医疗废物中典型组分的热解焚烧特性及回转式流化冷渣三段焚烧系统的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展,医疗废物的产生量逐年增加。因医疗废物含有大量的细菌和病毒,具有传染性,以焚烧法为代表的热化学处理技术已成为我国处理医疗废物的首选方法,而回转窑所具有的广泛物料适应性,使其成为我国医疗废物处理规划中的主要焚烧炉型。
     依托国家863计划重点项目(2007AA061302)和浙江省重大科技专项(2007C13084),本文开展了医疗废物热解焚烧特性和回转窑系统内的的运动和焚烧炉内流场的基础研究。本文主要内容包括三部分:对医疗废物的热解焚烧开展基础特性研究;对医疗废物在回转窑焚烧系统内的运动和流场进行分析;并在处理医疗废物的回转式流化冷渣三段焚烧系统进行试验研究,为现有的医疗废物热处置研究提供有益的补充,并为优化回转窑焚烧系统提供帮助。
     (1)、医疗废物的热解焚烧特性:采用化学热力学平衡模拟和热重-红外联用实验分析手段对医疗废物中的三大类型七种组分进行热解焚烧特性的研究。采用化学热力学平衡模拟得到不同医疗废物组分在热解、气化和焚烧工况下的产物及变化趋势。对医疗废物中的Cl、N和S可能产生的污染性气体进行分析,得到当医疗废物中氯的质量比小于0.1%时,即使不使用脱氯方法亦可使HCl的排放达到国家标准,而高氯质量比的医疗废物在低温焚烧时,还有Cl2单质产生。与此同时,N和S所产生的污染性气体的问题远不如Cl产生的HCl问题显著。
     通过热重-红外联用实验分析手段,得到医疗废物各组分在热解和焚烧工况下,各析出产物随温度的变化趋势。其中纤维类组分的热解气体在520℃前全部析出,热解气组成复杂,主要有CO2、CO、H20、酸类如乙酸,醛类,酮类和烃类物质。高分子类组分的热解气在约570℃的前全部析出,其热解气的组成种类较为单一,除了PVC的热解中析出HCl,其它主要为烃类,包括不饱和烯烃和饱和烷烃。易腐有机质的热解气全部析出所需要的温度为614℃,热解气主要由NH3、HCN、酸类、CO2、CH4和饱和烃类组成。
     在混合组分的热解中,PVC的加入对纤维类各组分和易腐有机质组分的热解产生较大影响。一方面通过热力学平衡分析可知,当医疗废物中氯质量比大于0.1%时,HCl的排放就可能超出国家标准,另一方面,在医疗废物的焚烧过程中,HCl造成的酸性气体腐蚀和不能达标问题较为严重。在医疗废物热解焚烧基础特性部分,亦对高含氯量的PVC和模拟医疗废物的HCl排放及脱氯效果进行了随温度的连续分布研究。
     通过对各组分的热重结果进行分析,得到各组分整体反应表观动力学模型中的机理函数,而对各组分的热解气的析出进行分析,得到各组分析出产物的分布式活化能模型。
     (2)、叙述了料床在回转窑内的运动模式和以壁面摩擦系数、填充料和Froude数表达的模式变化判断标准,通过拟流体模型,研究了回转窑转速和:颗粒摩擦角对料床的活动层的倾角、活动层高度和颗粒运动速度的影响。随着转速的提高和颗粒摩擦角的增加,料床活动层高度呈增加的趋势,料床活动层的倾斜角和活动层的面积增加,随着转速的提高,活动层内颗粒的运动速度增加,且在料床活动层的表面,颗粒有最大的运动速度。
     通过商用软件Fluent,综合考虑了k-ε双方程模型,P1辐射模型,气相的漩涡破碎模型/有限化学反应模型,并通过UDF增加对固定碳燃烧的考虑,对回转窑系统的焚烧流场进行分析,得到整个系统中温度最高的区域可能出现在窑和二燃室的接口位置,而窑头的漏风对窑内的温度和组分场有较大影响,对于二燃室内的燃烧,二次风的影响远大于三次风的影响,通过额定工况的计算和变工况的对比,得到窑内配风和二燃室配风的最佳结合,以及变工况对系统出口温度和烟气组成的影响。
     (3)、介绍了由浙江大学热能所开发的危险废物回转式流化冷渣三段焚烧炉系统,通过该系统的试验研究,得到了医疗废物焚烧时的烟气成份,灰渣成份,重金属和污染物排放等基础特性,并对焚烧装置运行中的控制参数之间,对烟气排放的影响进行相关性分析,表明温度依然是医疗废物焚烧中,影响整个系统运行工况好坏的重要参数。
The amount of medical waste(MW) increases as the development of the economy, which contains a great quantity of bacteria and viruses. Among current technologies, thermal treatment especially the incineration has been found to be widely used in China. At the same time, rotary kiln is used as an important kind of incinerator due to its flexible feedstock capability.
     Funded by National High Technology Research and Development Key Program of China(2007AA061302) and Important Project on Science and Technology of Zhejiang Province of China(2007C 13084), the study of pyrolysis and incineration of MW, including numerical simulation of three-stage rotary kiln system, were carried out. Based on the pyrolysis and incineration mechanism of MW(TG-FTIR), numerical simulation on three-stage of rotary kiln system was studied by FLUENT. Finally, a new three-stage rotary kiln incinerator system for MW pyrolysis and incineration was put forward, and experiments on this disposal system were carried out.
     Experimental investigate of pyrolysis and incineration characteristic of MW is introduced in PartⅠ. Pyrolysis and incineration kinetics also volatile releases of seven typical components of MW were thoroughly studied through complex chemical equilibrium analysis and TG-FTIR system. The products of MW under pyrolysis, gasification and incineration were got by chemical equilibrium analysis. According to the investigation of pollutant product from Cl, N and S, HCl concentration was higher than N and S pollutant, the HCl in the flue gas could meet the need of National standard without scrubber, when less than 0.1% of Cl in MW. At the same time, Cl2 formatted when MW with high Cl composition incinerated at low temperature.
     The distribution of volatile release of MW was got by TG-FTIR. All volatile from cellulose released before 520℃, including CO2, CO, H2O, acid such as acetic acid, aldehyde such as benzaldehyde, ketone such as 2-butanone, and also hydrocarbon. All volatile from plastic released before 570℃, mainly including hydrocarbon, except HCl released from PVC pyrolysis and incineration. All volatile from tissue released before 620℃, including NH3, HCN, acid, CO2 and hydrocarbon. The kinetic mechanism of seven components of MW was got through TG and distributed activation energy model was set up for volatile release.
     For the mixture of MW, the effect on PVC to cellulose and tissues was greater than that to plastic. On one hand, from to the chemical equilibrium analysis, HCl in flue gas would exceed the need of National standard when more than 0.1% of Cl in MW. On the other hand, HCl is harmful and corrosive, either directly or indirectly formation highly toxic dioxins and furans in the furnace effluent. Thus, the pyrolysis and incineration of PVC and MW was timely and continuous analyzed, HCl removal efficiency and Ca-based additives were quantitatively studied.
     Numerical simulation of three-stage rotary kiln system is introduced in Part II. After reviewed the motion of particle in the transverse plane of rotary kiln, including the effect of wall friction, filling ratio and Froude and its functions. The effect of rotate speed, friction angle of wall of the active layer and velocity of particle were studied through Euler-Euler model. From the computation result, the height, slope and area of active layer increased as the increase of rotation speed and friction angle. The particle velocity increased as the increase of rotation speed, and the maximum speed was found at the surface of active layer.
     A physical-chemical process inside three-stage rotary kiln incinerator was performed with Computational Fluid Dynamics(CFD) code(FLUENT). Standard k-εturbulent model, finite rate/eddy-dissipation reaction model and P1 radiation model were chosen, as well as the char burnout were consider through UDF. From the analysis of the three-stage incinerator, the highest temperature appeared at the connection between rotary kiln and secondary chamber, the effect of leak air from the head of kiln, as well as secondary air and fluidized air to the whole system were analyzed, the fitting arrange of secondary air and the suitable ratio between secondary air and fluidized air were got.
     Introduce the engineering project of three-stage incinerator system is introduce in PartⅢ, the system was developed by State Key Laboratory of Clean Energy Utilization in Zhejiang University, which linked rotary kiln with secondary chamber. Experiments on this disposal system were carried out, including the characteristic of flue gas, fly ash, bottom ash, heavy metal and dioxin. From the experiment results, we could found that this three-stage incinerator system was suitable for medical waste incineration. According to the analysis of relation among the operation parameters, temperature was the most important parameter to the whole system.
引文
1. 国家环保总局,全国危险废物和医疗废物处置设施普查技术报告[J/OL].2006.http://www.sepa.gov.cn/plan/jsgh/gzjb/200612/t20061221_97594.htm
    2. 国家环保总局,全国危险废物和医疗废物处置设施建设规划实施工作简报第19期[J/OL].2006.http://www.zhb.gov.cn/plan/jsgh/.
    3. 国家环保总局,发展改革委,《全国危险废物和医疗废物处置设施建设规划》[J/OL].2003. http://www.sepa.gov.cn/plan/jsgh/gzjb/
    4. 赵有才,张全,蒲敏,医疗废物管理与污染控制技术[M].北京:化学工业出版社,2001.
    5. Diaz, L.F., G.M. Savage, and L.L. Eggerth, Alternatives for the treatment and disposal of healthcare wastes in developing countries[J]. Waste Management,2005.25(6):626-637.
    6. Huang, H. and L.Tang, Treatment of organic waste using thermal plasma pyrolysis technology [J]. Energy Conversion and Management,2007.48(4):1331-1337.
    7. 王建伟,杨建,李荣光,采用热等离子体系统处理医疗垃圾[J].锅炉技术,2006.37(1):63-66.
    8. Edward Krisiunas, M., CIC,MPH, Emerging technologies for the treatment of medical waste[J/OL].1996. http://unjobs.org/tags/waste-treatment
    9. 周丰,刘永,郭怀成,等,医疗废物完全处理技术优选方法[J].环境科学,2006.27(6):1252-1256.
    10. Marinkovic, N., et al., Management of hazardous medical waste in Croatia[J]. Waste Management,2008.28(6):1049-1056.
    11. Jang Y.C, L.C., Yoon O.S., Kim H., Medical waste management in Korea[J]. Journal of Environmental management,2006.80(1):107-115.
    12. Da Silva, C.E., et al., Medical wastes management in the south of Brazil[J]. Waste Management,2005.25(6):600-605.
    13. Health Care Without Harm, W., DC, Non-incineration medical waste treatment technologies[J/OL].2001.8. http://www.noharm.org/nonincineration
    14. Duan, H., et al., Hazardous waste generation and management in China:A review[J]. Journal of Hazardous Materials,2008.158(2-3):221-227.
    15. Huang, M.-C., Lin,J.J., Characteristics and management of infectious industrial waste[J]. Waste Management,2008.28(11):2220-2228.
    16. 庄卫红,常州市不同类型医疗机构医疗废弃物处置情况调查[J].上海预防医学杂志, 2005.17(11):550-551.
    17. 庄维强,刘爱军,泰安市医疗废物的特性研究[J].四川环境,2005.24(2):32-34.
    18. Lee, C.C. and G.L. Huffman, Medical waste management/incineration[J]. Journal of Hazardous Materials,1996.48(1-3):1-30.
    19. Aristizabal, B., et al., Baseline levels of dioxin and furan emissions from waste thermal treatment in Colombia[J]. Chemosphere,2008.73(1):S171-S175.
    20. Nemathaga, F., S. Maringa, and L. Chimuka, Hospital solid waste management practices in Limpopo Province, South Africa:A case study of two hospitals[J]. Waste Management, 2008.28(7):1236-1245.
    21. 王承智,祁国恕,孙娟,等,LFX-20型逆燃式医疗废物焚烧炉二恶英实测分析[J].中国安全科学学报,2008.18(7):149-155.
    22. 孟宝峰,崔钧,王宇,医疗废物热解焚烧处理技术探讨[J].中国环保产业,2006.8:34-37.
    23. 王玉如,白广彬,白庆中,医疗废物热解特性及产物性质研究[D].清华大学,硕士学位论文,2007年6月.
    24. 王玉如,白广彬,白庆中,模拟医疗废物在TG-DTA-FTIR上的热失重特性研究[J].环境科学,2007.28(7):1637-1643.
    25. 沈逍江,医疗废物回转窑热解焚烧处置研究[D].浙江大学,博士学位论文,2005年11月:27-51.
    26. 薛浩栋,危险废弃物重金属迁移和控制机理研究[D].浙江大学,硕士学位论文,2006年3月.
    27. 李剑,典型医疗废物组分的热解及气化特性研究[D].浙江大学,硕士学位论文,2004.2月:29-50.
    28. 苏鹏宇,医疗废物典型组分的热解特性研究[D].浙江大学,硕士学位论文,2005年3月.
    29. 孙振鹏,医疗废物典型组分的热解及焚烧过程氯的迁移规律[D].浙江大学,硕士学位论文,2006年3月.
    30. 陈静,张于峰,邓娜,等,医疗垃圾外热式固定床热解气化技术[J].煤气与动力,2006.26(11):26-30.
    31. 邓娜,张于峰,马洪亭,医疗废物中输液管(含PVC)与纱布(含纤维素)的混合热解特性[J].天津大学学报,2007.40(11):1372-1376.
    32. 刘汉桥,蔡九菊,齐鹏飞,等,两种医疗垃圾焚烧炉的灰渣特性研究[J].环境科学学报,2006.26(12):2026-2032.
    33. 冉景煜,固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验[D].重庆大学,博士学位论文,2003年10月.
    34. 王华,卿山,医疗废物焚烧技术基础[M].冶金工业出版社,2007.
    35. 赵春,医疗垃圾焚烧处理技术探讨[J].北方环境,2001(3):45-48.
    36. 张敖定,城市医疗垃圾集中焚烧处置介绍[J].中国环保产业,2004(A02):48-50.
    37. Helble, J.J., et al., Trace element partitioning during coal gasification[J]. Fuel,1996. 75(8):931-939.
    38. Argent, B.B. and D. Thompson, Thermodynamic equilibrium study of trace element mobilisation under air blown gasification conditions[J]. Fuel,2002.81(1):75-89.
    39. 孟韵,张军营,郑楚光,等,燃煤过程中微量元素形态转化的热力学模拟[J].煤炭转化,2002.25(3):6-10.
    40. Diaz-Somoano, M., Martinez-Tarazona, M. R., Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach[J]. Fuel,2003. 82(2):137-145.
    41. Liu, S., et al., Thermodynamic equilibrium study of trace element transformation during underground coal gasification[J]. Fuel Processing Technology,2006.87(3):209-215.
    42. Liu Wei-cheng, X.Y.-p., Tian Zhi-jian, Xu Zhu-sheng, A Thermodynamic Analysis on the Catalytic Combustion of Methane[J]. Journal of Natural Gas Chemistry,2003.12(4): 237-242.
    43. Li, X., et al., Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier[J]. Fuel,2001.80(2): 195-207.
    44. Durlak, S.K., P. Biswas, and J. Shi, Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators[J]. Journal of Hazardous Materials,1997.56(1-2):1-20.
    45. 李季,杨学民,林伟刚,城市生活垃圾焚烧体系热力学平衡分析[J].燃料化学学报,2003.31(6):584-588.
    46. Ma Li-bo, L.Shui-qing, Xiang Guang-ming, et al, Equilibrium analysis for the air-controlled incineration of industiral hazardous wastes[C].3rd i-CIPEC,2004:61-64.
    47. 赵慕愚,徐宝琨,《复杂化学平衡计算》[M].吉林大学出版社,1982.
    48. White W.B., J.S.M., Dantzig G.B.,, Chemical equilibrium in complex mixtures[J]. Journal of chemical physics,1958.28(5):751-755.
    49. Bale, C.W., et al., FactSage thermochemical software and databases[J]. Calphad,2002. 26(2):189-228.
    50. 陈德喜,我国医院垃圾集中焚烧处理技术的探讨[J].环境保护,2002.12:13-15.
    51. Lee, B.-K., M.J. Ellenbecker, and R. Moure-Eraso, Analyses of the recycling potential of medical plastic wastes[J]. Waste Management,2002.22(5):461-470.
    52. 国家环境保护总局,危险废物焚烧污染控制标准[M].GB18484-2001,2001.
    53. Barin,《纯物质热化学数据手册》[M].北京:科学出版社,2003.
    54. Senneca, O., Kinetics of pyrolysis, combustion and gasification of three biomass fuels[J]. Fuel Processing Technology,2007.88(1):87-97.
    55. Liou, T.-H., Pyrolysis kinetics of electronic packaging material in a nitrogen atmosphere[J]. Journal of Hazardous Materials,2003.103(1-2):107-123.
    56. Bingham, P.A., et al., Vitrified metal finishing wastes:Ⅱ. Thermal and structural characterisation[J]. Journal of Hazardous Materials,2005.122(1-2):129-138.
    57. Font, R., A. Fullana, and J. Conesa, Kinetic models for the pyrolysis and combustion of two types of sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,2005. 74(1-2):429-438.
    58. 卿山,王华,吴桢芬,等,医疗废物燃烧过程动力学研究[J].燃烧科学与技术,2006.12(5):457-462.
    59. 邓娜,张于峰,牛宝联,等,医疗废物典型组分的热重分析及新的动力学模型[J].环境科学学报,2005.25(11):1484-1490.
    60. Kanokkantapong, V., et al., FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water[J]. Journal of Hazardous Materials,2006.136(2):188-196.
    61. 吴瑾光等,近代傅里叶变换红外光谱技术及应用[M].科学技术文献出版社,1994.
    62. Qian, G, D.D. Sun, and J.H. Tay, Immobilization of mercury and zinc in an alkali-activated slag matrix[J]. Journal of Hazardous Materials,2003.101(1):65-77.
    63. 苏桂秋,崔畅林,卢洪波,煤热解燃烧气体产物的热重-红外联用分析[J].工业锅炉,2004(2):23-26.
    64. Bassilakis, R., R.M. Carangelo, and M.A. Wojtowicz, TG-FTIR analysis of biomass pyrolysis[J]. Fuel,2001.80(12):1765-1786.
    65. Jong de W., Pirone A., and Wojtowicz M.A., Pyrolysis of Miscanthus Giganteus and wood pellets:TG-FTIR analysis and reaction kinetics [J]. Fuel,2003.82(9):1139-1147.
    66. Wojtowicz, M.A., et al., Modeling the evolution of volatile species during tobacco pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2003.66(1-2):235-261.
    67. 王树荣,刘倩,郑赞,等,基于热重红外联用分析的生物质热裂解机理研究[J].工程热物理学报,2006.27(2):351-353.
    68. 王树荣,刘倩,骆仲泱,等,基于热重红外联用分析的纤维塑热裂解机理研究[J].浙江大学学报:工学版,2006.40(7):1154-1158.
    69. 王树荣,郑赞,文丽华,等,半纤维素模化物热裂解动力学研究[J].燃烧科学与技术,2006.12(2):105-109.
    70. Herrera, M., et al., Thermoanalytical and pyrolysis studies of nitrogen containing polymers[J]. Journal of Analytical and Applied Pyrolysis,2001.58-59:173-188.
    71. Fernandez-Berridi, M.J., et al., Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR[J]. Thermochimica Acta,2006. 444(1):65-70.
    72. Lunghi, A., et al., Hazard assessment of substances produced from the accidental heating of chemical compounds[J]. Journal of Hazardous Materials,2004.116(1-2):11-21.
    73. 杨海平,陈汉平,晏蓉,等,油棕废弃物热解的TG-FTIR分析[J].燃料化学学报,2006.34(3):309-314.
    74. 曾泳淮,林树昌编,分析化学-仪器分析部分[M].高等教育出版社,2004.7:123-157.
    75. 邓娜,张于峰,赵薇,等,聚氯乙烯(PVC)类医疗废物的热解特性研究[J].环境科学,2008.29(3):837-843.
    76. Matsuzawa, Y., M. Ayabe, and J. Nishino, Acceleration of cellulose co-pyrolysis with polymer[J]. Polymer Degradation and Stability,2001.71(3):435-444.
    77. McGhee, B., et al., The copyrolysis of poly(vinylchloride) with cellulose derived materials as a model for municipal waste derived chars[J]. Fuel,1995.74(1):28-31.
    78. Sφrum, L., M.G. Grφli, and J.E. Hustad, Pyrolysis characteristics and kinetics of municipal solid wastes[J]. Fuel,2001.80(9):1217-1227.
    79. 罗渝然,化学键能数据手册[M].北京:科学出版社,2005.
    80. 胡荣祖,史启祯,《热分析动力学》[M].北京:科学出版社,2001.
    81. Pitt G.J., The kinetics of the evolution of volatile procucts from coal[J]. Fuel,1962.41: 267-274.
    82. Anthony D.B., J.B.H., Coal devolatilization and hydrogasification[J]. AIChE Journal, 1976.22(4):625-656.
    83. Rostami, A.A., M.R. Hajaligol, and S.E. Wrenn, A biomass pyrolysis sub-model for CFD applications[J]. Fuel,2004.83(11-12):1519-1525.
    84. Miura, K., A new and simple method to estimate f(E) and kO(E) in the distributed activation energy model from three sets of experimental data[J]. Energy & Fuels,1995. 9(2):302-307.
    85. Miura K., T.M., A simple method for estimating f(E) and kO(E) in the distributed activation energy model[J]. Energy & Fuels,1998.12(5):864-869.
    86. Ferdous D., A.K.D., Bej S. K., et al, Pyrolysis of liginins:experimental and kinetcis studies[J]. Energy & Fuels,2002.16(6):1405-1412.
    87. Sonobe, T. and N. Worasuwannarak, Kinetic analyses of biomass pyrolysis using the distributed activation energy model[J]. Fuel,2008.87(3):414-421.
    88. Jong de W., et al., TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors[J]. Fuel,2007.86(15):2367-2376.
    89. 于娟,章明川,范卫东,等,不同升温方式下活化能分布热解模型的适用性[J].上海交通大学学报,2003.37(7):1027-1030.
    90. Alan K. Burnham, R.L.B., Global kinetic analysis of complex materials[J]. Energy & Fuels,1999.13(1):1-22.
    91. Cai J.M., R.H.L., Parametric study of the nonisothermal nth-order distributed activation energy model involved the weibull distribution for biomass pyrolysis[J]. Journal of thermal analysis and calorimetry,2007.82(3):971-975.
    92. Cai, J. and Liu R., New distributed activation energy model:Numerical solution and application to pyrolysis kinetics of some types of biomass[J]. Bioresource Technology, 2008.99(8):2795-2799.
    93. Coats A.W., J.P.R., Kinetics parameters from thermogravimetric[J]. Nature,1964.201: 68-69.
    94. Giines M., S.G., A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data(note)[J]. Appl. Math. Comput.,2002.130:619-628.
    95. Thakur D. S., H.E.N., Kinetic of pyrolysis of Moroccan Oil Shale by thermogravimetry[J]. Industrial & Engineering Chemistry Research 1987.26(7): 1351-1356.
    96. 向银花,王洋,张建民,等,部分气化煤焦燃烧动力学的活化能分布模型研究[J].燃烧科学与技术,2003.9(6):566-570.
    97. Tia S., S.C.B., Wibulswas P., Thermogravimetric analysis of Thailignite-I. Pyrolysis kinetics[J]. Energy Conversion and Management,1991.31(3):265-276.
    98. Cai Junmeng, L.J., Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data[J]. Journal of mathematical chemistry,2007.42(3): 547-553.
    99. 李森,荆冬锋,生物质热解的分布活化能模型[J].农机化研究,2006.8:131-133,140.
    100. Arenillas, A., et al., A comparison of different methods for predicting coal devolatilisation kinetics[J]. Journal of Analytical and Applied Pyrolysis,2001.58-59: 685-701.
    101. Pallares, J., I. Arauzo, and A. Williams, Integration of CFD codes and advanced combustion models for quantitative burnout determination[J]. Fuel,2007.86(15): 2283-2290.
    102. Niksa S., A.R.K., FLASHCHAIN theory for rapid coal devolatilization kinetics. l.Formulation[J]. Energy & Fuels,1991.5(5):647-665.
    103. Niksa S., FLASHCHAIN theory for rapid coal devolatilization kinetics.2.1mpact of operating conditions [J]. Energy & Fuels,1991.5(5):665-673.
    104. Niksa, S., FLASHCHAIN theory for rapid coal devolatilization kinetics.3.Modeling the behavior of various coals[J]. Energy & Fuels,1991.5(5):673-683.
    105. 李香排,典型垃圾组分HCl排放和脱除的基础研究[D].浙江大学硕士学位论文,2004年2月.
    106. 赵春,医疗垃圾焚烧处理技术探讨[J].北方环境,2001.3(1):45-48.
    107. Wey, M.-Y., et al., Formations and controls of HCl and PAHs by different additives during waste incineration[J]. Fuel,2006.85(5-6):755-763.
    108. Wang, K.-S., et al., Effects of chlorides on emissions of hydrogen chloride formation in waste incineration[J]. Chemosphere,1999.38(7):1571-1582.
    109. Marvel C.S., E.C.H., Organic chemistry[M].2nd ed. New York,Wiley,1943.
    110. Winkler D.E., Mechanism of polyvinyl chloride degradation and stabilization[J]. J. Polym.Sci.,1959.35(1):3-16.
    111. G.Talamini, G.P., Kinetic study on the reaction of polyvinyl chloride thermal dehydrochlorination[J]. Makromol. Chem.,1960.39(1):26-38.
    112. Abbas K.B., E.M.S., On the thermal degradation of poly(vinyl chloride). I.an apparatus for investigation of early stages of thermal degradation[J]. J.Appl.Polym.Sci.,1973.17: 3567-3576.
    113. Iida T., M.N., Goto K., Investigations on poly(vinyl chloride). I.Evolution of aromatics on pyrolysis of poly(vinyl chloride) and its mechanism[J]. J. Polym. Sci.,1974.12: 737-749.
    114. Paciorek K.L., R.H.K., Kaufman J., et al, Oxidative thermal decomposition of poly(vinyl chloride) compounds[J]. J.Appl.Polym.Sci.,1974.18:3723-3729.
    115. Kamo, T., et al., Effects of solvent on degradation of poly(vinyl chloride)[J]. Polymer Degradation and Stability,2003.81(2):187-196.
    116. Gonzalez N., Mugica A., and Fernandez-Berridi J. M., Application of high resolution thermogravimetry to the study of thermal stability of poly(vinyl chloride) resins[J]. Polymer Degradation and Stability,2006.91(4):629-633.
    117. Bockhorn, H., et al., Dehydrochlorination of plastic mixtures[J]. Journal of Analytical and Applied Pyrolysis,1999.49(1-2):97-106.
    118. Bockhorn, H., A. Hornung, and U. Hornung, Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements[J]. Journal of Analytical and Applied Pyrolysis,1999.50(2):77-101.
    119. Ma S.B., J.L., Gao J.S., Study of the low temperature pyrolysis of PVC[J]. Energy and Fuels,2002.16(2):338-342.
    120. Marongiu, A., et al., Thermal degradation of poly(vinyl chloride)[J]. Journal of Analytical and Applied Pyrolysis,2003.70(2):519-553.
    121. Soudais, Y., et al., Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose[J]. Journal of Analytical and Applied Pyrolysis,2007.78(1): 46-57.
    122. 沈吉敏,解强,张宪生,等,聚氯乙烯在热处理过程中氯释放特性的研究[J].中国矿业大学学报,2003.32(6):717-721.
    123. Benes M., N.M., Matuschek G., Thermal degradation of PVC cable insulation studied by simulataneous TG-FTIR and TG-EGA methods[J]. Journal of thermal analysis and calorimetry,2004.78(2):621-630.
    124. Sun, Q.-l., et al., Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC[J]. Journal of China University of Mining and Technology,2007.17(2): 242-245.
    125. Jatuphorn W., A.J., Meeyoo V., Effect of metal compounds and experimental conditions on distribution of products from PVC pyrolysis[J]. Journal of polymers and the environment,2003.11(1):1-6.
    126. Duo W., et al., Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning[J]. Chemical Engineering Science,1996.51(11):2541-2546.
    127. Piao G.., et al., Combustion of refuse derived fuel in a fluidized bed[J]. Waste Management,1998.18(6-8):509-512.
    128. Blazso M., and Jakab E., Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly (vinyl chloride)[J]. Journal of Analytical and Applied Pyrolysis,1999.49(1-2):125-143.
    129. Shemwell B., Levendis Y.A., and Simons G.A., Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents[J]. Chemosphere,2001.42(5-7):785-796.
    130. 李诗媛,别如山,王珩,流化床中焚烧处理含氯有机废液HCl排放及脱除研究[J].中国电机工程学报,2006.26(1):40-44.
    131. Karayildirim, T., et al., The effect of some fillers on PVC degradation [J]. Journal of Analytical and Applied Pyrolysis,2006.75(2):112-119.
    132. Mura G., A.L., Reaction kinetics of gas hydrogen chloride and limestone[J]. Chemical Engineering Science,1994.49(24A):4491-4450.
    133. 陈德珍,张鹤声,何于涛,等,HCl干式净化过程平衡浓度计算及其应用[J].燃烧科学与技术,2001.7(3):311-315.
    134. Miranda R., et al., Vacuum pyrolysis of PVCII:Product analysis[J]. Polymer Degradation and Stability,1999.66(1):107-125.
    135. Pielichowski K., J.N., Thermal degradation of polymeric materials[M]. Rapra technology limited.UK,2005:62-72.
    136. Scott D.S., S.R.C., Piskorz J., et al, Fast pyrolysis of plastic wastes[J]. Energy and Fuels, 1990.4(4):407-411.
    137. Mura G, A.L., On the kinetics of dry reaction between calcium oxide and gas hydrochloric acid[J]. Chemical Engineering Science,1992.47(9-11):2407-2411.
    138. Duo W., J.P.K.S., Kirkby N.F.,et al, Formation of product layers in solid-gas reactions for removal of acid gases[J]. Chemical Engineering Science,1994.49(24A):4429-4442.
    139. Rutgers, R., Longitudinal mixing of granular material flowing through a rotating cylinder-:Part I. Descriptive and theoretical[J]. Chemical Engineering Science,1965. 20(12):1079-1087.
    140. Lehmberg, J., M. Hehl, and K. Schiigerl, Transverse mixing and heat transfer in horizontal rotary drum reactors[J]. Powder Technology,1977.18(2):149-163.
    141. Cross, M., The transverse motion of solids moving through rotary kilns[J]. Powder Technology,1979.22(2):187-190.
    142. H.Henein, J.K.B., A.P.Watkinson, Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical transactions,1983.14B:191-205.
    143. Woodle, G.R. and J.M. Munro, Particle motion and mixing in a rotary kiln[J]. Powder Technology,1993.76(3):241-245.
    144. Watanabe, H., Critical rotation speed for ball-milling[J]. Powder Technology,1999. 104(1):95-99.
    145. Mellmann, J., The transverse motion of solids in rotating cylinders--forms of motion and transition behavior[J]. Powder Technology,2001.118(3):251-270.
    146. He, Y.R., et al., Solids Motion and Segregation of Binary Mixtures in a Rotating Drum Mixer[J]. Chemical Engineering Research and Design,2007.85(7):963-973.
    147. 张志霄,废轮胎回转窑热解特性及应用研究[D].浙江大学,博士学位论文,2004年1月.
    148. Danckwerts, P.V., Continuous flow systems:Distribution of residence times[J]. Chemical Engineering Science,1953.2(1):1-13.
    149. Abouzeid, A.Z.M.A., et al., The influence of operating variables on the residence time distribution for material transport in a continuous rotary drum[J]. Powder Technology, 1974.10(6):273-288.
    150. Wes, G.W.J., Drinkenburg A.A.H., and Stemerding S., Solids mixing and residence time distribution in a horizontal rotary drum reactor[J]. Powder Technology,1976.13(2): 177-184.
    151. Mu J., D.D.R., The mixing of granular solids in a rotary cylinder[J]. AIChE J.,1980. 26(6):928-934.
    152. Sai P.S.T., S G.D.., Damodaran A.D., et al, Residence time distribution and material flow studies in a rotary kiln [J]. Metallurgical and Materials Transactions B,1990.21(6): 1005-1011.
    153. Saeman W.C., Passage of solids through rotary kilns[J]. Chemical Engineering Progress 1951.47(10):508-514.
    154. Vahl, L. and W.G. Kingma, Transport of solids through horizontal rotary cylinders[J]. Chemical Engineering Science,1952.1(6):253-258.
    155. Kramers, H. and P. Croockewit, The passage of granular solids through inclined rotary kilns[J]. Chemical Engineering Science,1952.1(6):259-265.
    156. Rogers, R.S.C. and R.P. Gardner, A Monte Carlo method for simulating dispersion and transport through horizontal rotating cylinders[J]. Powder Technology,1979.23(2): 159-167.
    157. Das Gupta, S., D.V. Khakhar, and S.K. Bhatia, Axial transport of granular solids in horizontal rotating cylinders. Part 1:Theory[J]. Powder Technology,1991.67(2): 145-151.
    158. Rao, S.J., S.K. Bhatia, and D.V. Khakhar, Axial transport of granular solids in rotating cylinders. Part 2:Experiments in a non-flow system[J]. Powder Technology,1991.67(2): 153-162.
    159. Tamar Kohav, J.T.R., Dan Luss Axial dispersion of solid particles in a continuous rotary kiln[J]. AIChE Journal,1995.44(11):2465-2475.
    160. 李水清,固体废物热解制取洁净燃料和化学原料的基础研究[D].浙江大学,博士学位论文,2002年4月.
    161. Liu, X.Y. and E. Specht, Mean residence time and hold-up of solids in rotary kilns[J]. Chemical Engineering Science,2006.61(15):5176-5181.
    162. 刘刚,典型危险废物回转窑热处置特性和技术研究[D].浙江大学,博士学位论文,2006年3月.
    163. Boateng, A.A. and P.V. Barr, Modelling of particle mixing and segregation in the transverse plane of a rotary kiln[J]. Chemical Engineering Science,1996.51(17): 4167-4181.
    164. 周力行,多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    165. Chiesa, M., et al., Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed[J]. Computers & Chemical Engineering,2005.29(2):291-304.
    166. 曹玉春,流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D].浙江大学,博士学位论文,2005年6月.
    167. 王维,两相流数值模拟及其在循环流化床锅炉上的软件实现[D].北京:中科院工程过程研究所,博士学位论文,2001年9月.
    168. Gidaspow, D., J. Jung, and R.K. Singh, Hydrodynamics of fluidization using kinetic theory:an emerging paradigm:2002 Flour-Daniel lecture[J]. Powder Technology,2004. 148(2-3):123-141.
    169. Horio, M., Y. Iwadate, and T. Sugaya, Particle normal stress distribution around a rising bubble in a fluidized bed[J]. Powder Technology,1998.96(2):148-157.
    170. Gidaspow, D., Multiphase Flow and Fluidization, Continuum and Kinetic Theory Description[M]. Academic Press, New York, USA,1994.
    171. Tsuji, Y, T. Tanaka, and S. Yonemura, Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology,1998.95(3):254-264.
    172. 孙其诚,模拟气固流态化系统的拟颗粒模型[D].北京:中科院工程过程研究所博士学位论文,1999年12月.
    173. Yang, R.Y., R.P. Zou, and A.B. Yu, Microdynamic analysis of particle flow in a horizontal rotating drum[J]. Powder Technology,2003.130(1-3):138-146.
    174. Yamane K., M.N., Altoblli S.A.,et al, Steady particulate flows in a horizontal rotating cylinder[J]. Physics of fluids,1998.10(6):1419-1427.
    175. Fantozzi, F., et al., Rotary kiln slow pyrolysis for syngas and char production from biomass and waste-Part I:Working envelope of the reactor[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme,2007.129(4):901-907.
    176. 沈凯,陆继东,基于模糊方法的垃圾焚烧炉燃烧控制系统[J].热能动力工程,2004.19(5):491-494.
    177. 赵士德,模糊控制在危险废物焚烧系统中的应用[J].工业仪表与自动化装置,2005.(2):46-48.
    178. Leger, C.B., Cundy,V.A.,Sterling,A.M.,, A three-dimensional detailed numerical model of a field-scale rotary kiln incinerator[J]. Environmental Science Technology,1993. 27(4):677-690.
    179. Khan, J.A., Pal.D.,Morse,J.S.,, Numerical modeling of a rotary kiln incinerator[J]. Hazardous Waste and Hazardous Materials,1993.10(1):81-95.
    180. Jackway, A.L., Sterling,A.M.,Cundy,V.A.,Cook,C.A.,, Three dimensional numerical modeling of a rotary kiln incinerator[J]. Environmental Science Technology,1996.30(5): 1699-1712.
    181. Wardenier K., E.V.D.B., Steady-State Waste Combustion and Air Flow Optimization in a Field Scale Rotary Kiln[J], Environmental Engineering Science,1997.14(1):43-54.
    182. Veranth, J.M., Siligox,G.D.,Pershing,D.W.,, Numerical modeling of the temperature distribution in a commercial hazardous waste slagging rotary kiln[J]. Environment Science Technology,1997.31(9):2534-2539.
    183. Chen, K.S., Hsu,W.T.,Lin,Y.C.,et al, Combustion Modeling and Performance Evaluation in a Full-scale Rotary Kiln Incinerator[J]. Journal of the air & waste management association,2001.51(51):885-894.
    184. Marias, F., A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases[J]. Computers & Chemical Engineering,2003.27(6): 813-825.
    185. 傅维镳,张永廉,王清安,燃烧学[M].高等教育出版社,1989.
    186. 王华,卿山,医疗废物焚烧技术基础[M].北京:冶金工业出版社,2007.
    187. 岑可法,姚强,骆仲泱,高翔,燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    188. Kaushal, P., T. Proll, and H. Hofbauer, Model development and validation: Co-combustion of residual char, gases and volatile fuels in the fast fluidized combustion chamber of a dual fluidized bed biomass gasifier[J]. Fuel,2007.86(17-18):2687-2695.
    189. Zhou, H., et al., Numerical modeling of straw combustion in a fixed bed[J]. Fuel,2005. 84(4):389-403.
    190. Weimer, A.W. and D.E. Clough, Modeling a low pressure steam-oxygen fluidized bed coal gasifying reactor[J]. Chemical Engineering Science,1981.36(3):548-567.
    191. 杨世铭,陶文铨,传热学[M].北京:高等教育出版社,2002.
    192. 岑可法,姚强,骆仲泱,李绚天,高等燃烧学[M].杭州,浙江大学出版社,2000:114-154.