O_2/CO_2燃烧方式下300MW煤粉锅炉设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
O_2/CO_2燃烧技术是一种新型的清洁燃烧技术。在该燃烧气氛下,由于烟气中CO_2的浓度高达90%左右,使得烟气的传热特性发生了很大改变。本文利用灰气体加权和模型、Leckner数学式和指数宽谱带模型对高CO_2浓度的混合气体的辐射特性进行了计算分析。根据O_2/CO_2燃烧烟气组分的特点,选择合适的计算混合气体相关物性数据的计算公式,对该气氛下烟气的对流换热系数进行了计算和讨论。结合O_2/CO_2燃烧技术的特点,分析了该技术与常规空气燃烧技术之间的差异,得到了该气氛下锅炉机组的整体布置方案。以衡水厂300MW煤粉锅炉为原型,利用计算不过于繁琐、理论又比较成熟的指数宽谱带辐射模型和对流换热系数计算方法,进行了O_2/CO_2燃烧气氛下的锅炉设计的热力计算,得到了合理的受热面结构,并与原型锅炉结构进行了比较分析。
Oxy-fuel combustion technology is a new clean-combustion technology. The concentration of CO_2 in flue gas reaches 90% approximately. So the characteristics of heat transfer of flue gas have changed to a large extent. Radiative properties of mixture gas with high carbon dioxide concentration are calculated and analyzed by using the weighted sum of grey gases model, Leckner method which based on the narrow spectrum model and the exponential wide band model. According to the features of flue gas in O_2/CO_2 combustion, appropriate formulas are chose to calculate interrelated physical datas of gas mixture. Combined with the characteristics of O_2/CO_2 combustion, diffrences between this technology and air-fired technology are put forward and analyzed. The general overall layout of the boiler at this atmosphere is accomplished. Based on a coal-fired boiler of 300 MW of Hengshui power station, boiler thermodynamic calculation is carried out using EWBM which is mature and easy to compute in relative terms and the computation method of convention heat transfer. Then suitabal configurations of heating surface are obtained.
引文
[1]崔钟雷主编.自然百科.哈尔滨:黑龙江科学技术出版社,2006:189
    [2] Terry. F. Wall*. Combustion processes for carbon capture. Proceedings of the Combustion Institute, 2007: 31~47
    [3]郑楚主编.温室效应及其控制对策.北京:中国力出版社,2001:14~18
    [4] M. A. Benarde. Global Warming. New York, John Wiley & Sons, 1992: 1~4
    [5]何建坤,苏明山.全球气候变化问题与我国能源战略.中国环保产业,2002,35(1):60~63
    [6] H. Herzog, E. Drake. Long Term Advanced CO2 Capture Option. IEA Greenhouse gas R&D Prog., Cheltenham, UK, 1993
    [7] P. H. Feron, A. E. Jansen. Membrane Technology in Carbon Dioxide Removal. Energy Converse. Mgmt, 1992, 33: 421~428
    [8] D. Singh, E. Croiset, et al. Technoeconomic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycles combustion 2003, 44: 3073~3091
    [9] Ligang Zheng, Yewen Tan, Richard Pomalis, Bruce Clements. Integrated emissions control and its economics for advanced power generation systems. 31st International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, America, 2006
    [10]阎维平.洁净煤发技术.北京:中国力出版社,2002:217~222
    [11] Alan M. Wolsky, Edward J Daniels, Bassam J. Jody. Recovering CO2 from Large-and Medium-Size Stationary Combustors. J. Air Waste Manage. Assoc, 1991, (41): 449~454
    [12] H. J. Herzog, E. M. Drake. Carbon Dioxide Recovery and Disposal from Large Energy System. Annual Review Energy Environment, 1996, 21: 145~166
    [13] Wang C S, Berry G F, Chang K C, et al. Combustion of pulverized coal using waste carbon dioxide and oxygen. Combustion and Flame, 1998, 72: 301~310
    [14] K. Okazaki, T. Ando. NOx Reduction Mechanism in Coal Combustion with Recycled CO2. Energy, 1997, 22(2/3): 207~215
    [15] Koyata K, Tanaka T, KigaT, et a1. Pulverized coal combustion in O2/CO2 atmosphere. Eighth Annual International Pittsburgh Coal Conference, 1991, 10
    [16] Kilnura K, Kiga T, Miyamae S, et a1.Experimental studies on pulverized coal conbustion with oxygen/fuel gas recycle for CO2 recovery. JSME-ASME International Conference on Power Engineering93, 1993, 9
    [17] Nozakieta1, Nozaki, T, S, Takano, T. Kiga K, Omata and N. Kimura. The analysis of the flame in O2/CO2 pulverized coal combustion. Second International Symposium on CO2 Fixation and Efficient Utilization of Energy, 1995, 10
    [18] Klas Andersson, Filip Johnsson. Flame and Radiation Characteristics of Gas-fired O2/CO2 Combustion. Fuel 86, 2007: 656~668
    [19] Klas Andersson, Robert Johansson, et. Radiation Intensity of Lignite-fired Oxy-Fuel Flames. Experimental Thermal and Fluid Science 33, 2008: 67~76
    [20] Michael B Wilkinson, John C Boden, Raghbir S Panesar, Rodney J Allam. CO2 Capture via Oxyfuel Firing: Optimisation of a Retrofit Design Concept for a Refinery Power Station Boiler. First National Conference on Carbon Sequestration, May, 2001: 15~17
    [21] Kristin Jordal, Marie Anheden, Jinying Yan and Lars Stromberg. Oxyfuel Combustion for Coal-Fired Power Generation with CO2 Capture-Opportunities and Challenges. Greenhoues Gas Control Technologies, Volume I, 2005: 201~209
    [22]李庆钊,赵长遂,武卫芳,等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究.动力工程,2008,28(3):447~452
    [23]李英杰,赵长遂,段伦博.O2/CO2气氛下煤燃烧产物的热力学分析.热能动力工程,2007,22(3):332~335
    [24]陈传敏,赵长遂,庞克亮,等.O2/CO2气氛下燃煤过程中NOx排放特性实验研究.东南大学学报(自然科学版),2005,35(5):738~741
    [25]陈传敏,赵长遂,赵毅,等.O2/CO2气氛下燃煤过程中SO2排放特性实验.东南大学学报,2006,36(4):546~550
    [26]王宏,邱建荣,郑楚.燃煤在O2/CO2方式下SO2生成特性的研究.华中科技大学学报,2002,30(1):100~102
    [27]王宏,董学文,邱建荣,等.燃煤在O2/CO2方式下NOx生成特性的研究.燃料化学学报,2001,29(5):458~462
    [28]骆仲泱,毛玉如,吴学成,等.O2/CO2气氛下煤燃烧特性试验研究与分析.热力发,2004(6):14~18
    [29] Felske J D, Tien C L. Infrared Radiation from Non-homogeneous Gas Mixtures Having Overlapping Bands. J Quant Spectrosc Radiat Transfer, 1974, 14: 35~48
    [30] Y. U. Khan, D. A. LawsonA and R. J. TuckerU. Simple models of spectral radiative properties of carbon dioxide. Heat Mass Transfer, Vol.40, No.15: 3581-3593, 1997
    [31]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000
    [32]余其铮.辐射换热基础.北京:高等教育出版社,1990
    [33] B. Leckner. Spectral and Total Emissivity of Water Vapor and Carbon Dioxide. Combustion and Flame 19, 1972: 33~48
    [34]冯俊凯,沈幼庭,杨瑞昌主编.锅炉原理及计算.北京:科学出版社,2003
    [35]童景山编著.流体的热物理性质.北京:中国石化出版社,1996
    [36]德意志联邦共和国工程师协会与工艺与化学工程学会编.传热手册.北京:化学工业出版社,1983
    [37]刘美德,楼重义编.火力发厂热力学基础.水利力出版社,1988:302
    [38]南京化学工业公司设计院编写.硫酸工艺设计手册物化数据篇.化工部硫酸工业科技情报中心站,1994
    [39]宋贵良主编.锅炉计算手册(上).沈阳:辽宁科学技术出版社,1995
    [40]李庆钊,赵长遂.空气分离/烟气再循环技术基础研究进展.热能动力工程,2007,22(3):231~236
    [41] R. Payne, S. L. Chen, A. M. Wolsky, W. F. Richter. CO_2 Recovery via Coal Combustion in Mixtures of Oxygen and Recycled flue gas. Combustion Science and Technology, 1989, Vol. 67: 1~16
    [42] B. J. P. Buhre, L. K. Elliott, C. D. Sheng, et al. Oxy-fuel combustion technology for coal-fired power generation. Energy and Combustion Science 31, 2005: 283~307
    [43] Alejandro Molina, Christopher R. Shaddix. Ignition and Devolatilization of Pulverized Bituminous Coal Particles during Oxygen/Carbon Dioxide Coal Combustion. Proceedings of the Combustion Institute 31, 2007: 1905~1912
    [44] Yewen Tan, Eddy Chui, Mark Douglas, and Kelly Thambimuthu. Oxy-Fuel Coal Burner Design: From CFD Modeling to Pilop Scale Testing. Greenhouse Gas Control Technologies, Volume II: 1791~1795
    [45] Guo-neng Li, Hao Zhou, Ke-fa Cen. Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor. Zhejiang University Science Acta 2008, 9(11): 1582~1589
    [46] Suriyawong A et al. Submicrometer particle formation and mercury speciation under O_2–CO_2 coal combustion with carbon dioxide recycle. Energy Fuels 2006, 20(6): 2357~2363
    [47] Achariya Suriyawong, Christopher J. Hogan Jr., Jingkun Jiang, Pratim Biswas. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O_2–CO_2 coal combustion. Fuel 87, 2008: 673~682
    [48] Kourosh E. Zanganeh, Ahmed Shafeen. A novel process integration, optimization and design approach for large-scale implementation of oxy-fired coal power plants with CO_2 capture. International Journal of Greenhouse Gas Control I, 2007: 47~54
    [49]刘彦丰,薛宪阔.O_2/CO_2燃烧方式的锅炉热力计算方法研究与分析.华东力,2008,36(3):83~85
    [50]赵翔,任有中合编.锅炉课程设计.北京:水利力出版社(现中国力出版社),1996
    [51]吴存真,刘铎合编.热管在热能工程中应用.北京:水利力出版社,1993
    [52]王小华,刘豪,邱建荣,等.氧燃烧方式下煤粉锅炉辐射传热特性分析.热能动力工程,2009,24(1):85~88