Zhang, Zhaojun Liu, Fen Bai, Zhenhua Cong, Xiaohan Chen, Liang Gao, Huaijin Zhang, Xiangang Xu, Shengru Wei and Xiufang Chen, Passively Q-Switched Nd:KLu(WO4)2 Laser at 1355 nm with Graphene on SiC as Saturable Absorber, Appl. Phys. Express.,5,092703(2012).
    [44]Chen Y, Major L, Kushawaha V, Efficient laser operation of diode-pumped Nd: KGd(WO4)2crystal at 1.067 μm. Appl Opt.,38(18),3203-3206(1996).
    [45]U. Griebner, S. Rivier, V. Petrov, M. Zorn, G Erbert, M. Weyers, X. Mateos, M. Aguilo, J. Massons, and F. Diaz, Passively mode-locked Yb:KLu(WO4)2 oscillators, Opt. Express.,13,3465-3470 (2005).
    [46]F.M. Bain, A.A. Lagatsky, R.R. Thomson, N.D. Psaila, N.V. Kuleshov, A.K. Kar, W. Sibbett, and C.T.A. Brown, Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers. Opt. Express.,17(25),22417-22422 (2009).
    [47]J.F. Liu, Q.H. Yao, and YD. Li, Effects of downconversion luminescent film in dye-sensitized solar cells, Appl. Phys. Lett.,88 (17),173119 (2006).
    [48]M. Yu, J. Lin, and S.B.Wang, Effects of x and R3+on the luminescent properties of Eu3+in nanocrystalline YVxP1-xO4:Eu3+and RVO4:Eu3+thin-film phosphors, Appl. Phys. A:Mater. Sci. Proc.,80(2),353-360 (2005).
    [49]C.E. Rice, and W. Robinson:Lanthanum orthovanadate. Acta Crystallogr. B,32, 2232-2233 (1976).
    [50]E. Antic-Fidancev, J. Holsa, M. Lemaitre-Blaise, P. Porcher, Simulation of the energy level scheme of Nd3+and Eu3+ions in rare-earth orthovanadates and phosphates, J. Phys:Condens. Matter.,3,6829-6843 (1991).
    [51]R. Pankajavalli, and O.M. Sreedharan, Thermodynamic stabilities of LaVO3and LaVO4 by e.m.f. methods, Mater. Lett.,24(4),247-251 (1995).
    [52]U. Rambabu, D.P. Amalnerkar, B.B. Kale, and S. Buddhudu, Fluorescence spectra of Eu3+-doped LnVO4(Ln=La and Y) powder phosphors, Mater.Res.Bull.,35,929-936 (2000).
    [53]Yoshio Oka, Takeshi Yao, and Naoichi Yamamoto, Hydrothermal Synthesis of Lanthanum Vanadates:Synthesis and Crystal Structures of Zircon-Type LaVO4 and a New Compound LaV3O9, J. Sol. St. Chem.,152,486-491 (2000).
    [54]Weiliu Fana, Wei Zhao, LipingYou, Xinyu Song, Weimin Zhang, Haiyun Yua, and Sixiu Sun, A simple method to synthesize single-crystalline lanthanide orthovanada-te nanorods, J. Sol. St. Chem.,177,4399-4403 (2004).
    [55]Chun-Jiang Jia, Ling-Dong Sun,Li-Ping You,Xiao-Cheng Jiang,Feng Luo,Yu-Cheng Pang,and Chun-Hua Yan, Selective Synthesis of Monazite-and Zircon-type LaVO4 Nanocrystals J. Phys. Chem. B,109,3284-3290(2005).
    [56]G. Herreraa, E. Chavira, J. Jimenez-Mier, A. Ordonez, E. Fregoso-Israel, L. Banosb, E. Bucioc,J. Guzman, O. Novelo, and C. Flores,Structural and morphology compa-rison between m-LaVO4 and LaVO3 compounds prepared by sol-gel acrylamide polymerization and solid state reaction, J. Alloys Compd.,479,511-519 (2009).
    [57]冯玮,孙聆东,张晶,贾春江,严纯华,四方相LaVO4:Ln (Ln=Nd/Er)近红外发光纳米材料的水热合成,中国科学:化学,42(1)1-7(2012).
    [58]Lizhen Zhang, Zushu Hua, Zhoubin Lina, and Guofu Wang, Growth and spectral properties of Nd3+:LaVO4 crystal. J. Cryst. Growth.,260,460-463(2004).
    [59]L. Z. Zhang, Z. B. Lin and G. F. Wang, Growth and spectral properties of Yb3+doped LaVO4 crystal. Mater.Res.Innov.,10(4),421-423 (2006).
    [60]J. Bashir, and M. Nasir Khan, X-Ray powder diffraction analysis of crystal structure of lanthanum orthovanadate, Mater. Lett.,60,470-473 (2006).
    [61]Andreas H. Krumpe, Erik van der Kolk, Pieter Dorenbos,Philippe Boutinaud, Enrico Cavalli, Marco Bettinelli, Energy level diagram for lanthanide-doped lanthanum orthovanadate, Mater. Sci. Eng.B,146,114-120(2008).
    [62]H. J. Cong, H. J. Zhang, S. Q. Sun, Y. G. Yu, W. T. Yu, H. H. Yu, J. Zhang, J. Y. Wang and R. I. Boughton. Morphological study of Czochralski-grown lanthanide orthovanadate single crystals and implications on the mechanism of bulk spiral formation.J. Appl. Cryst.,43,308-319 (2010).
    [63]M. Sun, X. Zhao, Y. L. Li, P. Li, H. G. Sun, X. F. Cheng, and W. L. Fan, First-principles studies of electronic, optical, and vibrational properties of LaVO4 polymorph, J. Appl. Phys.,108(9),093519 (2010).
    [64]K.S.Gavrichev, M.A.Ryumin, A.V.Tyurin, L.N.Komissarova, Heat Capacity and Thermodynamic Functions of LaVO4 and LuVO4 From 7 to 345 K, Inorg. Mater.,46 (7),867-874(2010).
    [65]Yomogida, M. Higuchi, T. Ogawa, S. Wada, and J. Takahashi, Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals, J. Cryst. Growth.,359, 20-24 (2012).
    [66]M. Nasir Khan, Taj. Muhammad and J. Bashir, Raman, photoluminescence and low temperature synchrotron X-ray powder diffraction studies of lanthanum orthovana-date, Inter. J. Adv. Res.,1(9),402-410 (2013).
    [67]L. Z. Zhang, M. W. Qiu, M. J. Song, and G F. Wang,1.064 μm lasing character-rization of Nd3+:LaVO4 pumped with Ti:sapphire laser, Mater. Res. Innov.,14(2), 119-121 (2010).
    [1]T.S. Lomheim, and L.G DeShazer, Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate, J.Appl.Phys.,49,5517-5522(1978).
    [2]T.Sasaki, T.Kojima, A.Yokotani, O.Oguri, and S.Nakai, Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO4 microchip lasers, Opt. Lett., 16(21),1665-1667(1991).
    [3]Y.F. Chen, Design Criteria for Concentration Optimization in Scaling Diode End-Pumped Lasers to High Powers:Influence of Thermal Fracture, IEEE J.Quantum Electron.35(2),234-239(1999).
    [4]H.J. Zhang, X.L. Meng, L. Zhu, C.Q. Wang, Y.T. Chow, and M.K. Lu, Growth, spectra and influence of annealing effect on laser properties of Nd:YV04 crystal Opt.Mater.14,25-30 (2000).
    [5]A.I. Zagurnennyi, VG Ostroumov, I.A.Shcherbakov, T.Jensen, J.R Meyen, G Huber, The Nd:GdVO4 crystal:a new material for diode-pumped lasers, Sov.J.Quantum Electron,22(12),1071-1073 (1992).
    [6]P.A.Studenikin, A.I.Zagumennyi, Y.D.Zavartsev, P.A.Popov, and I.A.Shcherbakov, GdVO4 as a new medium for solid-state lasers:Some optical and thermal properties of crystals doped with Nd3+,Tm3+, and Er3+ions, Quant.Electron.,25 (12), 1162-1165(1995).
    [7]H.D. Jiang, H.J. Zhang, J.Y. Wang, H.R. Xia, X.B. Hu, B. Teng, and C.Q. Zhang, Optical and laser properties of Nd:GdVO4 crystal, Opt. Commun.,198,447-452 (2001).
    [8]H.J. Zhang, J.H. Liu, J.Y. Wang, C.Q. Wang, L. Zhu, Z.S. Shao, X.L. Meng, X.B. Hu, and M.H. Jiang, Characterization of the laser crystal Nd:GdVO4, J.Opt.Soc.Am.B., 19(1),18-27(2002).
    [9]J.H. Liu, H.J. Zhang, Z.P. Wang, J.Y. Wang, Z.S. Shao, and M.H. Jiang, Continuous-wave and pulsed laser performance of Nd:LuVO4 crystal, Opt.Lett.,29,168-170 (2004).
    [10]L. Zhang, C. Zhang, C. Zhang, Z. Wei, Z. Zhang, H. Zhang, and J. Wang, S.Strohmaier, and H.Eichler, Optical Amplifiers and Their Applications/Coherent. Optical Technologies and Applications., OSA Technical Digest Series(CD), JWB17 (2006).
    [11]H.H. Yu, H.J. Zhang, D.Y. Tang, Z.P. Wang, J.Y. Wang, Y.G. Yu, G Xie, H. Luo, M.H.Jiang, Diode-end-pumped passively mode-locked Nd:LuVO4 laser with a semiconductor saturable-absorber mirror, Appl. Phys.B,91(3-4),425-428(2008).
    [12]Chakoumakos, B.C. Abraham, M.M.&Boatner, L.A, Crystal Structure Refinem-ents of Zircon-Type MV04 (M= Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu), J. Solid State Chem.,109(1),197-202(1994).
    [13]C.E. Rice, W. Robinson:Lanthanum orthovanadate, Acta Crystallogr. B 32,2232-2233 (1976).
    [14]Stouwdam, J. W, Raudsepp, M. and Van Veggel, F.C. Colloidal nanoparticles of Ln3+-doped LaVO4:energy transfer to visible-and near-infrared-emitting lanthanide ions, J. M. Langmiur,21(15),7003-7008(2005).
    [15]Liu, J. E and Li, YD., Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals, Adv. Mater.(Weinheim,Ger.),19(8),1118-1122(2007).
    [16]Fan, W.L., Bu, Y. X., Song, X.Y, Sun, S. X.and Zhao, X. Monazite-and Zircon-type LaVO4:Ln (Ln= Eu, Sm, Dy) Nanocrystals, Cryst. Growth Des.,7 (11),2361-2366 (2007).
    [17]L. M. Sun, X. Zhao, Y. L. Li, P. Li, H. G. Sun, X. F. Cheng, and W. L. Fan, First-principles studies of electronic, optical, and vibrational properties of LaVO4 polymorph, J. Appl. Phys.108(9),093519 (2010).
    [18]Lizhen Zhang, Zushu Hua, Zhoubin Lina, and Guofu Wang:Growth and spectral properties of Nd3+:LaVO4 crystal, J. Cryst. Growth.,260,460-463 (2004).
    [19]L. Z. Zhang, Z. B. Lin and G. F. Wang, Growth and spectral properties of Yb3+doped LaVO4 crystal, Mater.Res.Innov.,10(4),421-423 (2006).
    [20]S. Yomogida, M. Higuchi, T. Ogawa, S. Wada, and J. Takahashi, Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals, J. Cryst. Growth., 359,20-24 (2012).
    [21]Y. Terada, T. Maeda, V.V. Kochurikhin, K. Shimamura, S. Uda, and T. Fukuda, Growth and characterization of (Dy,Gd)VO4 single crystals, J. Cryst. Growth., 178(4),518-523 (1997).
    [22]R. Uecker, H. Wilke, D.G. Schlom, B. Velickov, P. Reiche, A. Polity,M. Bernhagen, and M. Rossberg, Spiral formation during Czochralski growth of rare-earth scandate, J. Crystal Growth.,295(1),84-91 (2006).
    [23]CD. Brandle, V.J. Fratello, A.J. Valentino, and S.E. Stokowski, Effects of impurities and atmosphere on the growth of Cr-doped gadolinium scandium gallium garnet. I, J. Crystal Growth.,85(1) 223-228 (1987).
    [24]H. Kimura, T. Numazawa, M. Sato, and H. Maeda, Single crystal growth and characterization of (Dy1-xGdx)3Ga5012 Garnets, J. Crystal Growth.,87(4),523-528 (1988).
    [25]H. Kimura, V.V. Kochurikhin, K. Shimamura, and T. Fukuda, OH bands in (Dy1-xGdx)3Ga5O12, Dy3(Ga1-yAly)5O12 and related oxides grown by the Czochralski method, J. Crystal Growth.,163(4) 393-397 (1996).
    [26]V.V. Kochurikhin, K. Shimamura, and T. Fukuda, The influence of dopants on the interface stability during Dy3Ga5O12 single crystal growth, J. Crystal Growth 143(3), 232-236 (1994).
    [27]Y. Okano, T. Ikeya, K. Hoshikawa, and T. Fukuda, Behavior of RA1O3 (R=Ho, Er and Dy) during crystal growth by the Czochralski method, J. Crystal Growth., 131(1),616-619(1993).
    [28]丛恒将 几种重要的激光晶体的生长与物性研究 山东大学博士论文2010.
    [29]H. J. Cong, H. J. Zhang, S. Q. Sun, Y. G. Yu, W. T. Yu, H. H. Yu, J. Zhang, J. Y. Wang and R. I. Boughton. Morphological study of Czochralski-grown lanthanide orthovanadate single crystals and implications on the mechanism of bulk spiral formation, J. Appl. Cryst.43,308-319 (2010).
    [30]G.M. Sheldrick, SHELXS-97:Program for the Solution of Crystal Structure, University of Gocttingen, Germany.(1997).
    [31]J. Bashir, and M. Nasir Khan, X-Ray powder diffraction analysis of crystal structure of lanthanum orthovanadate, Mater. Lett.,60,470-473 (2006).
    [32]R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal Expansion of Crystals (Pergamon,1979).
    [33]肖定全 王民编著 晶体物理学 四川大学出版社,成都,1989.
    [34]J. F. Nye, Physical Properties of Crystals:Their Representation by Tensors and Matrices (Oxford University,1985).
    [1]肖定全 王民编著 晶体物理学 四川大学出版社,成都,1989.
    [2]P. Segonds, B. Boulanger, J. P. Feve, B. Menaert, J. Zaccaro, G. Aka, and D. pelence, Linear and nonlinear optical properties of the monoclinic Ca4YO(BO3)3 crystal, J. Opt.Soc.Am. B.,21,765-779(2004)
    [3]P. Segonds, B. Boulanger, B. Menaert, J. Zaccaro, J.P. Salvestrini, M.D. Fontana, R. Moncorge, F. Poree, G. Gadret, J. Mangin, A. Brenier, G. Boulon, G Aka, D. Pelenc, Optical characterizations of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals, Opt. Mater.29(8),975-982 (2007).
    [4]P. Segonds, B. Boulanger, B. Menaert, and J. Zaccaro, State of the art of the sphere method, a unique characterization technique for non-linear crystals, Res. Chem. Intermed.,34,217-228 (2008).
    [5]W.L.Bond, Measurement of the Refractive Indices of Several Cryastals, J. Appl. Phys.,36(5) 1674-1677(1965).
    [6]Naixia Zhai, Yin Li, Guochun Zhang, Yicheng Wu, and Chuangtian Chen, Temperature-dependent Sellmeier equations of nonlinear optical crystal La2CaB10O19, Opt. Express.,21 (18),20641-20648 (2013).
    [7]H.Hellwig, J. Liebertz, and L.Bohaty, Linear optical properties of the monoclinic bismuth borate BiB 3O6, J. Appl. Phys.,88,240-244,(2000).
    [8]D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Gunter, Refractive indices of Sn2P2S6 at visible and infrared wavelengths, Opt. Express.,13,2047-2057(2005).
    [9]V.Petrov, M.C, Pujol, X. Mateos, O. Slilvestre, S. Rivier, M. Aguilo, R. Maria Sole, J. Liu, and F, Diaz, Growth and properties of KLu(WO4)2 and novel ytterbiumand thulium lasers based on this monoclinic crystalline host, Laser Photon. Rev.,1,179-212(2007).
    [10]V. Badikov, D. Badikov, G Shevyrdyaeva, A. Tyazhev, G. Marchev, V. Panyutin, V. Petrov and A. Kwasniewski, Phase-matching properties of BaGa4S7 and BaGa4Se7: Wide-bandgap nonlinear crystals for the mid-infrared, Phys. Status Solidi.,5(1), 31-33(2011).
    [1]GH. Dieke, Spectra and Energy levels of Rare Earths in Crystals, John Wily&Sons, New York,1968.
    [2]干福熹,邓佩珍,激光材料,上海科技出版社,1994.
    [3]Battou K, Ziane O, and Ait-Ameur K, Modelling of a Nd:YAG laser Q-switched by a scanning interferometric mirror, Opt. Commu.,281(4),696-704 (2008).
    [4]G Hollemann, E Peik, and H Walther, Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237nm, Opti. Lett.,19(3),192-194(1994).
    [5]Y.J. Wang, Y.H. Zheng, Z. Shi, and K.C. Peng, High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms, Laser Phys. Lett.,9(7) 506-510(2012).
    [6]Xavier Delen, Francois Balembois, Olivier Musset, and Patrick Georges, Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 and 914 nm, J. Opt. Soc. Am. B.,28(1)52-57(2011).
    [7]F. Q. Liu, H. R. Xia, W. L. Gao, D. G. Ran, S. Q. Sun, Z. C. Ling, P. Zhao, H. J. Zhang, S. R. Zhao, J. Y. Wang. Optical and laser properties of Nd:LuVO4 crystal, Cryst. Res. Technol.,42(3),260-265 (2007).
    [8]Yu H H, Zhang H J, Wang Z P, Passively mode-locked Nd:LuVO4 laser with a GaAs wafer, Opt. Lett.,33(3) 225-227 (2008).
    [9]H.D. Jiang, H.J. Zhang, J.Y. Wang, H.R. Xia, X.B. Hu, B. Teng, and C.Q. Zhang, Optical and laser properties of Nd:GdVO4 crystal, Opt. Commun.,198,447-452 (2001).
    [10]H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M, Jiang, and Y. T. Chow, Characterization of the laser crystal Nd:GdVO4, J. Opt. Soc. Am. B.,19, 18-27(2002).
    [11]P. Segonds, B. Boulanger, B. Menaert, J. Zaccaro, J.P. Salvestrini, M.D. Fontana, R. Moncorge, F. Poree, G Gadret, J. Mangin, A. Brenier, G. Boulon, G. Aka, and D. Pelenc, Optical characterizations of YCa4O(BO3)3 and Nd:YCa4O(B03)3 crystals, Opt.Mater.,29(8),975-982 (2007).
    [12]M.Abarkan, J.P. Salvestrini, D. Pelenc, and M.D. Fontana, Electro-optic, thermo-optic, and dielectric properties of YCOB and Nd:YCOB crystals:compareat-ive study, J. Opt. Soc. Am. B 22(2)398-406(2005).
    [13]Huang Jianhong, Lin Jipeng, Su Rongbing,et al,Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal, Opti. Lett., 32(9),1096-1098 (2007).
    [14]G.R. Holtom, Mode—locked Yb:KGW laser longitudinally pumped by Polarization-coupled diode bars, Opti. Lett.,31(18) 2719-2721 (2006).
    [15]Born & Wolf, Principles of Optics (Oxford Pergamon press,1965).
    [16]Y. Petit, S. Joly, P. Segonds, and B. Boulanger, Recent advances in monoclinic crystal optics, Laser Phys.Rev.,7(6),920-937(2013).
    [17]Y. Petit, B. Boulanger, P. Segonds, C.Felix, B. Menaert, J. Zaccaro, and G. Aka, Absorption and fluorescence anisotropies of monoclinic crystals:the case of Nd: YCOB, Opt. Express.,16(11),7997-8002 (2008).
    [18]P. Segonds, B. Boulanger, B. Menaert, J. Zaccaro, J.P. Salvestrini, M.D. Fontana, R. Moncorge, F. Poree, G. Gadret, J. Mangin, A. Brenier, G. Boulon, G. Aka, D. Pelenc, Optical characterizations of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals, Opt. Mater.,29(8),975-982 (2007).
    [19]S. Joly, P. Segonds, B. Boulanger, Y. Petit, A. P. Revellez, C. Felix, and B. Menaert, Rotation of the absorption frame as a function of the electronic transition in the Nd3+:YCa3O(BO3)3 monoclinic crystal, Opt. Express.,18(18),19169-19174 (2010).
    [20]S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Felix, B. Menaert, and G. Aka, Singular topology of optical absorption in biaxial crystals, Opt. Express.7(22), 19868-19873 (2009).
    [21]B. R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev.,127,750-761(1962).
    [22]G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys.,37,511-520(1962).
    [23]T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4, Appl. Phys. B 58(5),373-379 (1994)
    [24]J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, Optical properties and highly efficient laser oscillation of Nd:YAG ceramics, Appl. Phys. B.,71(4),469-473 (2000).
    [25]Y. Kalisky, L. Kravchik, and C. Labbe, Repetitive modulation and passively Q-switching of diode-pumped Nd:KGW laser, Opt. Commun.189,113-125 (2001).
    [26]H. Zhao, J. Wang, H. Zhang, J. Li, G. Xu, L.Yu, W. Gao, H. Xia and R.I. Boughton, Lattice vibration and optical properties of crystalline Nd:KLu(WO4)2, Chem. Phys. Lett.,450 (4-6) 274-280(2008).
    [27]W. T. Carnal, P. R. Fields, B. G. Wybourne, Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+, J. Chem. Phys.,42(11),3797-3806 (1965).
    [28]W. T. Carnal, P. R. Fields, and K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys.,49(10),4424-4442 (1968).
    [29]G. F. Wang, Z. B. Lin, Z. S. Hu, T. P. J. Han, H. G. Gallagher, and J-P.R. Wells, Crystal growth and optical assessment of Nd3+:GdAl3(BO3)4 crystal,J.Cryst. Growth., 233(4),755-760(2001).
    [30]A. A. Kaminskii, Laser Crystals (Springer-Verlag, New York,1981), Vol.14, pp.164 and 165.
    [31]W.T. Carnall, H. Crosswhite, H.M. Crosswhit, Argone National Laboratory Special Report,1977.
    [32]W.F. Krupke, Induced-emission cross sections in neodymium laser glasses, IEEE J. Quantum Electron.10(4),450-457 (1974).
    [33]F. Auzel, and F. F. Pelle, Bottleneck in multiphonon nonradiative transitions, Phys. Rev.B.,55(17),11006-11009 (1997).
    [34]H. Siebert, Kraftkonstante und Strukturchemie. V. Struktur der Sauerstoffsauren, Z. Anorg. Allgem. Chem.275,225-240 (1954).
    [35]S. Yomogida, M. Higuchi, T. Ogawa, S. Wada, and J. Takahashi, Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals, J. Cryst. Growth., 359,20-24 (2010).
    [36]Lizhen Zhang, Zushu Hua, Zhoubin Lina, and Guofu Wang, Growth and spectral properties of Nd3+:LaVO4 crystal, J. Cryst. Growth.,260,460-463 (2004).
    [1]张光寅,蓝国祥,王玉芳,《晶格振动光谱学》北京:高等教育出版社,2003.
    [2]E. Antic-Fidancev, J. Holsa, M. Lemaitre-Blaise, P. Porcher, Simulation of the energy level scheme of Nd3+and Eu3+ions in rare-earth orthovanadates and phosphates, J. Phys:Condens. Matter.,3,6829-6843 (1991).
    [3]E. J. Baran, P. J. Aymonino, Die Infrarotspektren der Orthovanadate der leichteren Lanthanide, Z. Anorg. Allgem. Chem.,383(2),220-226 (1971).
    [4]M. Nasir Khan, Taj. Muhammad and J. Bashir, Raman, photoluminescence and low temperature synchrotron X-ray powder diffraction studies of lanthanum orthovana-date, Inter. J. Adv. Res.,1(9),402-410 (2013).
    [5]C.T. Au, W.D. Zhang and H.L. Wan, Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation, Catal. Lett.,37,241-246 (1996).
    [6]L. M. Sun, X. Zhao, Y. L. Li, P. Li, H. G. Sun, X. F. Cheng, and W. L. Fan, First-principles studies of electronic, optical, and vibrational properties of LaVO4 polymorph, J. Appl. Phys.108(9),093519 (2010).
    [7]朗(D.A.Long)喇曼光谱学科学出版社,1983.
    [8]T. Hahn, The International Tables for Crystallography, Vol. A:Space-Group Symmetry, (Reidle, Dordrecht,1983).
    [9]S. A. Miller, H. H. Caspers, H. E. Rast, Lattice Vibrations of Yttrium Vanadate, Phys. Rev.,168(3),964-969(1967).
    [10]K. Vivekanandan, S. Selvasekarapandian, and P. Kolandaivel, Raman and FT-IR studies of Pb4(NO3)2(PO4)2-2H2O crystal, Mater. Chem.Phys.39,284-289 (1995).
    [11]Y. Liu, H. Wang, G. Chen, Y. D. Zhou, B.Y. Gu, and B. Q. Hu, Analysis of Raman spectra of ZnWO4 single crystals, J. Appl. Phys.,64(9),4651-4653 (1988).
    [12]M. R. Moura, A. P. Ayala, I. Guedes, M. Grimsditch, C. K.Loong, L. A. Boatner, Raman scattering study of Tb(V1-xPx)O4 single crystals, J. Appl. Phys.95(3),1148-1151(2004).
    [13]L. Macalik, Polarized Raman and optical absorption spectra of monoclinic KCe(WO4)2 single crystal, J. Mol. Struc.,404,213-220 (1997).
    [14]G. Barros, E.N. Silva, A.P. Ayala, I. Guedes, C.-K. Loong, J. Wang, X. Hu, and H. Zhang, Raman spectroscopic characterization of RECa4O(BO3)3 (RE= La and Gd) crystals, Vib.Spectrosc.,46,100-106(2008).
    [15]R. Loudon, The Raman effect in crystals, Adv. Phys.13(52),423-428 (1964).
    [16]S.P.S.Porto, and J.F.Scott, Raman spectra of CaWO4,SrWO4,CaMoO4 and SrMo04, Phys.Rev.,157(3),716-719 (1967).
    [17]H. Siebert. Z. Anorg. Allgem. Chem.275,225 (1954).
    [18]M. Gotic, S. Music, M. Ivandaa, M. Soufek, S. Popovic, Synthesis and characteris-ation of bismuth(III) vanadate, J. Mol. Struc.,744-747,535-540 (2005).
    [19]C.C. Santos, E.N. Silva, A.P. Ayala, I. Guedes, P.S. Pizani, C.K. Loong, and L.A. Boatner, Raman investigations of rare earth orthovanadates, J. Appl. Phys.,101(5), 053511(2007).
    [1]黄昆,固体物理学,高等教育出版,1997.
    [2]M. Born, I C Huang, Dynarnical theory of crystal lattices, Oxford Uneversity press,38(1954),printed in Great Britain.
    [3]关振铎,张中太,焦金生编著,无机材料物理性能,清华大学出版社,1992.
    [4]R. L. Aggarwal,a_ D. J. Ripin, J. R. Ochoa, and T. Y. Fan, Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,J. Appl. Phys.98,103514 (2005).
    [5]Y. Sato, T. Taira, The study of thermo-mechanical and-optical properties of GdVO4 and YVO4, Lases and Electro-Oprics,2007 and the International Quantum Electronics Conference.
    [6]Tso Yee Fan, Daniel J. Ripin, Roshan L. Aggarwal, Juan R. Ochoa, Bien Chann, Michael Tilleman, and Joshua Spitzberg, Cryogenic Yb3+-Doped Solid-State Lasers, IEEE J. Sel. Topics Quantum Electron.,13(3),448-459(2007).
    [7]K.S.Gavrichev, M.A.Ryumin, A.V.Tyurin, L.N.Komissarova, Heat Capacity and Thermodynamic Functions of LaVO4 and LUVO4 From 7 to 345 K, Inor. Mater. 46(7),867-874(2010).
    [8]肖定全,王民编著,晶体物理,四川大学出版社,1989.
    [9]J.F. Nye, Physical Properties of Crystals(Clarendon,Oxford,1985)
    [10]R.S.Krishnan, R.Srinivasan, and S.Devanarayanan, Thermal Expansion of Crystals(Pergamon, New York, Press,1979).
    [11]W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbot, Flash Method of Determing Thermal Diffusivity, HeatCapacity and Thermal Conductivity, J. Appl. Phys., 32(9),1679-1684,(1961).
    [12]. C. Kittel,Interpretation of the thermal conductivity of glasses, Phys. Rev.75(6), 972-974 (1949).
    [13]J. Morikawa, C. Leong, T. Hashimoto, T. Ogawa, Y. Urata, S.Wada, M. Higuchi, and J. Takahashi,Thermal conductivity/diffusivity of Nd3+doped GdVO4,YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis, J. Appl. Phys.,103(6), 063522(2008).
    [14]D. Ran, H. Xia, S. Sun, F. Liu, Z. Ling, W. Ge, H. Zhang, and J. Wang,Thermal properties of a Nd:LuVO4 crystal, Cryst. Res. Technol.42(9),920-925(2007).
    [15]O. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguilo, F. Diaz, M. T. Borowiec, A. Szewczyk, M. U.Gutowska, M. Massot, A. Salazar, and V. Petrov; Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,Opt. Express.,16(7),5022-5034 (2008).
    [16]P. G. Klemens, Thermal Resistance due to Point Defects at High Temperatures, Phys. Rev.,119,507-509 (1960).
    [17]R. Gaume, B. Viana, and D. Vivien, A simple model for the prediction of thermal conductivity in pure and doped insulating crystals, Appl. Phys. Lett.,83,1355-1357(2003).
    [18]丛恒将 几种重要的激光晶体的生长与物性研究 山东大学博士论文2010.
    [19]M. Nasir Khan, Taj. Muhammad and J. Bashir, Raman, photoluminescence and low temperature synchrotron X-ray powder diffraction studies of lanthanum orthovana-date, Inter. J. Adv. Res.,1(9),402-410 (2013).
    [1]Bingkun Zhou, Thomas J. Kane, George J. Dixon, and Robert L. Byer, Efficient, frequency-stable laser-diode-pumped Nd:YAG laser, Phys. Lett.,10(2),62-64 (1985).
    [2]R. A. Fields, M. Birnbaum, and C. L. Fincher, Highly efficient Nd:YVO4 diode-laser end pumped laser, Appl. Phys. Lett.,51,1885-1886 (1987).
    [3]T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbalov, Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4, Appl. Phys. B.,58,373-379 (1994).
    [4]C. Maunier, J. L. Doualan, and R. Moncorge, Growth, spectroscopic character-rization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping, J. Opt. Aoc. Am. B.,19,1794-1800 (2002).
    [5]J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding, and H. Weber, Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals, Appl. Phys. Lett.,83,1289-1291 (2003).
    [6]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, Enhancement of passive Q-switching performance with mixed Nd:Lux Gd1-xVO4 laser crystals, Opt. Lett.,32,2152-2154 (2007).
    [7]K. S. Bagdasarov, L. M. Dorozhkin, L. A. Ermakova, A. M. Kevorkov, Y. I. Krasilov, N. T. Kuznetsov, I. I.Kuratev, A. V. Potemkin, L. N. Raiskaya, P. A. Tseitlin, and A. V. Shestakov, Spectroscopic and lasing properties of lanthanum neodymium magnesium hexaaluminate, Sov. J. Quantum Electron.,13(8),1082-1085 (1983).
    [8]L. M. Sun, X. Zhao, Y. L. Li, P. Li, H. G. Sun, X. F. Cheng, and W. L. Fan, First-principles studies of electronic, optical, and vibrational properties of LaV04 polymorph, J. Appl. Phys.108(9),093519 (2010).
    [9]S. Yomogida, M. Higuchi, T. Ogawa, S. Wada, and J. Takahashi, Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals, J. Cryst. Growth.,359,20-24 (2012).
    [10]L. Z. Zhang, M. W. Qiu, M. J. Song, and G. F. Wang,1.064μm lasing characterization of Nd3+:LaVO4 pumped with Ti:sapphire laser, Mater. Res. Innovations.,14(2),119-121 (2010).
    [11]S. Q. Sun, H. J. Zhang, H. H. Yu, H. H. Xu, H. J. Cong, and J. Y. Wang, Growth and optical properties of Nd:LaVO4 monoclinic crystal, J. Mater. Res.,27(19), 2528-2534 (2012).
    [12]Y. F. Chen, Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers:influence of thermal fracture, IEEE J. Quantum Electron.,35(2),234-239 (1999).
    [13]H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, Thermal and laser properties of Nd:YVO4 crystal, Cryst. Res. Technol.,34(8),1011-1016 (1999).