大豆光氧化相关性状、叶绿素含量动态表达和对豆卷叶螟抗性的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是“地球上最重要的化学反应”,与农业生产有着十分密切的关系,提高光合效率是提高作物产量的重要途径,其目的是选择高光效品种。这是因为高光效品种的净光合速率与单位叶面积内光合单位数呈正相关。然而,大量研究表明,在过剩强光甚至中等光强逆境条件下,作物光合器官就会受到伤害,会产生光氧化现象。这种生理病害,影响作物的光合生产和产量,愈来愈受到注意。
     利用溧水中子黄豆(P,)×南农493-1(P2)大豆杂交组合的F2、F2:3和F2:43个群体两个试验点(南京农业大学江浦试验站和山东临沂农科院试验站)的试验资料研究大豆光氧化等有关数量性状的遗传规律。首先,构建大豆遗传图谱;然后,利用该连锁图,定位大豆光氧化等的数量性状基因座(quantitative trait loci, QTL),获得不同群体、不同作图方法下都稳定存在的QTL。这些QTL定位结果可为大豆高光效育种和分子标记辅助育种的提供有用的参考信息。
     1大豆遗传图谱的构建
     采用972对SSR引物扫描亲本P1和P2间的遗传差异,发现150对引物呈现多态性。利用这150对多态性的SSR引物扫描244株F2个体间的遗传差异,获得多态性F2植株分子数据资料,构建了包含91个SSR分子标记的28个连锁群的遗传图谱。连锁群全长1356.42cM,平均间距14.91cM,单个连锁群长度在6.9-108.3cM之间,每个连锁群的标记数为2-9个,平均间距最大的连锁群是Ⅰ-2,为51.3cM,最小的连锁群是L,为6.9cM,有28个间距大于20cM的标记区间,59个SSR标记不属于任何连锁群。与大豆“公共遗传图谱”比较,91个标记中86个标记所在连锁群及其顺序与公共遗传图谱一致,satt077与sat_110(E)、satt266和sat_2542(Dlb)排序与公共图谱相反,只有标记satt669所在的连锁群与公共图谱不一致。
     2大豆光氧化相关性状QTL定位
     光氧化试验包括2007年江浦试验站F2:3群体试验与2008年江浦试验站和临沂农科院试验站F2:4群体试验,共获得三组试验资料。每组资料用复合区间作图(composite interval mapping:CIM)和多区间作图(multiple interval mapping:MIM)分析,三组资料联合用多标记联合分析(multi-marker joint analysis:MJA),共7次分析,检测了光氧化前叶绿素含量(Normal chlorophyll concentration before photooxidation:NCC)、光氧化后叶绿素含量(chlorophyll concentration after photooxidation:PCC)、光氧化率(photooxidation rate:POR)和黄叶率(yellow leaf rate:YLR)的主效QTL共181个、上位性QTL共37个、环境效应共4个和环境互作共29个,其中,7次检测PCC的52个QTL中共同检测到2~5次的有10个,NCC的41个QTL中共同检测到2-3次的有8个,POR的29个QTL中共同检测到2~4次的有5个和YLR的59个QTL中共同检测到2~4次的有7个。这些QTL有聚集成簇的现象,在C2连锁群中的satt640-satt42区间、D1b连锁群的sat_160-satt147区间、D2连锁群的satt413-satt256区间、E连锁群的satt263-satt045区间、G连锁群的sat_418-sat_419区间及M连锁群的sat_391-satt150区间成簇出现,推测这些染色体区域可能是控制光氧化相关性状的基因。方法间以CIM和MIM的共检测率较高,约50%。年份间的共检测率不高,而年份内不同地点和同一地点不同的年份间共检测率较高。4性状间的QTL检测结果也可解释性状间的相关性。
     3大豆叶绿素含量动态表达的QTL定位
     在大豆生育期内不同时间点,测定2007年江浦试验站244个F2:3家系8次叶绿素含量(资料Ⅰ)、2008年江浦试验站244个F2:4家系1次叶绿素含量(资料Ⅱ)和2008年临沂农科院试验站244个F2:4家系4次叶绿素含量(资料Ⅲ)。在Ⅰ~Ⅲ资料中,求每组资料不同时间点的平均叶绿素含量,得到各家系平均叶绿素含量(资料Ⅳ)。用复合区间作图法分析资料Ⅰ~Ⅲ,用多标记联合分析方法分析资料Ⅳ,共检测到45个QTL。
     2007年江浦试验站的8次测量中共检测到18个QTL,第1~8时间点分别有3、2、2、3、3、2、3和0个。4个时间点检测到N连锁群上的satt234-satt022标记区间存在QTL,2~3个时间点检测到D1a、D1b、D2和F连锁群上存在QTL。从贡献率上看,大于10%的有11个,占总个数的61%;最大贡献率达57%,该QTL也正是2007年江浦8次检测中重复检测次数最多的。
     2008年临沂试验站的4次测量中共检测到11个QTL,第1~4时间点分别检测到2、3、4和2个QTL,只有2个时间点检测到D2和D1a连锁群上存在QTL,但QTL位置均不同。从贡献率上看,大于10%的有2个,占总个数的18%;最大贡献率14%,该QTL也是2008年临沂试验站重复检测次数最多的QTL之一。
     同一地点的不同年份间只检测到1个共同的QTL,即位于sat_160-satt147的qchl-D1a-1。江浦和临沂不同地点间共同检测到的QTL有3个,分别是位于D1a连锁群的gchl-D1a-1;位于D2连锁群的qchl-D2-1和位于K连锁群上的qchl-K.
     利用多标记联合分析方法检测到资料Ⅳ的分别位于9个连锁群上的7个主效QTL、4个环境与标记互作QTL和1个环境效应。MJA方法与CIM方法共同检测到的QTL共有5个,分别位于D1a、D2、M和N连锁群上。环境效应的存在说明环境对叶绿素合成影响较大。此外,还检测到6个QTL和4个环境与标记互作。
     在不同时间点共检测到45个QTL,但除N连锁群外不同时间点上共同的QTL不多,揭示了叶绿素表达时空表达差异;CIM和MJA两种方法共同检测到的QTL共有5个;MJA方法新检测到的主效QTL6个和环境互作QTL4个,存在环境效应。这些结果为叶绿素性状的遗传剖析和标记辅助育种提供理论依据。
     4大豆对豆卷叶螟抗性的遗传分析
     在田间自然虫源条件下,利用P1、P2、F1和F2共4个世代进行了遗传分离分析,表明对豆卷叶螟抗性符合2对主基因+多基因遗传模型。利用F2单株叶片损失率数据和已构建的连锁遗传图谱,定位大豆对豆卷叶螟抗性的QTL。复合区间作图法检测到位于D1b和K连锁群上的2个QTL;多区间作图法检测到位于A2、D1b、K和N连锁群上的4个QTL和6个互作QTL;其中有两个共同的QTL,至少解释表型变异的19.2%。
Photosynthesis is the most important chemical reaction on the earth and very closely related to agricultural production. Improving photosynthetic efficiency is an important way to increase crop yield and to select the cultivar with high photosynthetic efficiency, because net photosynthetic rate is significantly related to the number of photosynthetic units per area. However, a number of studies have suggested that the photosynthetic apparatus is hurt and photo-oxidation phenomenon often happens under the situation of strong or middle strong light in plants. Therefore, more and more attention was paid to the effect of this physiological disease on photosynthetic production.
     The F2, F2:3and F2:4populations derived from the soybean cross of Lishuizhongzi-huang and Nannong493-1at Jiangpu experimental station of Nanjing Agricultural University or/and at Linyi experimental station of Linyi Agricultural Academy were used to study the inheritance of quantitative traits related to photooxidation. First, genetic linkage maps in soybean were constructed. Then, mapping quantitative trait loci (QTL) responsible for the above traits was carried out in order to obtain stable QTL across various populations and mapping approaches, based on the genetic linkage maps above. The results presented will provide some useful information for molecular design breeding and high photosynthetic efficiency in soybean.
     1. Construction of genetic linkage maps in soybean
     The genetic linkage map of soybean using244F2plants derived from the soybean cross above was constructed in this paper. Before the construction of a linkage map, the two parents were screened for polymorphism with972SSR primer combinations. In total,150of972primers (15.4%) could produce polymorphic loci. All these polymorphic markers were performed in the F2population. In the construction of a genetic linkage map, there are three steps. The first step is to cluster markers into linkage groups. Ninety-one molecular markers were assigned to28linkage groups with Mapmaker3.0software. The second step is to estimate genetic distances in each of the linkage groups. The results show that the length of each linkage group ranges from6.9to108.3cM and all these molecular markers covered1356.42cM for the whole genome. The minimum, maximum and average of marker spacing are6.9(linkage group L),51.3(linkage group1-2) and14.91cM, respectively. Number of markers included in each linkage group varies from2to9. There are twenty-eight marker intervals with marker spacing longer than20cM. Fifty-nine markers are not placed on any linkage groups. The last step is to optimize the orders of all mapped markers in all linkage groups. The presented maps were the optimized linkage groups. Among ninety-one markers, the linkage gropup and order for eighty-six marker are consistent with the public genetic maps in soybean while different order between satt077and sat_110, and between satt266and sat_2542, and different linkage group for satt669are found in this paper.
     2. Mapping QTL for photooxidation-related traits in soybean
     Two-hundred and forty-four F2:3families derived from the soybean cross above at Jiangpu experimental station in2007and the corresponding F2:4families at the Jiangpu experimental station and at Linyi experimental station in2008were measured for four photooxidation-related traits, including normal chlorophyll concentration before photo-oxidation (NCC), chlorophyll concentration after photo-oxidation (PCC), photo-oxidation rate (POR) and yellow leaf rate (YLR). Its purposes is to perform the inheritance analysis of the above traits by using the CIM, MIM and multi-marker joint analysis (MJA). Each dataset was analyzed respectively by the first two approaches and all data was jointly analyzed by the MJA. The results showed that181main-effect QTL along37epistatic QTL,4environmental effects and29QTL-by-environment interactions were detected in the seven genetic analyses. Of52QTL for PCC,10QTL were identified repeatedly2to5times. Of41QTL for NCC,8QTL were mapped repeatedly2to3times. Of29QTL for POR,5QTL were identified repeatedly2to4times. Of59QTL for YLR,7QTL were found repeatedly2to4times. The phenomenon of QTL cluster was present in our results. Several QTL that influence multiple traits were detected in the same genomic regions. A total of six intervals were found to be involved in the control of two or more traits and located on marker intervals satt640-satt42, sat_160-satt147, satt413-satt256, satt263-satt045, sat_418-sat_419and sat_391-satt150in the linkage groups C2, Dlb, D2, E, G and M, respectively. We deduce that there are some genes responsible for the traits related to photooxidation in these regions above. In addition, results showed that there are high consistency between the CIM and the MIM, between different places in the same year, and between different years in the same place, and low replication between different years. Results from QTL mapping may explain the correlation between photooxidation-related traits.
     3. Mapping QTL for dynamic chlorophyll content in soybean
     Two-hundred and forty-four F2:3families derived from the soybean cross above at Jiangpu experimental station in2007and the corresponding F2:4families at the Jiangpu experimental station and at Linyi experimental station in2008were measured for chlorophyll content at eight, one and four different developmental stages, respectively. Therefore, the average for each family across different developmental stages could be calculated at fixed year or experimental station. The average data was analyzed by using the MJA while the data at different developmental stages was analyzed by using the CIM and MIM. The results showed that45QTL were detected.
     At the measured times1to8at Jiangpu experimental station in2007,3,2,2,3,3,2,3and0QTL for chlorophyll content were detected, respectively. Of these QTL, one QTL located on the marker interval satt234-satt022in the linkage group N, with maximum percentage57.0%of the total phenotypic variance explained, was repeatedly identified across four times, some QTL placed on the linkage groups D1a, D1b, D2and F were repeatedly confirmed across2to3times, and there were11QTL with more than10.0%of the total phenotypic variance explained.
     At the measured stages1to4at Linyi experimental station in2008,2,3,4and2QTL for chlorophyll content were detected, respectively. Of these QTL, the QTL located on different positions of the linkage groups D2and D1a were identified across two times, there were2QTL with more than10.0%of the total phenotypic variance explained, and maximum percentage of the total phenotypic variance explained was14.0%.
     One common QTL, qchl-D1a-1, located on the marker interval sat_160-sattl47in the linkage group Dla, was mapped across different years at Jiangpu experimental station. Three common QTL, qchl-D1a-1, qchl-D2-1and qchl-K, located on the linkage groups D1a, D2and K, respectively, was mapped between Jiangpu and Linyi experimental stations.
     Using the multi-marker joint analysis for the average data above,7main-effect QTL,4environmental interactions QTL and1environmental effect were identified on nine linkage groups. Five common QTL placed on the linkage groups D1a, D2, M and N were detected between the CIM and MJA approaches. Significant environmental effect indicates that environment have a large effect on chlorophyll synthesis. In addition,6new QTL and four environmental interactions were found by the MJA.
     4. Genetic analyses for resistance of soybean to bean pyralid(Lamprosema indicata Fabricius)
     Two-hundred and forty-four F2plants derived from the soybean cross between Lishui-zhongzihuang (resistance) and Nannong493-1(susceptible) were measured for resistance in soybean to natural population of bean pyralid in the field according to its defoliation percentage in2006. QTL detection for the resistance was carried out using the F2population. The results showed that two QTL were mapped on the linkage groups Dlb and K using composite interval mapping (CIM). Four QTLs along with six interactions were identified in the linkage groups A2, Dlb, K and N using multiple intervals mapping (MIM). Among these QTL, there were two common QTL with more than19.2%of total phenotypic variance explained.
引文
1 阿加拉铁,曾龙军,薛大伟,等.水稻灌浆期不同阶段叶绿素含量的QTL分析[J].作物学报,2008,34(1):61-66
    2 曹卫东,贾继增,金继运.不同氮素条件下小麦苗期叶绿素含量的QTL及互作研究[J].植物营养与肥料学报,2004,10(5):473-478
    3 陈冬梅,梁康迳,林文雄,等.水稻耐光氧化反应特性和品质性状的表现及其相关性研究[J].福建农业学报,2002,17(1):1-5
    4 陈佩度.2001.作物育种生物技术[M].北京.中国农业出版社
    5 陈庆山,张忠臣,刘春燕,等.大豆主要农艺性状的QTL分析[J].中国农业科学,2007,40(1):41-47
    6 陈庆山,张忠臣,刘春燕,等.应用Charleston×东农大豆594重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38(7):1312-1316
    7 陈志雄,梁康,迳林文雄,等.水稻耐光氧化反应特性的遗传规律[J].福建农林大学学报(自然科学版),2002,31(1):1-4
    8 崔克辉,彭少兵,邢永忠,等.水稻幼苗特性与籽粒大小关系的分子检测[J].植物学报,2002,44(6):702-707
    9 崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析[J].作物学报,2007,33(5):744-750
    10崔章林,盖钧镒,吉东风,等.南京地区大豆食叶性害虫种类调查与分析[J].大豆科学,1997,16(1):12-20
    11崔章林.南京地区大豆叶食性害虫重要种类分析与抗性鉴定[D].南京:南京农业大学,1995
    12丁四兵,朱碧岩,吴冬云,等.温光对水稻抽穗后剑叶衰老和籽粒灌浆的影响[J].华南师范大学学报(自然科学版),2004,1,117-128
    13东方阳.大豆对SMV株系的遗传分析和RAPD标记研究[D].南京:南京农业大学,1999
    14方宣钧,吴为人,唐纪良.2001.作物DNA标记辅助育种[M].北京:科学出版社
    15盖钧镒,王建康.利用回交世代或F2:3家系世代鉴定数量性状主基因-多基因混合遗传模型[J].作物学报,1998,24(4):402-409
    16盖钧镒,章元明,王建康.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析[J].作物学报,2000,26(4):385-391
    17盖钧镒,崔章林.大豆抗食叶性害虫育种的鉴定方法与标准[J].作物学报,1997,23(4):400-407
    18盖钧镒,管荣展,王建康.植物数量性状QTL体系检测的遗传试验方法[J].世界科技研究与发展,1999,21(1):34-40
    19盖钧镒,王建康.利用回交世代或F2:3家系世代鉴定数量性状主基因-多基因混合遗传模型[J].作物学报,1998,24(4):402-409
    20盖钧镒,章元明,王建康.2003.植物数量性状遗传体系[M].北京,科学出版社,169-223
    21高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    22高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究[D].杭州:浙江大学,2001
    23高用明,朱军,宋佑胜,等.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析[J].作物学报,2004,30,(9):849-854
    24巩鹏涛,木金贵,赵金荣,等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316
    25顾和平,陈新,朱成松,等.大豆种质资源对光氧化逆境的反应[J].作物品种资源,1999,(1):35-36
    26顾和平,陈新,朱成松,等.大豆耐光氧化和耐旱种质的批量筛选和鉴定[J].江苏农业学报,1999,15(1):38-41
    27关荣霞,邱丽娟,常汝镇.用于SSR分析的大豆DNA的快速提取[J].大豆科学,2003,22(1):23-24
    28郭连旺,沈允钢Protective mechanism against photo damage in photosynthetic apparatus of higher plants[J].植物生理学通讯,1996,32(1):1-8
    29何慈信,朱军,严菊强,等.水稻穗干物质重发育动态的QTL定位[J].中国农业科学,2000,33(1):24-32
    30何慈信,朱军,严菊强,等.水稻叶挺长发育动态的QTL分析[J].中国水稻科学,2000,14(4)193-198
    31胡茂龙,王春明,杨权海,等.水稻光合功能相关性状QTL分析[J].遗传学报,2005,32(8):818-824
    32胡颂平,梅捍卫,邹桂花,等.正常与水分胁迫下水稻叶片叶绿素含量的QTL分析[J].植物生态学报,2006,30(3):479-486
    33胡治球.种子性状QTL作图新方法[D].扬州:扬州大学,2007
    34胡中立,刘后利,张修富.质量-数量性状及其遗传基础[J].武汉大学学报,1989,(3):83-90
    35黄雪清,焦德茂.转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2001,27(5):393-400
    36惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    37惠东威,庄炳昌,陈受宜RAPD重建的大豆属植物亲缘关系[J].遗传学报,1996,23(6):460-468
    38季本华,李传国,葛明治,等.粳稻光合作用的光抑制特性及在正反交F1杂种中的表现[J].植物生理学报,1994,20(1):8-16
    39季本华,焦德茂,严建民.水稻不同品种的光抑制敏感性差异及其生理机制[J].作物学报,1993,19(1):23-28
    40季本华,李霞,焦德茂.光抑制条件下水稻叶内碳酸酐酶的适应调节及其生理作用[J].中国水稻科学1997,11(4):238-240
    41姜华,姜亮,赵江红,等.水稻耐光氧化特性的QTL定位[J].中国水稻科学,2008,22(1):38-44
    42焦德茂,季本华,李霞等.水稻耐光氧化种质资源的简易筛选鉴定技术[J].中国水稻科学,1991,5(3):133-136
    43焦德茂,顾行影,季本华,等.水稻耐光氧化种质资源的简易筛选鉴定技术[J].中国水稻科学,1991,5(3):133-136
    44焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化[J].作物学报,1996 22(1):43-48
    45焦德茂,季本华,童红玉,等.水稻籼粳亚种杂交1代的光合光抑制特性[J].植物学报,1994,36(3):190-196
    46焦德茂,高亮之,金之庆,等.水稻耐光氧化和耐阴特性的鉴定及其生理基础[J].中国水稻科学,1995,9(4):245-248
    47蓝昊,宣亚南.世界大豆贸易格局的演变及对我国的启示[J].国际贸易问题,2008,(6):39-44
    48李广军,程利国,张国政,等.大豆对豆卷叶螟抗性的主基因+多基因混合遗传[J].大豆科学,2008,27(1):33-36
    49李海旺.我国栽培和野生大豆种质资源油脂性状的遗传变异、QTL定位和优异等位变异解析[D].南京:南京农业大学,2009
    50李涛,丁在松,关东明,等.水稻远缘杂交后代的耐强光和抗光氧化特性[J].作物学报.2006,32(12):1913-1916
    51李卫华,卢庆陶,郝乃斌,等.高产大豆品种的高光效特性[J].生物物理学报,2000,16(2):421-426
    52李卫华,尤明山,刘伟,等.小麦GMP含量发育动态的QTL定位[J].作物学报,2006,32(7):995-1000
    53李霞,焦德茂.水稻耐光氧化和耐荫特性的生理基础[J].植物学报,2000,42(12):1271-1277
    54李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的响应[J].作物学报,2005,31(4):408-413
    55李贤勇,王楚桃,李顺武,等.一个水稻高叶绿素含量基因的发现[J].西南农业学报,2002,15(4):122-123
    56刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,,2000,27(11):1018-1026
    57刘峰,陈受宜,庄炳昌.大豆基因组F连锁群较高密度图谱的构建和基因定位[J].自然科学进展,2000,10(11):1012-1017
    58刘峰,陈受宜.大豆基因组中的微卫星标记[J].大豆科学,1998,17(3):256-260
    59刘峰,东方阳,邹继军,等.应用微卫星标记进行大豆种质多样性和遗传变异性分析[J].遗传学报,2000,27(7):628-633
    60刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(11):1018-1026
    61刘华,王慧,李群,等.大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位[J].中国农业科学,2005,38(7):1369-1372
    62刘华.大豆对斜纹夜蛾抗性的遗传分析、抗性QTL的定位及抗虫基因的克隆[D].2005,南京:南京农业大学
    63刘丽,李卫华,刘伟,等.小麦谷蛋白膨胀指数发育动态的QTL分析[J].中国农业科学,2008,41(]1):3838-3844
    64刘宗华,汤继华,王春丽,等.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位[J].作物学报,2007,33(5):782-789
    65龙丽萍,杨守臻,陈怀珠,等.不同基因型大豆品种对豆卷叶螟实验种群的影响[J].中国油料作物学报,,2004,26(3):67-70
    66吕蓓,张丽霞,宛煜嵩.用AFLP标记饱和大豆SSR遗传连锁图.分子植物种[J].2005,3(2):163-172
    67吕祝章.大豆遗传图谱构建、重要农艺性状QTL定位及优异基因发掘[D].山东:山东农业大学,2006
    68栾维江,刘章雄,关荣霞,等.东北春大豆样本的代表性及其ssr位点的遗传多样性分析[J].应用生态学报,2005,16(8):1469-1476
    69欧志英,彭长连,林桂珠,等.超高产水稻组合“培矮64SS/E32”的耐光氧化特性及其机理[J].植物学通报,2003,20(5):558-564
    70彭长连,林植芳,林桂珠.光氧化胁迫下几种植物叶片的超氧自由基产生速率和光合特性[J].植物生理学报,2000,26(2):81-87
    71彭姣凤,张磊.光氧化的成因及其削减机制[J].生命科学研究,2000,4(2):83-90
    72邱丽娟.利用RAPD标记鉴定大豆种质[J].作物学报,1997,23(4):408-417
    73莫惠东.质量-数量性状的遗传分析 (?).遗传组成和主基因基因型鉴别[J].作物学报,1993,19(1):1-6
    74莫惠东.质量-数量性状的遗传分析Ⅱ.世代平均数与遗传方差[J].作物学报,1993,19(3):193-200
    75沈波,庄杰云,张克勤,等.水稻叶绿素含量的QTL及其与环境互作分析[J].中国农业科学,2005,38(10):1937-1943
    76孙德生,李文滨,张忠臣,等.大豆株高QTL发育动态分析[J].作物学报,2006,32(4):509-514
    77孙祖东,盖钧镒,崔章林.大豆抗食叶性害虫遗传的初步研究[J].大豆科学,1999,18(4):300-305
    78孙祖东,杨守臻,陈怀珠,等.南宁大豆食叶性害虫种类调查[J].广西农业科学,2001,19(2):104-106
    79孙祖东,盖钧镒.大豆对食叶性害虫抗性机制的研究[J].中国油料作物学报,1999,2(12):60-63
    80孙祖东,杨守臻,陈怀珠,等.大豆对豆卷叶螟的抗性鉴定[J].中国油料作物学报,2005,27(4):69-71
    81孙祖东.南京地区大豆对食叶性害虫抗性的鉴定、机制和遗传的研究[D].南京:南京农业大学,1997
    82屠曾平.水稻光合特性研究与高光效育种[J].中国农业科学,1997,30(3):28-35
    83屠曾平,林秀珍,黄秋妹,等.水稻中的光抑制现象及其品种间差异[J].中国水稻科学,1988,12(1):8-16
    84宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    85王慧,喻德跃,吴巧娟,等.大豆对斜纹夜蛾抗生性基因的微卫星标记(SSR)的研究[J].大豆科 学,2004,23(2):91-95
    86王慧.大豆对食叶性害虫抗性的遗传及相关基因的SSR标记和定位的研究[D].南京:南京农业大学,2003
    87王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997,24(5):432-440
    88王建康,盖钧镒.数量性状主基因-多基因混合遗传的P1,F1,P2,F2和F2:3联合分析方法[J].作物学报,1998,24(6):651-659
    89王林生,宋忠利,李毓珍,等.植物数量性状的QTL定位分析[J].安徽农业科学,2006,34(18):4527-4529
    90王强,温晓刚,张其德.光合作用光抑制的研究进展[J].植物学通报,2003,20(5):539-548
    91王仁雷,华春,李霞,张其德,焦德茂.光抑制条件下转PEPC基因水稻的光合表现[J].作物学报,2002,28(3):321-326
    92王荣富,张云华,钱立生,等.超级杂交稻两优培九及其亲本的光氧化特性[J].应用生态学报,2003,14(8):1309-1312
    93王义芹,谭伟,杨兴洪,等.不同年代小麦品种旗叶的光合特性及抗氧化酶活性研究[J].西北植物学报,2007,27(12):2484-2490
    94王永军,吴晓雷,喻德跃,等.重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用[J].作物学报,2004,30(5):413-418
    95王珍.大豆SSR遗传图谱构建及重要农艺性状QTL分析[D].南宁:广西大学,2004
    96汪斌,兰涛,吴为人,等.水稻叶绿素含量的QTL定位[J].遗传学报,2003,30(12):1127-1132
    97吴国海.玉米几个数量性状在不同发育阶段的基因效应分析[J].遗传学报,1987,14(5):363-369
    98吴巧娟.大豆对食叶性害虫抗性的鉴定和抗虫相关基因的克隆及其CAPS标记[D].南京:南京农业大学,2004
    99吴平,罗安程.应用分子标记研究氮素胁迫条件下水稻叶片叶绿素含量差异的遗传背景[J].遗传学报,1996,23(6):431-443
    100吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5):490-495
    101吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061
    102吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报,2001,28(10):947-955
    103吴晓雷,贺超英,陈受宜.大豆属遗传多样性和进化关系[J].自然科学进展.2001,11(7):689-698
    104吴晓雷,贺超英,陈受宜,等.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报,2001,28(4):359-366
    105吴业春.斜纹夜蛾抗生性的遗传研究[D].南京:南京农业大学,2003
    106谢华,关荣霞,常汝镇.利用SSR标记揭示我国夏大豆(Glycine max(L.)Merr.)种质遗传多样性[J].科学通报.2005,50(5):434-442
    107邢光南,赵团结,盖钧镒.大豆对豆卷叶螟Lamprosema indicata (Fabricius)抗性的遗传分析[J].作物学报,2008,34(1):8-16
    108邢光南,赵团结,盖钧镒.大豆资源的筛豆龟蝽[Megacopta cribraria (Fabricius)]抗性鉴定[J].作物学报,2006,32(4):491-496
    109邢光南,周斌,赵团结,等.大豆抗筛豆龟蝽(Megacota cribraria (Fabricius)的QTL分析[J].作物学报,2008,34(3):361-368
    110徐春晓.大豆对食叶性害虫抗性的植株反应和虫体反应及其在资源鉴定、遗传与选育中的应用[D].南京:南京农业大学,2000
    111许占友,李磊,邱丽娟,等.利用SSR标记鉴定大豆种质[J].中国农业科学.1999,32(增刊):40-48
    112许占友,邱丽娟,常汝镇,等.大豆三系的选育及恢复基因的SSR初步定位研究[J].中国农业科学,1999,32(2):32-38
    113严建兵,汤华,黄益勤,等.不同发育时期玉米株高QTL的动态分析[J].科学通报,2003,48(18):1959-1964
    114阳成伟,陈贻竹,彭长连.ABA对水稻幼苗叶片光抑制的光保护作用[J].广西植物,2002,22(6):534-536
    115杨国华,李绍清,冯玲玲,等.水稻剑叶叶绿素含量相关性状的QTL分析[J].武汉大学学报(理学版),2006,52(6):751-756
    116杨喆,关荣霞,王跃强,等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4):309-314
    117杨权海,陆巍,胡茂龙,等.水稻叶片叶绿素和过氧化氢含量的QTL检测及上位性分析[J].遗传学报,2003,30(3):245-250
    118杨权海,王春明,胡茂龙,等.水稻剑叶全氮含量及其变化的遗传分析[J].中国水稻科学,2005,19(1):7-12
    119杨永霞,Pathak PK,朱军.水稻苗重的耐冷性动态QTLs定位[J].浙江大学学报(农业与生命科学版),2005,31(2):131-138
    120郁飞,唐崇钦,辛越勇,等.不同品种小麦PS Ⅰ颗粒光抑制过程的光谱学比较研究[J].植物学报,2001,43(12):1243-1249
    121翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].2002,中国科学C辑,32(3):211-217
    122詹秋文,盖钧镒,章元明,等.大豆对斜纹夜蛾幼虫抗性遗传的发展表达过程[J].遗传学报,2001,28(10):956-963
    123张博,邱丽娟,常汝镇.利用大豆育成品种的SSR标记遗传距离预测杂种优势的初步研究[J].大豆科学,2003,22(3):168-171
    124张德水,董伟,惠东威,等.用栽培大豆与野生大豆间的杂种F2群体构建基因组分子标记连锁图谱框架图[J].科学通报,1997,42(2):1326-1330
    125张帆,万雪琴,潘光堂.玉米F2群体分子标记偏分离的遗传分析[J].作物学报,2006,32(9):1391-1396
    126张忠臣.大豆基因组作图和重要农艺性状的基因定位[D].哈尔滨:东北农业大学,2004
    127章元明,盖钧镒,张孟臣.利用P1F1P2和F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报,2000,2(22):6-9
    128章元明.作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231
    129赵芳明,刘桂富,朱海涛,等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位[J].中国农业科学,2008,41(2):322-330
    130赵洪锟,王玉民,李启云,等.中国不同纬度野生大豆和栽培大豆SSR分析[J].大豆科学,2001,20(3):172-176
    131朱成松,张宝龙,王学军.大豆对食叶性害虫的抗性与农艺性状的关系[J].中国油料作物学报,1999,21(1):59-62
    132朱军.复杂数量性状基因定位的混合线性模型方法[C]王连铮,戴景瑞主编,全国作物育种学术讨论会论文集.1998.北京:中国农业出版社,11-20
    133朱军,季道藩,许馥华.陆地棉花铃动态的遗传分析[A].中国棉花学会等.国际棉花学术讨论会文集[C].北京:中国农业科技出版社,1993,pp294-302
    134朱晓丽.大豆遗传图谱构建及在两个群体重要农艺性状的QTL定位[D].哈尔滨:东北农业大 学,2006
    135祝莉莉,谭光轩,任翔,等.5种重要农艺性状基因在水稻重组自交系群体中的定位[J].武汉大学学报(理学版),2003,49(6):787-792
    136庄炳昌,惠东威,王玉民,等. Comparison of RAPD profiles of different soybeans in China [J]. Chinese Science Bulletin,1995,40(13):1129-1132
    137Abiola O, Angel JM, Avner P, et al.The Complex trait consortium. The nature and identification of quantitative trait loci:A community's view [J]. Nat Rev Genet,2003,4:911-916
    138 Akkaya MS,Bhagwat AA,Cregan PB.Length polymorphism equence repeat DNA in soybean[J]. Genetics,1992,132:1131-1139
    139 Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphism equence repeat DNA in soybean [J]. Genetics,1992,132:1131-1139
    140 Aladdin H, Xu DH.Conserved salt tolerance quantitative trait locus (QTL) in wild soybeans [J]. Breeding Science,2008,58:355-359
    141 Allard RW. Formulas and tables to facilitate the calculation of recombination values in heredity [J]. Hilgardia,1956,24:235-278
    142 Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants:relationships in green cells [J]. Physiol Plant,1997,100:224-233
    143 Anderson JM, Aro EM.Grana stacking and protection of photo system Ⅱ in thylakoid membranes of higher plant leaves under sustained high irradiance:A hypothesis[J]. Photosynthesis Research,1994,41:315-326
    144 Anderson JM, Park YI, Chow WS. Photoinactivation and photoprotection of photosystem II in nature [J]. Physiol Plant,1997,100:213-223
    145 Anderson JM, Park YI, Chow WS, Unifying model for the photoinactivation of photosystem Ⅱ in vivo under steady-state photosynthesis [J]. Photosynth Res,1998,56:1-13
    146Apuya NR, Frazier BL, Keim P, et al. Restriction fragment length polymorphisms as genetic markers in soybean,Glycine max (L.).Merrill[J].Theor Appl Genet,1989,75:889-901
    147 Aro EM,Virgin I. Anderson B. Photoinhibition of photosystem Ⅱ inactivation, protein damage and turnover [J].Bioch im Biophys Acta,1993,1143:113-134
    148 Arumanagathan K. Nuclear DNA content of some important plant species [J]. Plant Mol Biol Rep,1991,9:229-241
    149 Azanza F, Young TE, Kim D, et al. Characterization of the effect of introgressed segments of ehromosome 7 and 10 from Lycopersion chmielewakii on tomato soluble solids, pH, and yield[J].Theor Appl Genet,1994,87:965-972
    150Baroli I, Melis A. Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size [J]. Planta,1998,205:288-296
    151 Bateson. Mendel's Principles of Heredity [M].1909,Cambridge University Press, Cambridge
    152Bauman LF. Evidence of non-allelic gene interaction in determining yield, ear height, and kernel row number in corn [J]. Agron J,1959,91:531-534
    153 Beach RM, Todd JW. Foliage consumption and developmental parameters of the soybean looper and velvet bean caterpillar reared on susceptible and resistant soybean genotypes [J]. J Econ Entomol,1988,81(1):310-316
    154Bierne SM, Lehnert SA, Bedier E, et al. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR[J]. Mol ecology,2000,9,233-235
    155Bodmer WF. Human genetics:The molecular challenge [J]. Old Spring Harbor Symp Quant Biol II,1986:1-13
    156Boer MP, Braak CJF, Jansen RC. A penalized likelihood method for mapping epistatic quantitative trait loci with one dimensional genome searches [J]. Genetics,2002,162:951-960
    157Boerma HR, Walker DR. Discovery and utilization of QTLs for insect resistance in soybean [J]. Genetica,2005,123:181-189
    158Botstein D, White RL, Skolnick M, et al. Construction of agenetic linkage map in man using restriction fragment length polymorphisms [J]. Amer J Hum Genet,1980,32:314-331
    159Bouvier FD, Harlingue A, Hugueney P, et al Xanthophyll biosynthesis:cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum) [J]. J Biol Chem,1996.271:28861-28867
    160 Brown SB, Smith KM, Bisset GM, et al. Mechanism of photooxidation of bacteriochlorophyll c derivatives. A possible model for natural chlorophyll breakdown [J]. J Biol Chem,1980,255 (17):8063-8068
    161 Brummer EC, Graef GL, Orf JR, et al. Mapping QTL for seed and oil content in eight soybean population [J]. Crop sci,1997,37:370-398
    162Bubeck DM. Quantitative trait loci controlling resistance to gray leaf spot in maize [J]. Crop Sci. 1993,33:838-847
    163 Burr B, Burr EA. Recombinant inbreds for molecular mapping in maize [J]. Trends Genet, 1991,7:55-60
    164Burr B,Burr EA,Thompson KH,et al.Gene mapping with recombinant inbreds in maize[J]. Genetics,1988,118:519-526
    165 Buttery BR, Buzzell RI, Findlay WI. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean [J]. Can J Plant Sci,1981,61 (2):191-198
    166Cai HW, Morishima H. QTL clusters reflect character associations in wild and cultivated Rice[J].Theor Appl Genet,2002,104:1217-1228
    167 Causse MA,Fulton TM,Cho YG, et al. Saturated molecular map of the rice genome based on an interspecific backcross population[J]. Geneties,1994,138:1251-1274
    168 Chapman A, Pantalone VR, Ustun A, et al. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population [J]. Euphytica,2003,129:387-393
    169Charmet G, Cadalen T, Sourdille P, et al. An extension of the'marker regression'method to interactive QTL [J]. Mol Breeding,1998,4(1):67-72
    170Chen QS, Zhang ZC Liu CY et al. QTL analysis of major agronomic traits in soybean[J]. Agricultural Sciences in China,2007,6(4):399-405
    171 Cheng RA, Ukai KY. Method for mapping a partial lethal-factor locus on a molecular-marker linkage map of a backcross and doubled-haploid population[J]. Theor Appl Genet,1998,97: 293-298
    172Chia LS, McRae DG, Thompson JE. Light-dependence of paraquatinitiated membrane deterioration in bean plants. Evidence for the involvement of superoxide [J]. Physiol Plant,1982, 56:492-499
    173 Choi IY, Hyten DL, Song QJ, et al. A soybean transcript map:gene distribution, haplotype and SNP analysis [J]. Genetics,2007,176:685-696
    174 Choi HK, Kim D, Uhm T, et al. A seqence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa [J]. Genetics,2004,166:1463-1502
    175 Chow LT, Gelinas RE, Broker TR, et al An amazing sequence arrangement at the 5'end of advenovirus messenger RNA[J]. Cell,1977,12:1-8
    176Chow W S. Photo protection and photo-inhibitory damage[J]. Adv Mol Cell Biology,1994,10: 151-196
    177 Chung J, Babka HL, Graef GL, et al. The seed protein, oil and yield QTL on soybean linkage group I [J]. Crop Sci,2003,43:1053-1067
    178 Chung J, Specht JE. An integrated genetic linkage map of the soybean genome [J]. Crop Sci, 1999,39:1464-1490
    179 Cocherham CC. An extension of the concept of partitioning heredity variance for analysis of covariance among relatives when epistasis is present [J]. Genetics,1954,39:859-882
    180ConcibidoV, Vallee BL, Melaird P, et al..Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet,2003,106:575-582
    181Conover RA. Studies of two viruses causing mosaic disease of soybean [J]. Phytopathology, 1948,53:388-393
    182Cregan PB,Jarvik T,Bush AL,et al. An intergrated genetic linkage map of the soybean genome[J]. Crop Sci,1999,39:1464-1490
    183Cregan PB, Jarvik T.Bush AL, et al. Micorsatellite fingerprinting and mapping of soybean [J]. Methods Mol Cell Bio,1997,5:49-61
    184Csanadi G, Vollmann J, Shift C, et al. Seed quality QTLs identified in a moleeular map of early maturing soybean [J]. Theor Appl Genet,2001,103:912-919
    185Cui SY, He XH, Fu SX, et al. Genetic dissection of the relationship of apparent biological yield and apparent harvest index with seed yield and yield related traits in soybean [J]. Australian Journal of Agricultural Research,2008,59,86-93
    186Darvasi A, Solier M. Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci [J]. Theor Appl Genet,1994,89:351-368
    187Demming AB, Adams WW. The role of xanthophylls cycle carotenoids in the protection of photosynthesis [J].Trends in Plant Science,1996,1:21-26
    188DeRisi JL. Iyer VR. Brown B. Exploring the metabolic and genetic control of gene expresion on a genomic scale [J]. Science,1997,278:860-686
    189Diers BW, Keim P, Fehr WR, et al. RFLP analysis of soybean seed protein and oil Content [J]. Theor Appl Genet,1992,83:608-612
    190Doebley JS, Stec S, Gustus C. Teosinte branchedl and the origin of maize:evidence for epistasis and the evolution of dominance [J]. Genetics,1995,141:333-346
    191 Donis H. Linkage map of human genome [J]. Cell,1987,51:319-337
    192 Dorothea SH.The light-harvesting and protective functions of carotenoids in photosynthetic membranes[J]. Physiol Plant,1987,69:561-568
    193 Dudley JW. Molecular markers in plant improvement:Manipulation of genes affecting quantitative traits [J]. Crop Sci,1993,33:660-668
    194Edwards MD. Molecular-marker-facilitated investigations of quantitative trait loci in maize-Numbers, genomic distribution and types of gene action [J]. Genetics,1987,116:113-125
    195Eleni Bachlava, Ralph E,Dewey E, et al. Mapping candidate genes for oleate biosynthesisand their association with unsaturated fatty acid seed content in soybean [J]. Mol Breeding.2009, 23:337-347
    196Elkind Y, Cahaner A. A mixed model for the effects of single gene, poly genes and their interaction on quantitative traits.1. The model and experimental design [J]. Theor Appl Genet, 1986,72:377-383
    197Elkind Y, Cahaner A. A mixed model for the effects of single gene, poly genes and their interaction on quantitative traits.2. The effects of the major geneand polygenes on tomato fruit softness[J]. Heredity,1986,72:377-383
    198Elstner EF. Oxygen activation and oxygen toxicity [J]. Annu Rev Plant Physiol,1982,33:73-96
    199Elston RC, Stewart J. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data [J]. Genetics,1973,73:695-711
    200Endo T, Shikanai T, Takabayashi A, et al. The role of chloroplastic NAD(P) H dehydrogenase in photoprotection [J]. FEBS Lett,1999,457:5-8
    201 Eshed Y, Zamir D. An introgression line Population of Lycopersicon Pennellii in the cultivated tomato enables the identification and fine mapping of yield-assoeiated QTL [J]. Genetics,1995, 141:1147-1162
    202Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato [J]. Genetics,1996,143:1807-1817
    203 Falconer DS, Mackey TFC. Introduction to quantitative genetics. Longman, London,1996
    204Fanizza G, Della C, Bagnulo C.A non-destructive determination of leaf chlorophyll in Vitis vinifera [J]. Annu Appl Biol,1991,119 (1):203-205
    205 Fasoula A, Harris K, Roger H. Validation and designation of quantitative trait loci for seed protein, seed oil and seed weight from two soybean population [J]. Crop Sci,2004,44:1218-1225
    206Ferreira AR, Keim P. Genetic mapping of soybean [Glycine max.(L) Merr.] using random amplified polymorphic DNA(RAPD)[J]. Plant Mol Biol Rep,1997,15:335-334
    207 Fisher RA. The correlations between relatives on the supposition of Mendelian inheritance [J]. Trans Roy Soc Edinb,1918,52:399-433
    208 Foyer CH, Noctor G. Leaves in the dark see the light [J]. Science,2000,284:5414-5416
    209Foyer CH.Lelandais M.Kunert KJ.Photooxidative stress in plants [J]. Physiol Plant,1994,92: 696-717
    210Fredslund J, Madsen LH, Hougaard BK, et al. GeMprospector-online design of cross-species genetic marker candidates in legumes and grasses[J]. Nucleic acids research,2006,34:670-675
    211Fu YB, Ritland K. Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus[J]. Genetics,1994,136:323-331
    212 Fu YB, Ritland K. Marker-based inferences about epistasis for genes influencing inbreeding depression [J]. Genetics,1996,144 (1):339-348
    213 Fuerst EP, Vaughn KC. Mechanisms of paraquat resistance [J]. Weed Technol,1990,4:150-156
    214Gai JY, Wang JK. Identification and estimation of a QTL model and its effects [J]. Theor Appl Genet,1998,97:1162-1168
    215Ganal MW,Young ND,Tanksley SD. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato [J]. Mol Gen Genet,1989, 215:395-400
    216Gilmor AM. Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher lant chloroplast and leaves [J]. Physiol Plant,1997,99:197-209
    217 Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underliecomplex traits [J]. Science, 2002,298:2345-2349.
    218Gressel J, Galun E. Genetic controls of photooxidant tolerance:Causes of Photooxidative Stress and Amelioration of Defense System in Plants [J]. Boca Raton FL:CRC Press,1994,237-274
    219Grodzicker T, Williams J, Sharp P, et al. Cold Sprcng Harbor Symp [J]. Quant Biol,1974,39: 439-446
    220 Gupta M.Chyi YS, Severson J,et al. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats [J]. Theor Appl Genet,1994,89:998-1006
    221 Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers [J]. Heredity,1992,69:315-324
    222 Hans M, Peter S. Plant Physiology [M]. Sp ringer:1994, Springer Press
    223 Hao NB, Du WG, GE QY, et al. Progress in the breeding of soybean for high photosynthetic efficiency[J].Acta botanica sinca,2002,44 (3):253-258
    224Havaux M, Eyeletters M. Is the in vivo photosystem I function resistant to photoinhibition? An answer from photoacoustic and far-red absorbance measurements in intact leaves [J]. Z Naturforsch,1991,46:1038-1044
    225 Hayes AJ, Ma GR, Saghai Maroof, et al. Molecular marker mapping of Rsv4, a geneconferring resistance to all known strains of soybean mosaic virus [J]. Crop Sci,2000,40:1434-1437
    226Heath SG. Markov chain Monte Carlo segregation and linkage analysis of oligogenic models [J]. Am J Hum Genet,1997,61:748-760
    227Hedrick PW, Muona O. Linkage of viability genes to marker loci in selfing organisms. Heredity, 1990,64:67-72
    228Hegstad JM, Tarter JA, Vodkin, LO et al. Positioning the wp flower color locus on the soybean genome map[J].Crop Sci,2000,40:534-537
    229Heinze K, Koehler E. Die mosaikkrankheit der sojsbohne und ihre ubertragung durch insekten [J]. Phytopath,1940,13:207-242
    230Helentjaris TA. Genetic linkage map for maize based on RFLPs [J]. Trends Genet,1987,3: 217-221
    231 Heun M, Kennedy AE, Anderson JA, et al. Construction of restriction fragment length polymorphism map for barley(Hordeum vulgare). Genome,1991,34:433-447
    232Hill AP. Quantitative linkage:A statistical procedure for its detection and estimation [J]. Annu Hum Genet Lond,1975,38:439-449
    233Hirata M, Ishii R, Kumura A, et al. Photoinhibition of photosynthesis in soybean leaves I. Effects of different intensities and durations of light irradiation on light response curve of photosynthesis [J]. Japan J Crop Sci,1983,52:314-318
    234 Hnetkovsky N, Chang SD, Doubler TW, et al. Genetic mapping of loci underlying field resistance to sudden-death syndrome [J]. Crop Sci,1996,36:692-400
    235Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants. Annu Rev Plant Phys,1996,47:655-684
    236Hua JP, Xing YZ, Wu WR,et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA,2003,100:2574-2579
    237 Hua JP, Xing YZ,Xu CG, et al. F1 Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance [J]. Genetics,2002,162:1885-1895
    238Hund A, Fracheboud Y, Soldati A, et al. QTL controlling root and shoot traits of maize seedlings under cold stress [J].Theor Appl Genet,2004,109:618-629
    239Hyne V, Kearsey MJ. QTL analysis:Further use of'marker regression'[J]. Theor Appl Genet, 1995,91(3):471-476
    240Hyten DL,Pantalone VR, Sams CE, et al. Seed quality QTL in a prominent soybean population [J]. Theor Appl Genet,2004,109:552-561
    241 Imsande KP. QTL in Soybase:A new perspective [J]. Soybean Genetics Newsletter,1998,25: 146-149
    242 Inoue K, Sakurai H, Hiyama T. Photoinactivation of photosystem I in isolated chloroplasts. Plant Cell Physiol,1986,27:961-968
    243Ishimaru K, Yano M, Aoki N, et al. Toward the mapping of physiological and agronomic characters on a rice function map:QTL analysis and comparison between QTLs and expressed sequence tags [J]. Theor Appl Genet,2001,102:793-800
    244Jansen RC. Interval mapping of multiple quantitative trait loci [J]. Genetics,1993,135:205-211
    245Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping [J]. Genetics 1994,136:1447-1455
    246 Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci [J]. Theor Appl Genet,1989,78:613-618
    247Jeong SC, Kristipati S, Hayes AJ, et al. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance Gene, Rsv3 [J]. Crop Sci,2002,42:265-270
    248 Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics,1995,140:1111-1127
    249 Jiang CJ, Zeng ZB. Mapping quantitative trait loci with dominant and missing markers invarious crosses from two inbred lines [J]. Genetica,1997,101:47-56
    250Jiao DM. Mass screening for rice germplasm tolerant to photoinhibition[J]. Photosynthetica, 1992,26(3):399-404
    251 Jones HB. A review of statistical method-s for genome mapping [J]. International Statistical Review,2000,68:5-21
    252 Justin OB, Samuel PH,Todd PM, et al. Genome-wide patterns of single-feature polymorphism in Arabidopsis[J]. PNAS,2007,104 (29):12057-12062
    253Kabelka EA, Diers BW, Fehr WR, et al. Putative alleles for increased yield from soybean plant introduction [J]. Crop sci,2004,44:784-791
    254 Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait locus[J]. Genetics,1999,152(3):1203-1216
    255 Kao CH, Zeng ZB. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics,1997,53:653-665
    256 Kao CH. On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci [J]. Genetics,2000,156:855-865
    257Karen H, Subudhi PK, Andrew B, et al. Sorghum stay-green QTL individually reduces post-flowering drought-induced leaf senescence [J]. Journal of Experimental Botany,2007, 58(2):327-338
    258Kearsey MJ, Hyne V. QTL analysis:A simple marker-regression approach [J]. Theor Appl Genet, 1994,89:698-702
    259Kearsey MJ, Farquhar AG. QTL analysis in plants:where are we now? [J]. Heredity,1998,80: 137-142
    260Keim P, Diers BW, Olson TC, et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits [J]. Genetics,1990,226:735-742
    261Keim P, Schupp JM, Travis SE, et al. A high-density soybean genetic map based on AFLP markers [J]. Crop Sci,1997,37:537-543
    262Ketata H, Smith EL, Edwards LH, et al. Detection of epistatic, additive and dominance variation in winter wheat [J]. Crop Sci,1976,16:1-4
    263Khavkin E, Coe E. Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize(Zea mays L.) [J]. Theor A ppl Genet,1997,95:343-352
    264Kheiralla Al, Whittington WJ. Genetic analysis of growth in tomato:the F1 generation [J]. Annu Bot,1962,26:489-504
    265Kilen TC, Hatchett JH, Hartwig EE. Evaluation of early generation soybeans for resistance to soybean [J]. Crop Sci,1977,17:397-398
    266 Kim HK, Kang ST, Suh, DY, et al. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean [J]. Plant Breeding,2005,124:582-589
    267Knapp SJ. Bridges WC (Jr), Birkes D. Mapping quantitative trait loci using molecular marker linkage maps [J]. Theor Appl Genet,1990,79:583-592
    268 Kok B. On the inhibition of photosynthesis by intense light [J]. Biochim Biophys Acta,1956. 21:234-244
    269Komatsu K, Okuda S, Takahashi M, et al. QTL mapping of antibiosis to common cutworm (Spodoptera litura Fabricius) in soybean [J]. Crop sci,2005,45:2044-2048
    270Korstanje R, Paigen B. From QTL to gene:the harvest begins [J]. Nat Genet,2002,31:235-236.
    271 Kosambi DD. The estimation of map distance from recombination values[J]. Annals of Eugenics, 1944,12:172-175
    272Krause GH. Photoinhibition of photosynthesis, an evaluation of damaging and protective mechanisms. Physiol Plant,1988,74:566-574
    273Kurata N, Nagamura Y, Yamamoto K. et al.300 kilobasc interval genetic map of rice including 883 expressed sequences [J]. Nature,1994,8:365-376
    274 Lambert L, Kilen TC. Influence of three soybean plant genotypes and their F1 intercrosses on the development of five insect species [J]. J of Econ Entomol,1984,77(3):622-625
    275 Lander E S, Green P. Construction of multilocus genetic linkage maps in humans [J]. Proc Natl Acad Sci USA,1987,84:2363-2367
    276 Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199
    277 Lark KG, Chase K, Adler F, Mansur LM, Orf JH. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another [J]. Proc Natl Scad Sci USA,1995,92:4656-4660
    278 Lark KG, Weisemann JM, Matthews BF, et al. A genetic map of soybean (Glycine max L.) using intra specific cross of two cultivars:"Minsoy"and"Noir 1" [J]. Theor Appl Genet,1993,86: 901-906
    279 Law CN. The loeation of genetic factors controlling anumber of quantitative characters in wheat [J]. Genetics,1967,56:445-461
    280Lebowitz RL, Soller M, Beckmann JS. Trait-based analysis for the detection of linkage between marker loci and quantitative trait loci in cross between inbred lines [J]. Theor Appl Genet,1987, 73:556-562
    281 Lee Jeong-Dong, Bilyeu Kristin D, Shannon James Grover. Genetics and breeding for modified fatty acid profile in soybean seed oil [J]. Journal of Crop Science Biotechnology,2007,10 (4): 201-210
    282 Lee SH, Bailey MA, Carter TE, et al. Molecular markers associated with soybean plant height, lodging and maturity across location [J]. Crop Sci,1996,36:728-735
    283 Lee SH, Bailey MA, Mian MR, et al. RFLP loci associated with soybean seed protein and oil content across population and location [J].Theor Appl Genet,1996,93:649-657
    284Leipold M.,Schmidtke J.Gene expression in phylogenetically polyploid organisms in Genome Evolution [M]edited by G.Dover and R.Flavell.Academic Press, New York,1982,219-236
    285Leitsch J, Schnettger B, Critchley C, et al. Two mechanism s of recovery from photoinhibition in vivo:reactivation of photosystem Ⅱ related and unrelated to D1 protein turnover [J]. Planta, 1994,194:15-21
    286 Li ZK, Pinson SRM, Paterson AH, et al. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice population [J]. Genetics,1997a,145:1139-1148
    287Li ZK, Pinson SRM, Park WD, et al. Epistasis for three grain yield components in rice [J]. Genetics,1997,145:453-465
    288Li J, Wang S, Zeng ZB. Multiple interval mapping for ordinal traits [J]. Genetics,2006,173: 1649-1663
    289Li WB, Sun DS Du YP Quantitative trait loci underlying the Development of seed composition in soybean (Glycine max L.Merr.) [J]. Genome,2007,50:1067-1077
    290 Li WX, Van KJ, Zheng DH. Identification of QTLs Associated with Resistance to Riptortus clavatus Thunberg(Heteroptera:Alydidae)in Soybean(Glycine max L. Merr.)[J]. Crop Sci Biotech,2008,11 (4):243-248
    291 Li Y, Hill CB, Carlson SR, Diers BW, et al. Soy-bean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M [J]. Mol Breed,2007,19:25-34
    292 Liang CZ, Gu MH, Pan XB, et al. RFLP tagging of a new semidwarfing gene in rice [J]. Theor Appl Genet,1994,88:898-900
    293 Lin YR, Schertz KF, Paterson AH. Comparative analysis of QTL affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population [J]. Genetics, 1995,141:391-411
    294Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0 [M]. Cambridge:1992, MA:Whitehead institute Technical Report
    295 Lipp M, Brodmann P, Pietsch K, et al. IUPAC collaborative trail study of a method to detect genetically modified soy beans and maize in dried powder [J]. Journal of AOAC International 1999,82:923-928
    296 Luo L, Zhang YM, Xu S. A quantitative genetics model for viability selection. Heredity,2005,94: 347-355
    297 Luo ZW, Kearsey MJ. Maximum likelihood estimation of linkage between a marker gene and a quantitative trait locus [J]. Heredity,1989,63:401-408
    298 Luo ZW, Ma L. An improved formulation of marker heterozygosity in recurrent selection and backcross schemes [J]. Genet Res,2004,83:49-53
    299 Ma LQ, Zhou EF, Huo NX, et al. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.) [J]. Euphytica,2007,153:109-117
    300Mangelsdorf PC, Jones DF, The expression of Mendelian factors in the gametophyte of maize. Genetics,1926,11:423-455
    301 Mansur L, Orf JH, Chase K. Genetic mapping of agronomic traits using recombinant inbred line of soybean [J]. Crop Sci,1996,36:1327-1336
    302 Mansur LM, Orf JH, Lark KG, et al. Interval mapping of quantitative trait loci for reproductive, morphological and seed trait of Soybean(Glycine max L.)[J]. Theor Appl Genet,1993,86: 907-913
    303 Martinez O, Cumow RN. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers [J]. Theor Appl Genet,1992,85:480-488
    304 Mather K, Jinks JL. Biometrical Genetics [M]. Chapman and Hall 1982
    305Matile P, Hortensteiner S, Thomas H, et al. Chlorophyll breakdown in senescent leaves [J]. Plant Physiol,1996,112:1403-1409
    306Maughan PJ, Saghai MA, Buss GR. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean [J]. Genome,1995,38:715-723
    307Maughan PJ, Saghai-Maroof A, Buss GR. Molecular-marker analysis of seed-weight:genomic locations, gene action, and evidence for orthologous evolution among three legume species [J]. Theor Appl Genet,1996,93:574-579
    308McCoueh SR, Chen X, Panand O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding [J]. Plant Mol Biol,1997,35:89-99
    309Mcmillan I, Robertson A. The power of methods for the detection of major genes affecting quantitative traits [J]. Heredity,1974,32:349-356
    310Mebrahtu T, Kenworthy WJ, Elden TC. Genetic study of resistance to Mexican bean beetle in soybean lines [J]. Journal of Genetics and Breeding,1990,44(1):7-12
    311Mebrahtu T. Efficiency of different selection and screening methods to identify productive soybean breeding lines resistant to Mexican bean beetle [J]. Dissertation Abstracts International 1986,47(5):1800
    312Mei M, Syed NH, Gao S, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium hirsutum L.). Theor Appl Genet,2004,108:280-291
    313 Meksem K, Doubler TW, Chancharoenchai K, et al. Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines[J]. Theor Appl Genet,1999, 99:1131-1142
    314 Mian MA, Ashley DA, Boerma HR. Additional QTL for water use efficiency in soybean [J]. Crop Sci,1998,38:390-393
    315 Mian MA, Bailey MA, Ashley DA. Molecular markers associated with water use efficiency and leaf ash in soybean [J]. Crop Sci,1996,36:1250-1257
    316Michael M, Hinson KK, Quesenberry KH, Wofford DS. Inheritance of resistance to the soybean looper in soybean [J]. Crop Sci,1996,36(6):1532-1537
    317Michelmore RW, Shaw DV. Quantitative genetics:character dissection [J]. Nature,1988,335: 672-673
    318Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon [J]. Theor Appl Genet,1990,80:437-448
    319Moran JF, Becana M, Iturbe-Ormaetxe I, et al. Drought induces oxidativestress in pea plants [J]. Planta,1994,194:346-352
    320Morgante M,Olivieri AM. Genetic mapping and variability of seven simple sequences repeat loci in soybean. Genome,1994,37:763-769
    321Muehlbauer GJ, Specht JE, Thomas-Compton MA, et al. Near-isogenic lines-a potential resource in the integration of conventional and molecular marker linkage maps [J]. Crop Sci, 1988,28:729-735
    322Muller P, Li X P, Niyogi KK. Non-photochemical quenching:a response to excess light energy [J]. Plant Physiol,2001,125:1558-1566
    323Mulo P, Laakso S, Maenpaa P, Aro EM. Stepwise photoinhibition of photosystem Ⅱ. Studies with synechocystis species PCC 6803 mutants with a modified D-E loop of the reaction center polypeptide Dl [J]. Plant Physiol,1998,117:483-490
    324Murchie EH, Chen Y, Hubbat S, et al. Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice [J]. Plant Physiol,1999,119:553-563
    325Nakamura Y, Gillilan S, O'Connell P, et al. Isolation and mapping of a polymorphic DNA sequence pHBI59 on chromosome 11 [J]. Nucleic Acids Res,1988,16(1):376
    326Nakamura Y, Lathrop M, Leppert M, et al. Localization of the genetic defect in familial adenomatous polyposis within a small region of chromosome 5 [J]. Am J Hum Genet,1988, 43(5):638-644
    327Narvel JM. A Retrospective DNA marker assessment of the development of insect resistant soybean [J]. Crop Sci,2001,41:1931-1939
    328Narvel JM, Walker DR, Rector BG, et al. A retrospective DNA marker assessment of the development of insect resistant soybean [J]. Crop Sci,2001,41:1931-1939
    329Nisar A, Khan Stephen M. Githiri et al. QTL analysis of cleistogamy in soybean. Theor Appl Genet,2008,117:479-487
    330Niyogi KK, Photoprotection revisited:genetic and molecular approaches [J]. Annu Rev Plant Phys,1999,50:333-359
    331Niyogi KK, Shih C, Chow WS, et al. Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis [J]. Photosyn Res,2001,67:139-145
    332Njiti VN, Meksem K, Iqbal MJ, et al. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas [J]. Theor Appl Genet,2002, 104:294-300.
    333 O'Brien SJ. Genetic maps. Locus maps of complex genomes.6th Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y 1993
    334Ogawa K, Kanematsu S, Takabe K, et al. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PS I) in spinach chloroplasts detection by immuno-gold labelling after rapid freezing and substitution method [J]. Plant Cell Physiol,1995,36:565-573
    335Oh C, Ye KQ, He QM, Mendell NR. Locating disease genes using Bayesian variable selection with the Haseman-Elston method [J]. BMC Genet,2003,4(Suppl.1):S69
    336Olson M, Flood L, Cantor D, et al. A common language for physical mapping of the human genome [J]. Science,1989,245:1434-1435
    337Orf JH, Chase K, Jarvik T, et al. Genetics of soybean agronomic traits:I Comparison of tree related recombination inbred population [J]. Crop sci,1999,39:1642-1651
    338Panthee DR, Pantalonel VR.Saxton AM, et al. Quantitative trait loci for agronomic traits in soybean [J]. Plant Breeding,2007,126,51-57
    339Panthee DR, Pantalonea VR, Samsa CE, et al. Genomic regions governing soybean seed nitrogen accumulation [J]. AOCS,2004,81(1):15-19
    340Paran I, Michelmore RW. Development of reliable PCR based markers linked to down mildew resistance genes inlettuce [J]. Theor Appl Genet,1993,85:985-993
    341 Paterson AH, Deverna JW, Lanini B, et al. Fine mapping of quantitative trait loci using seleeted overlapping recombinant chromosomes, in a inter spceific cross of tomato [J].Genetics,1990, 124:735-742
    342 Paterson AH, Damon S, Hewitt JD, et al. Mendelian factors underlying quantitative traits in tomato:comparison across species., generations, and environments [J]. Genetics,1991,127: 181-19
    343Pateson AH, Landef ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment Length polymorphysiums [J]. Nature, 1988,335:721-726
    344 Peng JH, Ronin YF, Fahima T, et al. A Domestication quantitative trait locus in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA,2003,100(5):2489-2494
    345 Pereira MG, Lee M, Bramel-Cox P, et al. Construction of RFLP in Sorghum and comparative mapping in maize[J].Genome,1994,37:236-243
    346Powell W, Morgante M, Ande C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis [J]. Mol Breeding,1996,12:225-238
    347Powles SB. Photoinhibition of photosynthesis induced by visible light [J]. Annu Rev Plant Phys, 1984,35:15-44
    348Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies [J]. Am J Hum Genet,1999,65:220-228
    349 Qin HD, Guo WZ, Zhang YZ. et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. [J]. Theor Appl Genet,2008,117:883-894
    350Rector BG, All JN, Parrott WA, et al. Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm[J]. Theor Appl Genet,1998,6:786-790
    351 Rector BG, All JN, Parrott WA, et al. Quantitative trait loci for antibiosis resistance to corn earworm in soybean[J]. Crop Sci,2000,40:233-238
    352Rector BG, All JN, Parrott WA, et al. Quantitative trait loci for antixenosis resistance to corn earworm in soybean[J]. Crop Sci,1999,39:531-538
    353Regina HGP,Celso TMJ, Neylson EA. Characterization of Brazilian soybean cultivars using microsatellite markers[J]. Genet and Mol Biology,2002,25(2):185-193
    354Reyna.N. Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean [J]. Crop Sci,2001,41:1317-1321
    355Riska B, Atchley W, Rutledge J. A genetic analysis of targeted growth in mice [J]. Genetics, 1984,107:79-101
    356Rongwen J, Akkaysa MS, Bhagwat AA, et al. The use of micro-satellite DNA markers for soybean genotype identification [J]. Theor Appl Genet,1995,90:43-48
    357Rooney M, Jellen W, Phillips E, et al. Identification of homoeologous chromosome in hexaploid oat(A-byzantina cv kanota)using monosomics and RFLP analysis [J]. Theor Appl Genet,1994, 89:329-335
    358Routman EJ, Cheverud JM. Gene effects on a quantitative trait:two-locus epistatic effects measured at the booting stage in rice variety "Norin-PL8" [J]. Breed Sci,1995,45:337-340
    359Salin ML. Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity [J]. Free Rad Res Commun,1991,12213:851-858
    360 Santos FR, Pena SDJ, Epplen JT. Genetic and population study of an Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique [J]. Hum Genet,1993,90: 655-656
    361 Satagopan JM, Yandell BS, Newton MA, et al. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo [J]. Genetics,1996,144:805-816
    362 Sax K. The association of size differences with seed coat patern and pigmentation in phaseolus vulgaris [J]. Genetics,1923,8:552-560
    363 Schuler GD, Ganal MW, Martin GB, et al. A gene map of the human genome [J]. Science,1996, 274:540-567
    364Sebolt AM, Shoemaker RC, Diers BW. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean [J]. Crop sci,2000,40:1438-1444
    365Shaaltiel Y, Glazer A, Bocion PF, et al. Cross tolerance to herbicidal and environmental oxidants of plant biotype tolerant to paraquat, sulfur dioxide, and ozone [J]. Pestic Biochem Physiol,1988,31:13-23
    366Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with yield and fiber traits of Upland cotton [J]. J Cotton Sci,1998,4:153-163
    367Sharkey TO, Loreto F, Vassey TL. Effects of stress on photosynthesis [A]. In:BaltscheffskyM. Current Research in Photosynthesis[C].Domdrecht (Netherland):Kluwer Academic Publishers, 1990,549-556
    368 Sharp PJ, Chao S, Desai S, et al. The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm [J]. Theor Appl Genet,1989,78:342-348
    369Shen YK. Some factors limiting photosynthesis in nature. In:Baltscheffsky M (ed). Current Research in Photosynthesis (Vol 4). Dordrecht:Kluwer Academic,1990,843
    370Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging [J]. Proc Natl Acad Sci USA,1994,91:1077-10778
    371 Shikanai T, Endo T, Yamada Y, et al. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I [J]. Proc Nat Acad Sci USA,1998,95:9705-9709
    372 Shoemaker RC, Specht JE. Intergration of the soybean molecular and classical genetic linkage groups[J].Crop Sci.,1995,35:436-446
    373Sillanpaa MA, Arjas E. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data [J]. Genetics,1998,148:1373-1388
    374 Singh RJ, Hymowitz T. The genomic relationship between Glycine max (L.)Merr. and G. Soja Sieb and Zucc, as revealed by pachytene chromosomal analysis [J]. Theor Appl Genet,1988,76: 705-711
    375Sisson VA, Miller PA, Campbell WV, et al. Evidence of inheritance of resistance to the Mexican bean beetle in soybeans [J]. Crop Sci,1976,16:835-837
    376Smirnoff N. Plant resistance to environmental stress [J]. Curr Opin Biotech,1998,9:214-219
    377Snape JW, Law CN, Parker B, et al. Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters [J].Theor Appl Genet,1985,71:518-526
    378 Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines [J]. Theor Appl Genet, 1976,47:35-39
    379 Song QJ, Nam Soo Kim. SSRFING:A basic computer program for DNA fingerprinting analysis with Microsatellite SSR information[J]. Korean Journal of Genetics,1998,20(1):29-34
    380 Song Q J, Marek LF, Shoemaker RC, et al. A new integrated genetic linkage map of the soybean. Theor Appl Genet,2004,109(1):122-128
    381 Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded b5-the rice disease resistance gene Xa2 [J]. Science,1995,270:180-1806
    382Sonoike K. Photoinhibition of photosystem I:its physiological significance in the chilling sensitivity of plants [J]. Plant Cell Physiol,1996,37:239-247
    383Specht JE, Chase K, Macrander M, et al. Soybean Response to Water:A QTL analysis of drought tolerance [J]. Crop sci,2001,41:493-509
    384Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap [J]. The Plant Journal,1993,3:739-744
    385Stuber CW, Moll RH. Frequency changes of isozyme alleles in a selection experiment for grain yield in maize [J].Crop Sci,1972,12:337-340
    386Stuber CW, Goodman MM, Moll RH. Improvement of yield and ear number resulting from selection at allozyme loci in maize populations [J]. Crop Sci,1982,22:737-740
    387Stuber CW, Edwards MD, Wendel JE. Molecular marker-facilitated investigations of quantitative trait loci in maize.II Factors influencing yield and its component traits [J]. Crop Sci, 1987,27:639-648
    388Tajuddin TS, Watanabe N, Yamanaka, et al. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines [J]. Breeding Sci,2003,53: 133-140
    389Talekar NS. Sources of resistance to insect of soybean in Asia [J].WSRC V, Funny Publishing Limited Partnership, Bangkok, Thailand (M).1994
    390Tanksley SD, Medina-Filho H, Rick CM. Use of naturally-occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato [J]. Heredity, 1982,49:11-25
    391 Tanksley SD, Hewitt JD. Use of molecular markers in breeding for soluble solids in tomato, a re-examination [J]. Genetics,1988,75:811-823
    392 Tanksley SD, Ganal MW, Martin GB. Chromosome landing:A paradigm for map based gene cloning in plants with large genomes [J]. Trends Genet,1995,11:63-68
    393 Tanksley SD. Mapping polygenes [J]. Annu Rev Genet,1993,27:205-233
    394Tasma IM, Shoemaker RC. Mapping flowering time gene homologs in soybean and their association with maturity (E) loci [J]. Crop Sci.,2003,43:319-328
    395Terry LI, Chase K, Jarvik T, et al. Soybean quantitative trait loci for resistance to insects [J]. Crop Sci,2000,40:375-382
    396 Terry LI, Chase K, Orf J, et al. Insect resistance in recombinant inbred soybean lines derived from non-resistant parents[J]. Entomol Experiment et Appli,1999,91:465-476
    397Thoday JM. Location of polygenes [J]. Nature,1961,22:368-370
    398 Thomas DJ, Thomas J, Youderian PA, et al. Photoinhibition and light-induced cyclic electron transport in ndhB- and psaE-mutants of synechocystis sp. PCC 6803 [J]. Plant Cell Physiol, 2001,42:803-812
    399Tjus SE, Andersson B. Loss of the trans-thylakoid proton gradient is an early event during photoinhibitory illumination of chloroplast preparations [J]. Biochim Biophys Acta,1993,1183: 315-322
    400Tjus SE, Scheller HV, Andersson B, et al. Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem Ⅱ [J]. Plant Physiol,2001.125:2007-2015
    401 Toojinda T, Siangliw M, Tragoonrung S, et al. Molecular genetics of submergence tolerance in rice QTL analysis of key traits. Annals of Botony,2003,91:243-253
    402Torjek O, Witucka-Wall H, Meyer HC, et al. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet,2006,113:1551-1561
    403 Tu ZP, Lin XZ. Huang QM, et al. Photosynhetic characterization of rice varieties in relation to growth irradiance [J]. Aust J Plant Physiol,1988,15:277-286
    404Tuinstra MR, Grote EM, Goldsbrough PB, et al. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor L [J]. Moench. Mol Breed, 1997,123:439-448
    405Ulloa M, Meredith WR Jr. Genetic linkage map and QTL analysis of gronomic and fiber quality traits in an intraspecific population [J]. J Cotton Sci,2000,4:161-170
    406 Van Duyn JW, Turnipseed SG, Maxwell JD. Resistance in Soybeans to the Mexican Bean Beetle I:Source of resistance [J]. Crop Sci,1971,11:572-573
    407 Van Ooijen JW, Voorrips RE. JoinMap Version 3.0:software for the calculation of genetic linkage maps [J]. CPRO-DLO,2001,Wageningen
    408 Vogl C. Xu SZ Multipoint mapping of viability and segregation distorting loci using molecular markers [J]. Genetics,2000,155:1439-1447
    409 Voorrips RE. MapChart:Software for the graphical presentation of linkage maps and QTLs [J]. The Journal of Heredity 2002,93:77-78
    410Walker D, Boerma HR, All J, et al. Combining crylAc with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests [J]. Mol Breed,2002,9:43-51
    411 Walker DR, Narvel JM, Boerma HR, et al. A QTL that enhances and broadens Bt insect resistance in soybean [J]. Theor Appl Genet,2004,109:1051-1057
    412 Wang BH, Guo WZ, Zhu XF, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica,2006,152 (3):367-378
    413 Wang CM, Zhu CS, Zhai HQ, et al. Mapping segregation distortion loci (SDL) and quantitative trait loci (QTL) for spikelet sterility in rice (Oryza sativa L.) [J]. Genet Res,2005,86:97-106
    414 Wang G, Graef GL, Procopiuk AM, et al. (C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merri. [J]. Theor Appl Genet, 1998,96:1086-1096
    415 Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University,2007, Raleigh, NC
    416 Wang H, Zhang YM, Li XM, et al. Bayesian shrinkage estimation of quantitative trait loci parameters [J]. Genetics,2005,170:465-480
    417 Wei H, Fu Y, Arora R. Intron-flanking EST-PCR markers:from genetic marker and genome size in plants [J], Molecular biology and evolution,2005,19,2346-2352
    418 Weller JI. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers [J]. Biometrics,1986,42:627-640
    419 Weller JI,Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato(Lycopersicon esculentum×Lycopersicon pimpinellifolium) by means of genetic markers [J].Genetics,1988,118:329-339
    420 Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers [J]. Nucleic Acids Res,1990.18,7213-7218
    421 Williams J, Kubelik A, Livak K, et al DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucl Acid Res,1990,18:6531-6535
    422 Wu W, Li W. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps [J]. Theor Appl Genet,1994,89:535-539
    423 Wu W, Li W. Model fitting and model testing in the method of joint mapping of quantitative trait loci [J]. Theor Appl Genet,1996,92:477-482
    424 Wu RL, Li M. Functional mapping:How to map and study the genetic architecture of dynamic complex traits [J]. Nat Rev Genet,2006,7:229-237
    425 Wu WR, Zhou Y, Li WM, et al. Mapping of quantitative trait loci based on growth models [J]. Theor Appl Genet,2002,105:1043-1049
    426Xiao JH, Li JM, Yuan LP, et al. Dominance is the major genetic basis of heterosis in rice as resealed by QTL analysis using molecular markers [J]. Genetics,1995,140:745-754
    427Xu S. Estimating polygenic effects using markers of the entire genome [J]. Genetics,2003,163: 789-801
    428 Xu S. A comment on the simple regression method for interval mapping. Genetics,1995,141: 1657-1659
    429 Xu S. Further investigation on the regression method of mapping quantitative trait loci. Heredity, 1998,80:364-373
    430 Xu S. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics,2007,63:513-521
    431 Xu SJ, Singh RJ, Hymowitz T. Establishment of a cytogenetic map of soybean:Progress and Prospective [J]. Soybean Genet Newslet,1997,24:121-122
    432Xu WW, Subudhi PK, Crasta OR, et al. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench) [J]. Genome,2000,43 (3):461-469
    433 Xu Y, Zhu L, Xiao J, et al. Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross double-haploid, and recombinant inbred populations in rice (Oryza sativa L.) [J]. Mol Gen Genet,1997,253:535-545
    434Xu YB, Shen ZT. Diallel analysis of tiller number at different growth stages in rice (Oiyza sativa L.) [J]. Theor Appl Genet,1991,83:243-249
    435Yamamoto T, Lin H, Sasaki T, et al. Identification of heading date quantitative trait locus characterization of its epistatic ihteractions with Hd2 in rice using advanced backcross Hd2 and progeny [J]. Genetics,2000,154:885-891
    436 Yan JQ, Zhu J, He CX, et al. Quantitative trait loci analysis for development behavior of tiller number in rice (Oryza sativa L)[J]. Theor Appl Genet,1998,97:267-274
    437 Yang RQ, Tian Q, Xu S. Mapping quantitative trait loci for longitudinal traits in line crosses [J]. Genetics,2006,173:2339-2356
    438 Yang J, Zhu J, Williams RW. Mapping the genetic architecture of complex traits in experimental populations[J]. Bioinformatics,2007,23:1527-1536
    439Yang J, Wu WR, Zhu J. Mapping interspecific genetic architecture in a host-parasite interaction system [J]. Genetics,2008,178:1737-1743
    440 Yi N, Diament A, ChiuS, et al. Characterization of epistasis influencing complex spontaneous obesity in the BSB model [J]. Genetics,2004,167(1):399-409
    441 Yi N, Yandell BS, Churchill GA, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis [J]. Genetics,2005,170 (3):1333-1344
    442 Yi N, Xu S. Bayesian LASSO for QTL mapping [J]. Genetics,179:1045-1055
    443 Yi N, George V, Allison DB. Stochastic search variable selection for identifying multiple quantitative trait loci [J]. Genetics,2003,164:1129-1138
    444Yildiz DH, Kazim A, Ismail C, et al. Inheritance of tolerance to leaf iron deficiency chlorosis in tomato. Euphytica,2004,139:51-57
    445Yoon MS. Song QJ.Choi IY, et al. BARCSoySNP23:a panel of 23 selected SNPs for soybean cultivar identification. Theor Appl Genet,2007,114:885-899
    446 Young ND, Miller J, Tanksley SD. Rapid chromosomal assignment of multiple genomic clones in tomato using primary trisomics [J]. Nucl Acid Res,1987,15:9339-9348
    447 Yu SB. Li JX, Xu CG, et al A Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid-Proc [J]. Natl Acad Sci USA,1997,94:9226-9231
    448 Yu YG, Maroof MAS, Buss GR, et al. Divergence and allelomorphic relationship of a soybean virus resistant gene on tightly linked DNA microsatellite and RFLP markers [J]. Theor Appl Genet,1996,92:64-69
    449 Yu YG, Maroof MAS, Buss GR, et al. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance [J]. Phytopathology,1994,84:60-64
    450 Yuan J, Njiti VN, Meksem K, et al. Quantitative trait loci in two soybean reeombinant inbred line Populations segregating for yield and disease resistance. CroPsei,2002,42:271-277
    451Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting:European Patent Office Publication,0535858AI [P].1993
    452Zeitkiewicz E, Rafalske A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genome,1994,20:178-183
    453 Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468
    454 Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci USA,1993,90:10972-10976
    455 Zhang WK, Wang YJ, Lou GZ, et al. QTL Mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers [J]. Theor Appl Genet,2004,108:1131-1139
    456 Zhang YM, Xu S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny [J]. Genetics,2004,166:1981-1993
    457Zhang YM, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL[J]. Heredity,2005,95:96-104
    458Zhang YM, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci [J]. Recent Res Dev Genet Breed,2005,2:1-23
    459Zhang YM. Advances on methods for QTL mapping in plants [J]. Chin Sci Bull,2006,51:2809-2818
    460Zhang YM, Lii HY, Yao LL, et al. Multiple quantitative trait loci Haseman-Elston regression using all markers on the entire genome. Theor Appl Genet,2008,117:683-690
    461 Zhang YM, Gai JY. Methodologies for segregation analysis and QTL mapping in plants. Genetica,2009,136:311-318
    462Zhang Z, Chen S, Gai J. A codominant SCAR marker linked to SMV resistance gene Rsa [J]. Soybean Genetics Newsletter,1998,25:27-28
    463 Zhu C, Wang C, Zhang YM. Modeling segregation distortion for viability selection I. Reconstruction of linkage maps with distorted markers [J]. Theor Appl Genet,2007,114:295-305
    464 Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics [J]. Genetics,1995,141:1633-1639
    465 Zhu S, Walker DR, Boerma HR, et al. Fine Mapping of a major insect resistance QTL in soybean and its interaction with minor resistance QTLs [J]. Crop Sci,2006,46:1094-1099