基于AFM和硫系相变材料的超高密度数据存储机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,互联网、多媒体视频、高速计算机等技术的迅猛发展,使人们对更快速度、更大容量数据存储器的需求越来越迫切,然而传统的磁存储、光存储和半导体存储由于受到超顺磁效应、衍射现象和最小光刻单元的限制,存储密度很难进一步提高。基于扫描探针显微技术(SPM)的数据存储技术由于能够实现纳米尺度的信息存储,因此有望成为新一代的超高密度存储技术。基于此,本论文将光学存储中常用的硫系相变薄膜材料GeSb2Te4引入到SPM存储技术中,提出了基于热、电耦合效应的新型高密度数据存储方法,并对其存储机理及其它有关问题进行了详细研究。
     在分析硫系材料相变原理,以及作为存储介质的存储机理基础上,结合原子力显微镜(AFM)技术,提出了基于相变存储介质的探针存储系统模型,并对数据的写入、擦除、读取机理进行了阐述;自行搭建了一种新颖的基于扫描探针显微镜的相变存储实验装置,用来进行存储实验验证。
     发展了存储介质多层薄膜的制备方法,并通过实验对比和形貌分析,探索出薄膜制备的工艺路线和工艺参数。借助X射线衍射仪(XRD)、透射电子显微镜(TEM)、等离子发射光谱仪(ICP)等设备对GeSb2Te4薄膜的成分、状态及内部结构进行了详细分析,发现沉积态薄膜是非晶态,而随着退火温度的提高,会发生两次固体相转变,通过XRD表征可知第一次转变形成的是fcc结构,第二次形成的是hex结构,由此提出了GeSb2Te4材料的fcc结构和hex结构模型。利用经典形核理论对JMAK理论进行了优化,突破了其应用局限性,用相关公式预测了GeSb2Te4薄膜的形核时间和晶粒尺寸,以确定此种材料是否满足作为存储介质的要求;同时用优化的模型计算结果与实验结果相比较,具有较好的一致性。
     利用差示扫描量热(DSC)方法分析GeSb2Te4薄膜在不同退火温度,不同加热速度条件下的结构和热物性参数,并得到不同加热速度下的结晶温度和玻璃转化温度。利用四点探针测电阻方法测量了GeSb2Te4薄膜不同退火温度下的电阻率,发现沉积态薄膜的电阻率远远大于fcc结构和hex结构;另外,对薄膜的I-V特性和导电激活能也进行了比较全面的研究。应用TriboIndenter纳米力学测试系统考察了GeSb2Te4薄膜的硬度、弹性模量、粘附力和摩擦力等力学性能,并对溅射参数、薄膜厚度、相对湿度和表面粗糙度等对力学性能的影响进行了详细的分析;发现薄膜表面质量越好,硬度和弹性模量越高;相对湿度越高,探针针尖与薄膜表面的粘附力和摩擦力越大。采用ASC2000应力测试仪测量了薄膜的内应力,并研究了溅射功率和退火温度对薄膜表面残余应力的影响。
     基于相变探针存储系统原理,建立了用于有限元仿真的存储器结构模型以及热电耦合数学模型。在此基础上,利用多物理场耦合软件COMSOL Multiphysics模拟了施加不同宽度、幅值脉冲电压情况下的信息写入过程和擦除过程,通过分析电压对相变存储介质温度场的影响,找出合适的电压参数;并利用相变探针实验装置进行了实验验证。另外,对探针和导电层的电导率、热导率以及探针针尖直径对相变薄膜温度场的影响也进行了全面的分析,为后续工作中进一步优化存储系统结构提供了有力的支持。
     本论文研究成果可以应用于超高密度信息存储的设计,对于建立新型信息存储技术的理论体系具有重要意义。
With the rocketing development of technologies of the Internet, multimedia video,high speed computer etc, people have been in urgent need of the more higher speed and density data storage. But traditional magnetic storage, optical storage and semiconductor storage have their own physical limitations because of the superparamagnetic effect, diffraction and minimum lithography element size, so it is very difficult to further improved the data storage density. The data storage with the aid of scanning probe microscopy (SPM) can record the nano scale information, so it is expected to be a next generation ultra-high-density storage technology. For the above-mentioned reasons, the dissertation introduced the GeSb2Te4 film into the SPM technology, which is a kind of chalcogenide materials widespread used in optical storage, and provided a novel method of ultra high density storage technology based on the effect of thermoelectricity, and described its mechanism in detail, the main work includes four aspects as follows:
     The dissertation analyzed the mechanism of phase change in chalcogenide materials and the principle of information storage using such materials, and established the basic scheme of SPM storage based on the phase change films and the atomic force microscopy(AFM) technology, and elaborated the writing, erasing and readout data process. As well as, a phase change storage device based on SPM is also established in the lab, which can be used to carry out some storage experiments.
     On this base, a direct and convenient method for preparing GeSb2Te4 film by the RF magnetron sputtering has been developed, simultaneously, the optimum producing process and parameters were explored through experimentation and comparison with surface topography of films. Then, X-ray diffraction(XRD), transmission electron microscopy(TEM) and inductive coupled plasma emission spectrometer(ICP) were carried out to analyze the composition, interior structures and state of the GeSb2Te4 films. The results indicated that the deposited GeSb2Te4 film was amorphous, but with the increment of annealing temperature, two-stage process of phase transition was discovered, the first stage was transformation between the amorphous phase and the crystalline phase with fcc structure, and the other is the fcc-hex phase transition. The Johnson-Mehl-Avrami-Kolmogorov(JMAK) kinetics was optimized combining classical nucleation theory. The incubation time and crystallite cluster size was predicted based correlation equation in order to know the GeSb2Te4 films were suitable for use the storage medium or not.
     Differential Scanning Calorimetry(DSC) was carried out to analyze the thermo-physical parameters and structure on different annealing temperatures and heating rate, and achieved the crystallization temperature and glass transition temperature of different heating rate. The resistivity of films after annealing treatment were measured by four--probe method, it is showed that the resistivity of as-deposited films was far larger than the fcc and hex crystal structure. Besides, the dissertation also studied comprehensive research on theⅠ-Ⅴcharacteristics and the activation energy of films. Mechanical properties of GeSbTe films, including hardness, elastic modulus, adhesive and force friction, were investigated by TriboIndenter nanomechanical test system, and the effect of sputtering parameters, thickness, roughness and relative humidity on mechanical properties of films was taken into account simultaneously. Experimental results showed that quality of the surface of GeSb2Te4film will affect the hardness and elastic modulus. The effect on the adhesion and friction between the tip and GeSb2Te4 film increased with a rise of relative humidity. Moreover, the influence of sputtering power and annealing temperature on residual stress also were studied by ADC2000 stress test instrument.
     Based on the principle of the data storage using phase change medium and probe, this dissertation established the thermoelectricity coupled model and the memory structure model using for finite element analysis(FEA). The COMSOL Multiphysics, a multi-physical coupling field FEA software, was used to simulated the process of writing and erasing information. In order to conclude the appropriate voltage parameters, different amplitude and width pulse was applied to calculate the temperature field changes of phase change storage medium. Besides, the probe and conductive layer parameters, including electric conductivity, thermal conductivity, probe diameter and so on, influencing on the temperature field of films were evaluated too. All these provided the strong support for further improving the storage structure in subsequent research work.
     These results are expected to be useful for the design of ultra high-density data storage, and of significance for establishing a framework of theory of novel data storage technology.
引文
[1]H J Mamin and Ruger D. Thermomechanical writing with an atomic force microscope tip[J]. Appl. Phys. Lett,1992,61(8):1003-1005
    [2]John Heck et al. Ultra-high density MEMS probe memory device[J]. Microelectronic Engineering,2010, 87(5-8):1198-1203
    [3]Seagate Sees The Future:Storing The U.S. Library Of Congress On A 50-Cent Coin[EB/OL]. http://www.seagate.com/ww/v/index.jsp?locale=en-US&name=Seagate_Sees_The_Future:_Storing_T he_U.S._Library_Of_Congress_On_A_50-Cent_Coin&vgnextoid=7ec79e597d83e010VgnVCM10000 Odd04090aRCRD
    [4]沈全洪,徐端颐等.高密度蓝光存储及其扩展技术[J].光学技术,2005,31(6):921-927
    [5]SEOUL, GENEVA. Samsung Electronics and Numonyx Join Forces on Phase Change Memory[EB/OL]. http://www.samsung.com/us/business/semiconductor/newsView.do?news_id=1023
    [6]Young-Sik Kim, Seongsoo Jang, et al. Thermo-piezoelectric Si3N4 cantilever array on CMOS circuit for high density probe-based data storage[J]. Sensors and Actuators A:Physical,2007,135(1):67-72
    [7]The History Of Computer Memory [EB/OL]. http://pcplus.techradar.com/node/3063/
    [8]张美芳.信息记录与存储技术[M].北京:中国人民大学出版社,2007
    [9]Daniel E D, Mee C D, et al. Magnetic Recording—The First 100 Years[C]. NewYork:IEEEPress,1999
    [10]韦丹.磁信息存储技术的回顾与展望[J].物理,2004,9(33):646-651
    [11]廖专崇,黄俊义.存储技术的现状与未来[J].电子产品世界,2004,1:51-55
    [12]Read-only memory[EB/OL]. http://wapedia.mobi/en/Read-only_memory
    [13]http://flashrom.org/Flashrom
    [14]浅谈光存储的发展历史[EB/OL].http://www.topdisk.net/yejiezixun/2009/1025/1271.html
    [15]陈志伟,潘建斌.光存储技术发展的回顾与展望[J].河南科技,2006,10:57-57
    [16]An-Cheng Suna, Fu-Te Yuanb, Jen-Hwa Hsu. Evolution of structure and magnetic properties of sputter-deposited CoPt thin films on MgO(1:1:1) substrates:Formation of the L11 phase perpendicular magnetic recording[J]. Scripta Materialia,2009,61(7):713-716
    [17]H Kohlstedt, et al. Current status and challenges of ferroelectric memory devices[J]. Microelectronic Engineering,2005,80(17):296-304
    [18]Soon-CheolKong, AlanV.Sahakian, et al. High-Density Optical Data Storage Enabled by the Photonic Nanojet froma Dielectric Microsphere[J]. Jpn. J. Appl. Phys,2009,48(03A008):1-3
    [19]Harish Bhaskaran. Probe Storage-Concepts and Challenges[Z].2008 Report of IBM Corporation
    [20]B D Terris, H J Mamin, D Rugar, et al. Near-field optical data storage [J]. Appl. Phy. Lett,1996,68(2): 141-143
    [21]Skumryev V, Stoyanov S, Zhang Y, et al. Beating the superparamagnetic limit with exchange bias[J]. Nature,2003,423(6942):850-852
    [22]Haruki Yamane. Fe-Pt-MgO stacked films for perpendicular magnetic recording[J]. Journal of Magnetism and Magnetic Materials,2008,320(22):3064-3067
    [23]G P Lin, P C Kuo, K T Huang, et al. Self-assembled nano-size FePt islands for ultra-high density magnetic recording media[J]. Thin Solid Films,2010,518(8):2167-2170
    [24]P Grunberg, R Schreiber, Y Pang, et al. Layered Magnetic Structures:Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers[J]. Phy. Rev. Lett,1986,57(19):2442-2445
    [25]Z Y Leong, S G Tan, M B A Jalil, et al. Magnetoresistance modulation due to interfacial conductance of current perpendicular-to-plane spin valves[J]. Journal of Magnetism and Magnetic Materials,2007, 310(2):635-637
    [26]S Ikeda, J Hayakawa, Y Ashizawa, et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFcB/MgO/CoFeB pseudo-spin-valves annealed at high temperature[J]. Appl. Phys. Lett,2008,93(8):2508-2510
    [27]S Iwasaki. Perpendicular magnetic recording [J]. IEEE Trans. Magn,1980,16(1):71-76
    [28]Toshiba Leads Industry in Bringing Perpendicular Data Recording to HDD--Sets New Record for Storage Capacity With Two New HDDs[EB/OL]. http://www.toshiba.co.jp/about/press/2004_12/pr1401.htm
    [29]希捷出货业界首款2TB 6Gb/s SAS接口企业级硬盘[EB/OL].http://www.seagate.com/ww/v/index .jsp?locale=zh-CN&name=constellation-es-seagate-ships-first-2tb-pr&vgnextoid=799c8elbc5247210 VgnVCM1000001a48090aRCRD
    [30]C A Ross. Patterned magnetic recording media[J]. Annual Review of Materials Science,2001,31: 203-235
    [31]http://industry.ccidnet.com/art/140/20020827/23609_l.html
    [32]Zeitzoff PM.2007 International Technology Road maP:Mosfet Sealing Challenges[J]. Solid State Technology,2008,51(2):35
    [33]P M Zeitzoff. ITRS MOSFET Scaling Trends, Challenges, and Key Technology Innovations[EB/OL]. www.zettaflops.org/fec05/Peter-Zeitzoff.ppt
    [34]闪迪推出有史以来最大容量的SD卡——64GB的SANDISK ULTRA SDXC[EB/OL]. http://www.beareyes.com.cn/2/lib/201002/24/20100224227.htm
    [35]O Soichi, N Katsushi, N Hiroyuki, et al. Immersion lithography ready for 45 nm manufacturing and beyond[C]. Advanced semiconductor manufacturing conference,2007, (11-12):238-244
    [36]Tae-Kyung Kim, Sungnam Chang, Jeong-Hyuk Choi. Floating gate technology for high performance 8-level 3-bit NAND flash memory[J]. Solid-State Electronics,2009,53(7):792-797
    [37]王耘波,李东,郭冬云.几种新型非易失性存储器[J].电子产品世界,2004,2:75-77
    [38]刘波.硫系化合物随机存储器关键相变材料与器件单元工艺研究[D].上海:中国科学院上海微系统与信息技术研究所,2004
    [39]邵虞.半导体存储器期待再创辉煌[J].电子产品世界,2007,5:24-32
    [40]Simone Raoux, Robert M, et al. Phase change materials and their application to random access memory technology[J]. Microelectronic Engineering,2008,85:2330-2333
    [41]叶森斌.室温下工作的非易失性分子级存储单元的操作设计与分子动力学模拟[D].上海:复旦大学,2009
    [42]徐端颐.我国光存储技术基础研究的进展[J]记录媒体技术(B),2006,2:16-21
    [43]Hung-Chuan Mai, Tsung-Eong Hsieh, et al. Study of Al-Ti/Si bi-layer as the recording media for write-once HD-DVD optical disks[J]. Materials Chemistry and Physics,2009,113(2-3):680-684
    [44]Riccardo Castagna, Daniele E. Lucchetta, Francesco Vita, et al. Haloalkane-based polymeric mixtures for high density optical data storage[J]. Optical Materials,2008,30(12):1878-1882
    [45]E Betzig, J K Tautman, et al. Near-field magneto-optics and high density data storage [J]. Appl Phys Lett,1992,61:142-144
    [46]Mei Ling Lee, K Khine Win, Chee Lip Gan, Lu Ping Shi. Ultra-high-density phase-change storage using AINiGd metallic glass thin film as recording layer[J]. Intermetallics,2010,18(1):119-122
    [47]赵刚.基于SPM的超高密度信息存储关键技术研究[D].合肥:中国科学技术大学,2007
    [48]G Binnig, Heinrich Rohrer. Scanning tunneling microscope [J]. Phys. Acta,1982,55:726-728
    [49]Scanning probe microscopy[EB/OL]. http://en.wikipedia.org/wiki/Scanning_probe_micros-copy
    [50]A Stupnika, P Frankb, M. Leischb. Atom probe, AFM, and STM studies on vacuum-fired stainless steels[J]. Ultramicroscopy,2009,109(5):563-567
    [51]Jung-Hui Hsu, Shuo-Hung Chang. Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy[J]. Applied Surface Science,2010,256(6):1769-1773
    [52]Jianfeng Yuan, W Pei, T Hasagawa, et al. Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy [J]. Journal of Magnetism and Magnetic Materials,2008,320(5):736-741
    [53]宫建茹,万立骏,白春礼.扫描探针纳米加工技术的现状与发展趋势[J].大学化学,2003,18(1):7-11
    [54]R S Becker, J A Golovchenko, B S Swartzentruber. Atomic-scale Surface Modifications Using a Tunneling Microscope[J]. Nature,1987,325(6103):419-421
    [55]J W Park, D W Lee, N Takano. Diamond Tip Cantilever for Micro/Nano Machining Based on AFM[J]. Materials Science Forum,2006,505-507:79-84
    [56]Chien-Huang Tsaia, et al. Tip-induced local anodic oxidation on p-GaAs surface with non-contact atomic force microscopy[J]. Applied Surface Science,2007,254(5):1357-1362
    [57]Yun Liu, Jia Zhang. Nanolithography on SrRuO3 thin film surfaces by scanning tunneling microscopy [J]. Physica B:Condensed Matter,2010,405(7):1890-1893
    [58]Victoria L. Sedman, Stephanie Allen, Xinyong Chen, et al. Thermomechanical Manipulation of Aromatic Peptide Nanotubes[J]. Langmuir,2009,25(13):7256-7259
    [59]M T Cuberes, R Schlittler, J K Gimzewski. Room-Temperature Repositioning of individual C60 molecules at Cu steps:Operation of a Molecular Counting Device[J]. Appl. Phys. Lett.,1996, 69:3016-3018.
    [60]Benjamin W Chui. Microcantilevers for atomic force microscope data storage[M]. Boston:Kluwer Academic Publisher,1999
    [61]D M Eigler, E K Schweizer. Positioning single atoms with a scanning tunneling microscope[J]. Nature, 1990,344:524-526
    [62]Hailin Peng, Zhongfan Liu. Organic charge-transfer complexes for STM-based thermochemical hole burning memory[J]. Coordination Chemistry Reviews,2010,254(9-10):1151-1168
    [63]姜桂元,元文芳,温永强,高鸿钧,宋延林.基于扫描探针显微镜(SPM)的高密度信息存储[J].化学进展,2007,19(6):1034-1040
    [64]H F Hamann, Y C Martin, H K Wickramasinghe. Thermally assisted recording beyond traditional limits[J]. Appl. Phys. Lett,2004,84:810-812
    [65]J Y Kim, K B Song, K H Park.. Near-field optical readout combined with atomic force probe recording[J]. Jpn. J. Appl. Phys,2002,41:1903-1904
    [66]Yanlin Song, Daoben Zhu. High density data storage:principle, technology, and materials[M]. Beijing: Chinese Academy of Sciences,2009
    [67]K Yano, M Kyogaku, R Kuroda, et al. Nanometer scale conductance change in a Langmuir-Blodgett film with the atomic force microscope[J]. App. Phys. Lett,1996,68(2):188-190
    [68]E Eleftheriou, G Cherubini. Millipede—A MEMS-Based Scanning-Probe Data-Storage System[J]. IEEE Transactions on Magnetics,2003,39(2):938-945
    [69]The millipede project[EB/OL]. http://www.zurich.ibm.com/st/storage/concept.html
    [70]John Heck, Donald Adams, Nickolai Belov, et al. Ultra-high density MEMS probe memory device[J]. Microelectronic Engineering,2010,87:1198-1203
    [71]H Satoh, K Sugawara, K. Tanaka. Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes[J]. J. Appl. Phys,2006,99:024306-024312
    [72]Keiji Tanaka. Smallest(-10 nm) phase-change marks in amorphous andcrystalline Ge2Sb2Te5 films[J]. Journal of Non-Crystalline Solids,2007,353:1899-1903
    [73]C D Wright, M Armand, M M Aziz. Terabit-Per-Square-Inch Data Storage Using Phase-Change Media and Scanning Electrical Nanoprobes[J]. IEEE Transactions on Nanotechnology,2006,5(1):50-61
    [74]C D Wright, M Armand, M M Aziz. Scanning Probe-based Phase-Change Terabyte Memories[Z]. EPCOS,2008
    [75]L P Ma, Y L Song, H J Gao, et al. Nanometer-scale Recording on an Organic-complex Thin Film with Scanning Tunneling Microscope[J]. Appl.Phy.Lett,1996,69(24):3752-3753
    [76]Ying Ma, Yongqiang Wen, Jingxia Wang, et al. Photoelectric Cooperative High-Density Data Storage in an Organic Bilayer Thin Film[J]. J. Phys. Chem. C,2009,113(20):8548-8552
    [77]秦占波.有机功能分子的设计、合成及其超高密度信息存储特性研究[D].北京:北京化工大学,2007
    [78]相变存储器或将成为未来存储发展大趋势[EB/OL].http://tech.sina.com.cn/b/2010-07-28/115014-36726.shtml
    [79]宋志堂.相变存储器[M].北京:科学出版社,2010
    [1]H J Mamin, Ruger D. Thermomechanical writing with an atomic force microscope tip [J]. Appl. Phys. Lett,1992,61:1003-1005
    [2]Ying Ma, Yongqiang Wen, Jingxia Wang, et al. Photoelectric Cooperative High-Density Data Storage in an Organic Bilayer Thin Film[J]. J. Phys. Chem. C,2009,113(20):8549-8552
    [3]Keiji Tanaka. Smallest (-10 nm) phase-change marks in amorphous andcrystalline Ge2Sb2Te5 films [J]. Journal of Non-Crystalline Solids,2007,353:1899-1903
    [4]Mei Ling Lee, K. Khine Win, Chee Lip Gan, et al. Ultra-high-density phase-change storage using AlNiGd metallic glass thin film as recording layer[J]. Intermetallics.2010,18(1):119-122
    [5]凌云.用于相变存储器的硫系化合物及器件研究[D].上海:复旦大学,2006
    [6]英特尔与恒忆公布突破性相变存储器技术[EB/OL].http://article.pchome.net/content-994671.html
    [7]宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004
    [8]徐嘉庆.相变材料研究[D].北京:中国科学院研究生院,2007
    [9]S R Ovshinsky. Reversible electrical switching Phenomena in disordered structures[J]. Phys.Rev.Lett, 1968,21:1450-1453
    [10]S R Ovshinsky. An introduction to ovonic research[J]. J. Non-Cryst.Solids,1970,2:99-106.
    [11]Martijn H R Lankhorst, Bas W S M M Ketelaars, R A M Wolters. Low-cost and nanoscale non-volatile memory concept for future silicon chips[J]. Nature Materials,2005,4:347-352
    [12]D P Gosain, M Nakamura, T Shimizu, et al. Nonvolatile memory based on reversible phase transition phenomena in telluride glasses[J], Jap. J. Appl. Phys,1989,28:1013-1018
    [13]Kazuya N akayama, Kazuhiko K ojima. Nonvolatile Memory Based on Phase Change in Se-Sb-Te Glass[J]. Jpn.J.Appl.Phys,2003,42:404-408
    [14]J Robertson, K. Xiong, P W Peacock. Electronic and atomic structure of Ge2Sb2Te5 phase change memory material[J]. Thin Solid Films,2007,515(19):7538-7541
    [15]M H R. Lankhorst. Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials[J]. Journal of Non-Crystalline Solids,2002,297(2-3):210-219
    [16]Sin-Liang Ou, Po-Cheng Kuo, Shu-Chi Sheu. Crystallization mechanisms of (In15Sb85)100-xBix phase change recording thin film[J]. Materials & Design,2010,31(4):1688-1690
    [17]A Abu El-Fadl, M M Hafiza, M M Wakkad, et al. Electrical conductivity and crystallization kinetics of amorphous Ag10Te90 and Ag20Te80 thin films[J]. Solid State Sciences,2008,10(10):1416-1421
    [18]N A Hegab, H E Atyia. Conduction studies on amorphous InSbX3 (X=Te or Se) thin films[J]. Journal of Ovonic Research,2006,2(3):21-29
    [19]D Dimitrov, H P D Shieh. The influence of oxygen and nitrogen doping on GeSb2Te4 phase-change optical recording media properties[J]. Materials Science and Engineering,2004,107(2):107-112
    [20]Yin Zhang, Jie Feng, Zufa Zhang, et al. Characteristics of Si-doped Sb2Te3 thin films for phase-change random access memory[J]. Applied Surface Science,2008,254(17):5602-5606
    [21]Ting Zhang, Yan Cheng, Zhitang Song, et al. Comparison of the crystallization of Ge-Sb-Te and Si-Sb-Te in a constant-temperature annealing process[J]. Scripta Materialia,2008,58(11):977-980
    [22]原子力显微镜技术专题[EB/OL].http://www.spm.com.cn/afm_tech.shtml
    [23]赵刚.基于SPM的超高密度信息存储关键技术研究[D].合肥:中国科学技术大学,2007
    [24]白春礼,田芳,罗克.扫描力显微术[M].北京:科学出版社,2000
    [25]MultiMod SPM Instruction Manual[Z].1996-99 Digital Instruments, Veeco Metrology Group
    [26]H Kado, T M Tohda. Nanometer Scale Recording on Chalcogenide Films with an AFM[J]. Appl. Phys. Lett,1995,66:2961-2962
    [27]A Madam, M P Shaw. The Physics and Applications of Amorphous[M]. Boston:Semiconductors Academic Press,1988
    [28]H Satoh, K Sugawara, K Tanaka. Nanoscale phase changes in crystalline Ge2Sb2Te5 films using scanning probe microscopes[J]. J. Appl. Phys,2006,99(2):024306-024306
    [29]解国新.相变存储薄膜的制备与表征以及纳米加工方法和机理研究[D].镇江:江苏大学,2006
    [30]丁建宁,解国新,杨继昌等.扫描探针相变存储方法及其装置[P].中国专利:200410066138,2005,06,29
    [1]S Gidon, B Lemonnier, B. Rolland, et al. Electrical probe storage using Joule heating in phase change media[J]. Appl.Phys.Lett,2004,85(26):6392-6394
    [2]Yeau-Ren J, Ping-Chi T, Te-Hua F. Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy [J]. Microelectronic Engineering,2003,65:406-415
    [3]王劲松,叶高翔,许宇庆等.无规分形衬底上银薄膜的I-V特性[J].物理学报,1994,43(10):1688-1692
    [4]B B Mandelbrot. The Fractal Geometry of Nature[M]. New York:Freeman WH,1982
    [5]R Messier, J E Yehoda. Geometry of Thin-Film Morphology [J]. J. Appl.Phys,1985,58:3739-3746
    [6]H N Yang, Y P Zhao, A Chan, et al. Sampling-induced hidden cycles in correlated random rough surface [J]. Phys. Rev. B,1997,56(7):4224-4232
    [7]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004
    [8]朱华,葛世荣.摩擦力和摩擦振动的分形行为研究[J].摩擦学学报,2004,24(5):433-437
    [9]FENG Ying, Richard W S, Y Weichao, et al. The mechanism of texture formation during film growth: The roles of preferential sputtering and shadowing[J]. Appl Phys Lett,1996,69(20):3007-3009
    [10]ZHAO Ya-dun, QIAN Yi-tai, WC Yu, et al. Surface roughness of alumina films deposited by reactive r.f. sputtering[J]. The Solid Films,1996,286:45-48
    [11]解国新.相变存储薄膜的制备与表征以及纳米加工方法和机理研究[D].镇江:江苏大学,2006
    [12]Stepan Kyrsta, Rainer Cremer, Dieter Neuschu. Characterization of Ge-Sb-Te thin films deposited using a composition spread approach[J]. Thin Solid Films,2001,398-399:379-384
    [13]E Morales-Sanchez, E F Prokhorov, J.Gonzalez-Hernandez, et al. Structural, electric and kinetic parameters of ternary alloys of GeSb2Te4[J]. Thin Solid Films,2005,471(1-2):243-247
    [14]Huai-Yu Cheng, Kin-Fu Kao, Chain-Ming Lee. Crystallization kinetics of Ga-Sb-Te films for phase change memory[J]. Thin Solid Films,2008,516(16):5513-5517
    [15]W Welnic, A Pamungkas, R Detemple, et al. Unravelling the interplay of local structure and physical properties in phase-change materials[J]. Nature materials,2005,5:56-62
    [16]A V Kolobov, P Fons, J Tominaga, et al. Local structure of Ge-Sb-Te and its modification upon the phase transition[J]. Journal of Ovonic Research,2005, 1(1):21-24
    [17]T Matsunaga, N Yamada. Structural investigation of GeSb2Te4:A high-speed phase change material[J]. Phys. Rev. B,2004,69(10):104111-104118
    [18]Mihai Popescu. Structural modeling of ovonic materals[J]. Journal of Ovonic Research,2006,2(4): 45-52
    [19]B Hyot, X Biquard, L Poupinet. Local structure of amorphous and crystalline GeTe and GeSb2Te4[EB/OL]. http://www.epcos.org/library/papers/pdf_2001/Hyot.pdf
    [20]B Sa, N Miao, J Zhoua, et al. Ab initio study of the structure and chemical bonding of stable Ge(3)Sb(2)Te(6)[J]. Phys Chem Chem Phys,2010,12(7):1585-1592
    [21]Alexander V. Kolobov, Paul Fons, Anatoly Frenkel, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials,2004,3:703-708
    [22]A H Edwards, et al. Electronic structure of intrinsic defects in crystalline germanium telluride[J]. Phys. Rev. B,2006,73(4):045210-045222
    [23]A Pirovano, A L Lacaita, A Benvenuti, et al. Electronic switching in phase-change memories[J]. Electron Devices, IEEE Transactions on,2004,51(3):452-459
    [24]Matthias Wuttig, Daniel Lusebrink, Daniel Wamwangi. The role of vacancies and local distortions in the design of new phase-change materials[J]. Nature Materials,2007,6:122-128
    [25]V Weidenhof, I Friedrich, S Ziegler, et al. Laser induced crystallization of amorphous Ge2Sb2Te5 films [J]. J.Appl.Phys,2001,89(6):3168-3173
    [26]G Ruitenberg, A K Petford-Long, R C Doole. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films[J]. J.Appl.Phys,2002,92(6):3116-3224
    [27]C D Wright, M Armand, M M Aziz. Terabit-Per-Square-Inch Data Storage Using Phase-Change Media and Scanning Electrical Nanoprobes[J]. IEEE Transactions on Nanotechnology,2006,5(1):50-61
    [28]N Ohshima. Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films[J]. J. Appl. Phys,1996,79(11):8357-8363
    [29]S Senkader, C D Wright. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices[J]. J. Appl. Phys,2004,95(2):540-511
    [30]宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004
    [31]D T Wu. Nucleation Theory[J]. Solid State Phys,1996,50:37-187
    [32]S Nagpal, P K Bhatnagar. Estimation of Incubation Time for the Erasure Process in Phase Change Materials for Optical Memories[J]. Phys. Status. Solidi,1997,161(1):59-64
    [33]K F Kelton, A L Greer. Transient nucleation effects in glass formation[J]. J. Non-Cryst. Solids, 1986,79(3):295-309
    [34]E Morales-Sanchez, E F Prokhorov, Mendoza Galvan. Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 films[J]. J. Appl. Phys,2002,91(2):697-702
    [1]杜廷发.现代仪器分析[M].北京:国防科技大学出版社,1994
    [2]J Llopiza, M M Romerob, A Jerez, et al. Generalization of the kissinger equation for several kinetic models[J]. Thermochimica Acta,1995,256(2):205-211
    [3]L Tichy, H Ticha. Covalent Bond Approach to the Glass transition Temperature of Chalcogenide Glasses[J]. J.Non-Cryst.Solids,1995,189(1-2):141-146
    [4]Haitao Guo, Haizheng Tao, Yueqiu Gong, et al. Preparation and Properties of Chalcogenide Glasses in the GeS2-Sb2S3-CdS System[J]. J. Non-Cryst Solids,2008,354(12-13):1159-1163
    [5]Jozef Biceranoa, Stanford R Ovshinsky. Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties[J]. J. Non-Crystalline Solids,1985,74(1):75-84
    [6]A Tverjanovich. Calculation of viscosity of chalcogenide glasses near glass transition temperature from heat capacity or thermal expansion data[J]. J. Non-Crystalline Solids,2002,298(2-3):226-231
    [7]M H R Lankhorst. Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials[J]. J. Non-Crystalline Solids,2002,297(2-3):210-219
    [8]刘新福.半导体测试技术原理与应用[M].北京:冶金工业出版社,2007
    [9]D Nesheval, I P Kotsalasa, C Raptisa, et al. On the structural stability of amorphous Se/CdSe multilayers:a Raman study[J]. J. Non-Cryst. Solids,1998,224(3):283-290
    [10]S Privitera, E Rimini, C Bongiorno. Crystallization and phase separation in Ge2+xSb2Te5 thin films [J]. J. Appl. Phys,2003,94(7):4409-4413.
    [11]Stefan Lai. OUM-A 180nm Non-Volatile Memory Cell Element Technology For Stand Alone and Embedded Applications[C]. Electron Devices Meeting, IEDM Technical Digest,2001
    [12]Junji Tominaga, Nobufumi Atoda. Study of the Crystallization of GeSb2Te4 Films by Raman Spectroscopy[J]. Jpn. J. Appl. Phys,1999,38(3B):L322-L323
    [13]凌云.用于相变存储器的硫系化合物及器件研究[D].上海:复旦大学,2006
    [14]Madhu, BJ Jayanna, H S Asokan, et al.The composition dependence of electrical switching behavior of Ge7Se93-xSbx glasses[J]. J. Non-Crystalline Solids 2009,355(52-54):2630-2633
    [15]刘波.硫系化合物随机存储器关键相变材料与器件单元工艺研究[D].上海:复旦大学,2004
    [16]Rajesh Kumar, Akira Yoshida, R M Mehra. Physical properties of amorphous Ge2oSb25-xBixSe55 thin films[J]. J. Non-Crystalline Solids,1991,130(3):248-255
    [17]A M Durachenko, E Ya Malinochka. Nonequilibrium Structure Formation of Noncrystalline Tellurium-Germanium Alloys[J]. J. Structural Chemistry,2001,42(2):227-232
    [18]V Sharma, A Thakur, J Sharma, et al. Electrical properties of a-Se85-xTe15Snx thin films[J]. J. Non-Cryst.Solids,2007,353(13-15):1474-1477
    [19]Zishan Husain Khan, M Husain. Electrical and optical properties of thin film of a-Se70Te30 nanorods[J]. J.Alloys and Compounds,2009,486(1-2):774-779
    [20]A S Soltan. Thermal annealing dependence of the optical and electrical properties of amorphous Se79Te15Sb6 thin films[J]. Appl. Phys. A,2005,80(1):117-121
    [21]K S Bindra, Nikhil Suri, R Thangaraj. Effect of annealing on the structure and optical properties of a-Se-Sb-Ag thin films[J].2006,3(9):133-138
    [22]邵楠,李戈扬.力学探针及其在薄膜力学性能测量上的应用[J].热处理,2002,17(3):1-5
    [23]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2005
    [24]C Bumkyoo. Improved analysis of microbeams under mechanical and electrostatic loads[J]. J.Micromech.Microeng,1997,7:24-29
    [25]丁建宁,解国新,范真,付永忠等.溅射功率对GeSb2Te4膜形貌及力学性能的影响[J].江苏大学学报(自然科学版),2005,265(5):372-375
    [26]A Makishima, J D Mackenzie. Hardness Equation for Ormosils [J]. J. Sol-Gel Science and Technology, 2000,19:627-630.
    [27]K Hirota, K Nagino, G Ohbayashi. Local structure of amorphous GeTe and PdGeSb2Te4 alloy for phase change optical recording [J]. J Appl Phys,1997,82(1):65-70.
    [28]V N Koinkar, B Bhushan. Effect of scan size and surface roughness on microscale of the film's friction coefficient[J]. J Appl Phys,1997,81(6):2472-2479.
    [29]Y Song, R P Nair, M Zou, et al. Adhesion and friction properties of micro/nano-engineered superhydrophobic/hydrophobic surfaces[J]. Thin Solid Films,2010,518(10):3801-3807
    [30]Scherge.微/纳米生物摩擦学[M].北京:机械工业出版社,2004
    [31]M Zou, L Cai, H Wang. Adhesion and friction studies of a nano-textured surface produced by spin coating of colloidal silica nanoparticle solution[J]. Tribology Letters,2006,21(1):25-30
    [32]S Kim, H K Christenson, J E Curry. OTE-monolayer-coated Surfaces in Humid Atmospheres-Influence of Capillary Condensation on Surface Deformation and Adhesion[J]. J.Phys.Chem.B,2003, 107(16):3774-3781.
    [33]M Tagawa, M Ikemura, Y Nakayama, et al. Effect of water adsorption on microtribological properties of hydrogenated diamond-like carbon films[J]. Tribology letters,2004,17(3):575-580
    [34]H Ichimura, Y Ishii. Effect of indenter radius on the critical load in scratch testing[J]. Surface and Coatings Technology,2003,165(1):1-7.
    [35]虞益挺,苑伟政,乔大勇.微机械薄膜残余应力研究[J].精细加工技术,2005,2:46-50
    [36]T P Leevard Pederson, J Kalb, W K Njoroge, et al. Mechanical stresses upon crystallization in phase change materials[J]. Appl. Phys. Lett,2001,79(22):3957-3959
    [37]C Popov, S Boycheva, P Petkov, et al. Stress formation in evaporated amorphous Ge-Se and Ge-Se-Ga(Tl, B) thin films[J]. Thin Solid Films,2006,496(2):718-723
    [38]周明飞,宋学萍,孙兆奇.基底温度对磁控溅射制备ZnO薄膜性能的影响[J].材料科学与工程学报,2007,25(4):598-601
    [39]杨帆,费维栋,蒋建清.X射线衍射技术在薄膜残余应力测量中的应用[J].功能材料,2007,11(38):1745-1749
    [40]Il-Mok Park, Jung-Kyu Jung, Sang-Ouk Ryu, et al. Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory[J]. Thin Solid Films,2008, 517:848-852
    [41]L Krusin-Elbaum, C Cabral Jr, K N Chen, et al. Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the "phase-change" stress[J]. Appl. Phys. Lett,2007,90(14):141902-141904
    [1]Bernhard Schmithusen. Phase-Change Memory Simulations Using an Analytical Phase Space Model[C]. IEEE,2008,3(6):1-4
    [2]GONG Yue-Feng, LING Yun, et al. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin.Phys.Lett,2008, 25(9):3455-3458
    [3]Dae-Hwang Kim, Florian Merget. Three-dimensional simulation model of switching dynamics in phase change random access memory cells[J]. J. Appl Phys,2007,101(6):064512-064521
    [4]李卓球,张雄.焦耳内热源温度场求解的分离变量法[J].武汉理工大学学报,2004,26(11):71-74
    [5]刘新福.半导体测试技术原理与应用[M].北京:冶金工业出版社,2007
    [6]I Freidrich, V Weidenhof, W Njoroge, et al. Structural transformations of GeSb2Te4 films studied by electrical resistance measurements[J]. J. Appl. Phys,2000,87(9):4130-4134
    [7]V Weidenhof, I Friedrich, S Ziegler, et al. Laser induced crystallization of amorphous GeSb2Te4 films[J]. J. Appl. Phys,2001,89(6):3168-3176
    [8]G Ruitenberg, A K Petford-Long, R C Doole. Determination of the isothermal nucleation and growth parameters for the crystallization of thin GeSb2Te4 films[J]. J.Appl.Phys,2002,92(6):3116-3123
    [9]J R Bosnell, C B Thomas. Preswitching electrical properties,'forming', and switching in amorphous chalcogenide alloy threshold and memory devices[J]. Solid State Electron,1972,15(11):1261-1271
    [10]C W Jeong, D H Kang, D W Ha, et al. Writing current reduction and total set resistance analysis in PRAM[J]. Solid-State Electronics,2008,52:591-595
    [11]C David Wright, Marilyn Armand, Mustafa M. Aziz. Terabit-Per-Square-Inch Data Storage Using Phase-Change Media and Scanning Electrical Nanoprobes[J]. IEEE Transactions on Nanotechnology, 2006,5(1):50-61
    [12]C Peng, L Cheng, M Mansuripur. Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media[J]. J.Appl.Phys,1997, 82(9):4183-4191
    [13]Y T Kim, et al. Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations[J]. Jpn. J.Appl.Phys,2005,44:2701-2705