奶牛产奶性状候选基因EEF1D和PDE9A功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题组前期开展的中国荷斯坦牛产奶性状全基因组关联分析利用传递不平衡(L1-TDT)和回归分析(MMRA)两种统计分析方法同时检测到38个显著SNP位点。本研究旨在基于该GWAS结果进一步筛选和鉴定奶牛产奶性状关键基因并进行功能验证。
     (1)位置候选基因鉴定及功能注释:基于牛基因组序列草图(Btau4.2),采用生物信息学和比较基因组学方法进行了上述38个显著SNPs的位置候选基因筛查和功能预测,最终鉴定到24个位置候选基因并确定了其物理位置、基因类型及功能注释;基于此,进一步从该24个位置候选基因中挑选了10个基因,利用实时荧光定量RT-PCR技术进行了组织表达谱分析,结果发现EEF1D和PDE9A基因在泌乳期中国荷斯坦牛乳腺组织中的mRNA表达量均明显高于其他7个组织(心肌,子宫,肾,肝,肺,卵巢和小肠)。结合前期GWAS结果,初步说明这2个基因与奶牛泌乳功能相关,将之确定为奶牛产奶性状候选基因,进行细胞水平功能验证。
     (2)EEF1D和PDE9A基因可变剪接鉴定:通过NCBI和UCSC数据库检索发现EEF1D和PDE9A基因的mRNA序列不完整并且多次改变,同时人和小鼠EEF1D和PDE9A基因mRNA序列的5’端在存在可变剪接,可形成不同转录本,因此推测奶牛的EEF1D和PDE9A基因存在可变剪接可能性较大。通过5’RACE实验,发现EEF1D基因在泌乳期中国荷斯坦牛乳腺组织中确实存在2种转录本,命名为EEF1Da和EEF1D6;EEF1Da(1202bp)和EEF1Db(2195bp)包含不同的第1外显子(exon1a:294bp;exonlb:1287bp),这2个第1外显子没有重叠,其余7个外显子序列和位置一致;利用实时荧光定量RT-PCR技术检测了不同转录本在奶牛乳腺组织的表达水平,结果显示EEF1Da为主要表达的转录本;8个组织的基因表达谱分析表明:EEF1Da在乳腺组织的表达量明显高于EEFIDb并且与EEF1D基因的表达趋势一致。另外,实验结果显不PDE9A基因在荷斯坦牛乳腺组织中只存在一种转录本,通过与已知序列拼接,获得了完整的PDE9A基因mRNA序列。
     (3)乳腺上皮细胞体外培养:采集健康的泌乳期中国荷斯坦母牛乳腺组织,通过组织块培养法和差酶消化法,获得了纯化的体外培养的乳腺上皮细胞。同时,采用乳汁分离法从收集的泌乳中后期荷斯坦母牛的乳汁中也获得了具有增殖能力的乳腺上皮细胞。经验证,培养的细胞具有生长和增殖能力,可表达上皮特有的角蛋白18基因、部分乳蛋白基因、产奶性状主效基因DAGT1和GHR以及EEF1D和PDE9A基因,适用于目的基因的功能验证。
     (4)RNA表达量干扰分析:基于EEF1D基因的完整mRNA序列,设计了4条siRNA序列,瞬时转染到奶牛成纤维细胞中,通过实时荧光定量RT-PCR技术检测EEF1D mRNA表达量,结果表明,3条siRNA显著降低EEF1D基因表达量,基于其中2条有效siRNA构建了相应的shRNA载体pGPU6-GFP-NEO-E1357和pGPU6-GFP-NEO-E1893,同时构建了相应shRNA慢病毒表达载体;由于PDE9A基因在牛成纤维细胞中表达量低,未作RNA干扰;另外,人工合成EEF1Da和PDE9A基因的CDS序列并连接到过表达载体,瞬时转染到人293FT细胞,RT-PCR技术检测到了EEF1Da和PDE9A基因表达,说明所构建的载体可用,同时也构建了含EEF1Da和PDE9A基因的CDS序列的慢病毒过表达载体。
     上述研究结果为深入进行EEF1Da和PDE9A基因的功能验证和奶牛产奶性状关键基因鉴定提供了前期试验基础。
Our previous genome-wide association studies (GWAS) have identified38significant SNPs associated with one or multiple milk production traits in a Chinese Holstein population. The purpose of this study was to determine potential genes affecting milk yield and milk composition and function annotation based on such GWAS results and to validate there biological functions.
     (1) Based on the bovine genome sequence (Btau4.2), bioinformation and comparative analysis were conducted to determine potential genes and predict their functions. As a result, totally24genes corresponding to the aforementioned38SNPs were identified. Then,10out of such24genes were selected for further investigation. The mRNA expression patterns of10genes in8kinds of tissues of Holstein cows showed that both EEF1D and PDE9A genes were highly expressed in the mammary gland of lactating cows than in other7tiusses (cardiac muscle, uterus, kidney, liver, lung, ovary and small intestine). Combined with our previously GWAS results, EEF1D and PDE9A may be related to lactation capacity in Holstein cows. Determined the two genes as candidate genes for milk production traits of cows, and verified their functions in cellular level.
     (2) The mRNA sequences of both EEF1D and PDE9A genes were found to be not complete and kept changable in NCBI database, and alternative splicing of these genes exist in the mouse and human genes, so that variant splicing is likely to existed in cow. In the present study, we isolated the full-length mRNA sequences of EEF1D to determine if alternative splice variants existed. With rapid amplification of5'cDNA end (5'RACE) analysis, two novel alternative spliced transcript variants were observed in the mammary gland of lactating Holstein cow with length of1202bp and2195bp, named EEF1Da and EEF1Db. Such two variants contained the different first exon from each other (exon1a vs exon1b:294bp versus1287bp) with no overlap between the two types of exon1and the same remaining7exons. With quantitative real-time RT-PCR, the expression patterns of EEF1Da and EEF1Db were investigated across8kinds of tissues of lactating Chinese Holstein cows. It was found that the mRNA expression of EEF1Da was significantly higher than that of EEF1Db and similar to the overall mRNA level of EEF1D in the mammary gland. The PDE9A only exist1transcription in the breast tissue, connecting with the known sequence, get complete mRNA sequence.
     (3) Based on fresh mammary gland samples lactating Holstein cows from slaughterhouse, we separated the mammary epithelial cells and purified epithelial cells by enzyme digestion differences. Meanwhile, mammary epithelial cells can also be separated from the milk which was collected from Holstein cows in middle or late lactation. It was found that the celles have growth and proliferation ability and were able to express keratin18,some milk protein genes, DAGT1, GHR, EEF1D and PDE9A genes, so that the cell line can be used for gene function validation.
     (4) Based the complete mRNA sequence of EEF1D, we designed4siRNA fragments for RNAi and transfected them into bovine fibroblasts for12hours. Through real-time quantitative RT-PCR, EEF1D mRNA expression levels were detected. The result showed that3out of4siRNA can significantly reduced EEFID gene expression, of them2siRNA were used to construct shRNA vectors pGPU6-GFP-NEO-E1357and pGPU6-GFP-NEO-E1893, and also constructed the corresponding lentiviral vectors of shRNA. We did not conduct RNAi analysis for PDE9A due to its low expression level in such cell line. On the other hand, we synthesized the CDS sequences of both PDE9A and EEF1Da and connected them to the expression vectors pEGFP-Cl and pIRES-EGFP. Through vector transfection into293FT cells for48h, EEF1Da and PDE9A cDNAs were amplified with RT-PCR method. Result revealed that such vectors were available. In addition, the CDS sequences, we also had connected them to lentiviral vectors.
     Together, our results provided basis for further systematic function validation of EEF1Da and PDE9A genes and regulation on the formation of milk production traits.
引文
[1]曹俊伟.人溶菌酶/乳铁蛋白双基因表达载体的构建与转基因牛克隆胚的体外发育[D].陕西:西北农林科技大学,2012.
    [2]曹新,王强,颜景斌.牛催乳素基因组及其cDNA全长序列的分子克隆和分析[J].遗传学报.2002,29(9):768-773.
    [3]陈静,王根林,李莲等.雌激素对奶牛乳腺上皮细胞增殖及抗氧化性的影响[J].农业生物技术学报,2013,21(2):216-222.
    [4]程呈,龚秀峰,惠静毅.哺乳动物细胞mRNA剪接调控的分子机制[J].生命科学,2010,7,15,22(7):697-702.
    [5]程慧,张晓娟,刘海波等.小鼠Mater基因选择性剪接变异体的鉴定和分析[J].遗传学报,2004,31(8):795-800.
    [6]崔立莉.奶牛乳腺上皮细胞体外培养体系的建立和应用[D].新疆:新疆农业大学.2006.
    [7]杜鹃,狄和双,王根林.奶牛乳腺上皮细胞系的建立及高温对细胞超微结构的影响[J].生物工程学报,2007(3):471-476.
    [8]富显果,兰风华.可变剪接及其生物学意义[J]-国际检验医学杂志,2012,6,33(11):1333-1336.
    [9]韩建文,张学军.全基因组关联研究现状[J].遗传,2011,33(1):25-35.
    [10]黄田英,李庆章,侯晓明.乳腺中JAK-STAT信号通路的研究进展[J].中国乳品工业,2010,38(2):41-44.
    [11]贾晋.中国荷斯坦牛DGAT1多态性检测技术建立及与产奶性状关联分析[D].北京:中国农业大学.2007.
    [12]贾祥捷,王长法,杨桂文等.中国荷斯坦牛POUIF1基因与PRL基因的多态性及其聚合效应对产奶性状的影响[J].遗传,2011,12,33(12):1359-1365.
    [13]孔庆洋,林叶,李庆章.乙酸钠和丁酸钠对奶牛乳腺脂肪酸合成相关基因的影响[J].中国乳品工业.2012,40(3):15-17.
    [14]劳为德.乳腺生物反应器实用化研究-现状与问题[C].第三届转基因动物学术讨论会.北京.1996.
    [15]李冬辉.奶牛泌乳功能基因研究[J].牡丹江大学学报,2010,19(10):116-117..
    [16]李新枝,蔡佩玲,牟林春.基因功能研究的方法[J].四川解剖学杂志,2007,15(1):57-59.
    [17]刘涵,胡海林.我国奶业现状与发展趋势分析[J].中国奶业,2006(7):17-19.
    [18]刘甲,何玉龙,吕品等.信号转导及转录活化因子基因(stat3)转染牛乳腺上皮细胞及生物学特性观察[J].农业生物技术学报,2009,17(3):426-432.
    [19]刘婕,陈武,姜代勋等.犬中枢神经不同部位磷酸二酯酶基因表达和活性测定[J].北京农学院学报,2007,4(22):38-42.
    [20]刘林,张胜利,郑维韬等.国际奶牛基因组选择的发展概况[J].中国奶牛,2010,12:29-31.
    [21]刘晓飞,高学军,李庆章等Stat5高效表达对奶牛乳腺上皮细胞泌乳能力的影响[J].畜牧兽医学报,2011,42(4):505-512.
    [22]卢家红,吕传真.人α7nAChR的克隆、测序及可变剪接[J].中国临床神经科学.2003,11(1): 15-18.
    [23]鲁绍雄,吴常信.动物遗传标记辅助选择研究及其应用[J].遗传,2002,24(3):359-362.
    [24]马君,甘露,钱晓辉等.我国奶业现状及可持续发展的对策[J].农机化研究,2006,1,1:50-52.
    [25]马妍,贾晋,张毅等.荷斯坦牛GHR基因多态与产奶性状关联分析[J].畜牧兽医学报,2009,40(8):1186-1190.
    [26]孟丽丽,钟凯,朱河水.乳腺上皮细胞在乳腺炎症反应中的作用[J].中国畜牧兽医,2009,36(12):103-105.
    [27]彭新荣.牛乳腺上皮细胞的体外分离与培养[D].西北农林科技大学.2004.
    [28]陶谦,黄洪章.SV40与细胞永生性转化[J].癌症,2001,20(3):332-334.
    [29]田慧,张奇,朱景申.新的磷酸二醋酶及其功能[J].中国临床药理学杂志,2003,12(86):456-460.
    [30]涂欣,石立松,汪樊等.全基因组关联分析的进展与反思[J].生理科学进展,2010,41(2):87-94.
    [31]王亨,孟霞,邱昌伟等.肺炎克雷伯氏菌对荷斯坦奶牛乳腺上皮细胞黏附和侵袭的体外研究[J].畜牧兽医学报,2008,39(4):494-498.
    [32]王建元.空怀奶山羊诱导泌乳的研究[J].中国兽医科技,1988,3:13-15.
    [33]王杰,原清会,曾长军等.中国荷斯坦奶牛OPN基因内含子4多态性及其与产奶性状的相关分析遗传育种[J].2010,46(15):5-8.
    [34]王俊锋,黄静等.泌乳反刍动物乳蛋白的合成机理及调控途径的研究[J].中国乳业.2005,2:24-27.
    [35]王松波,穆欣艺,周波等.磷酸二酯酶5在小鼠卵巢内的表达[J].中国实验动物学报,2009,4(17):150-153.
    [36]王月影,王艳玲,李和平等.动物乳腺发育的调控[J].Animal Husbandry &Veterinary Medicine,2002,34(7):36-38.
    [37]王志伟,周慧,李荣田等.RNA干涉的研究进展[J].黑龙江大学自然科学学报,2004,09,21(3):127-131.
    [38]王治国.奶牛乳腺上皮细胞的体外培养及应用[D].北京:中国农业科学院,2007.
    [39]薛庆善,肖渝平,林娟等.体外培养的原理与技术[J].科学出版社,2001:169-173.
    [40]严卫丽.复杂疾病全基因组关联研究进展—遗传统计分析[J].遗传,2008,30(5):543-549.
    [41]于婷.荷斯坦奶牛乳腺上皮细胞体外培养体系的建立[D].山东:山东师范大学,2009.
    [42]张克忠,邱信芳.乳腺生物反应器的基础研究-载体构建、检测及反应器的建立方法[J].国外医学遗产分册,1997,20:314-316.
    [43]张晓东,殷宗俊.奶牛产奶性状候选基因研究进展[J].中国奶牛,2007,11:23-27.
    [44]张晓娜,肖华胜.真核生物mRNA选择性剪接体检测方法研究进展[J].生命科学仪器,2008,3:8-11.
    [45]章国卫,宋怀东,陈竺.mRNA选择性剪接的分子机制[J].遗传学报,2004,1,31(1):102-107.
    [46]赵寿元,乔守怡.现代遗传学[M].北京:高等教育出版社,2001:183.
    [47]祝梅香,张沅.北京地区荷斯坦牛乳蛋白多态性与产奶性能的相关分析[J].中国畜牧杂志, 2000,36(2):3-5.
    [48]庄金秋,贾杏林.功能基因组学研究进展[J].动物医学进展,2004,25(4):32-36.
    [49]邹荣婕.中国荷斯坦牛DGAT1、LOX-1基因多态性与产奶性状之间的关系研究[D].杨凌:西北农林科技大学,2007.
    [50]Ahn JY, Aoki N, Adachi T, et al. Isolation and culture of bovine mammary epithelial cells and establishment of gene transfection conditions in the cells [J]. Biosci Biotech Biochem,1995,59: 59-64.
    [51]Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences [J]. Biochem Biophys Res Commun,2004,316(4):1050-1058.
    [52]Amons R, Guerrucci MA, Karssies RH, et al. The leucine-zipper in elongation factor EF-1 delta, a guanine-nucleotide exchange protein, is conserved in Artemia and Xenopus [J]. Biochim Biophys, 1994,1218(3):346-350
    [53]Archer JS, Kennan WS, Gould MN, et al. Human growth hormone secretion in milk of goats after direct transfer of the GH gene into the mammary gland by using replication-defective retrovirus vectors [J]. Proc Natl Acad Sci USA,1994,91:6840-6844.
    [54]Arranz JJ, Coppieters W, Berzi P, et al. A QTL affecting milk yield and composition maps to bovine chromosome 20:a confirmation [J]. Anim Genet,1998,4,29(2):107-115.
    [55]Ashwell MS, Heyen DW, Sonstegard TS, et al. Detection of quantitative trait loci affecting milk produ-ction, health, and reproductive traits in Holstein cattle [J]. J Dairy Sci,2004,87:468-475.
    [56]Barendse W. Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle [J]. PLoS One,2011,6(12):e29601.
    [57]Barmak M, Christopher L. A genomic view of alternative splicing [J]. Nature Genetics,2002, 30:13-19.
    [58]Baumrucker CR. Insulin like growth factor I (IGF-I) and insulin stimulates lactating bovine mammary tissue DNA synthesis and milk production in vitro [J]. J Daily Sci,1996,69:120.
    [59]Bennewitz J, Reinsch N, Paul S, et al. The DGAT1 K232A mutation is not solely responsible for the milk production quantitative trait locus on the bovine chromosome 14.J Dairy Sci,2004,2, 87(2):431-442.
    [60]Berget SM. Exon recognition in vertebrate splicing [J]. J Biol Chem,1996,270:2411-2414.
    [61]Bionaz M., Loor JJ. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics,2008,9:366.
    [62]Black DL. Mechanisms of alternative pre2messenger RNA splicing [J]. Annu Rev Biochem,2003, 72:291-336.
    [63]Blaustein M, Pelisch F, Coso OA, et al. Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase [J]. J Biol Chem,2004,279(20): 21029-21037.
    [64]Blaustein M, Pelisch F, Tanos T, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT [J]. Nat Struct Mol Biol,2005,12(12):1037-1044.
    [65]Bloot S, Kim J, Moisio S, et al. Molecular dissection of a quantitative trait locus:a phenylalanine-to-tyrosine substitution in the transmem brane domain of the bovine growth hormone receptor in associated with a major effect on milk yield and composition [J]. Genetics, 2003,163(1):253-266.
    [66]Boichard DC, Grohs F, Bourgois F, et al. Detection of Genes Influencing Economic Traits in Three French Cattle Breeds [C]. Genet Sel Evol,2003,35(1):77-101.
    [67]Bole-Feysot C, Goffin V, Edery M, et al. Prolactin (PRL) and its receptor:actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice [J]. Endocr Rev, 1998,19:225-268.
    [68]Bolormaa S, Hayes BJ, Savin K, et al. Genome-wide association studies for feedlot and growth traits in cattle [J]. J Anim Sci,2011,6,89(6):1684-1697.
    [69]Bortoli MD, Castellino RC, Lu XY, et al. Medulloblastoma outcome is adversely associated with over expression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8 [J]. BMC Cancer,2006,6:223.
    [70]Bosher JM, Labouesse M. RNA interference genetic wand and genetic watchdog [J]. Nature Cell Biology,2000,2:31-36.
    [71]Bouwman AC, Bovenhuis H, Visker MH, et al. Genome-wide association of milk fatty acids in Dutch dairy cattle [J]. BMC Genet,2011,12:43.
    [72]Bramley AJ, Hogben EM. The adhesion of human and bovine isolates of Streptococcus ugalactiae (group B) to bovine mammary gland epithelial cells [J]. J Camp Puthol,1982,92:131-137.
    [73]Brenton R. Graveley. Alternative splicing:increasing diversity in the proteomic world [J]. Trends Genet,2001,17:100-107.
    [74]Brett D, Hanke J, Lehmann G, et al. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms [J]. FEBS Lett,2000,474:83-86.
    [75]Brym P, Kaminski S, Wojcik E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits [J]. J Appl Genet,2005,46(2): 179-185.
    [76]Buehring GC. Culture of mammary epithelial cells from bovine milk [J]. J Dairy Sci,1990,73(4): 956-963.
    [77]Caceres JF, Kornblihtt AR. Alternative splicing:multiple control mechanisms and involvement in human disease [J]. Trends Genet,2002,18:186-193.
    [78]Carvalho MD, Carvalho JF, Merrick WC. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes [J]. Arch Biochem Biophys,1984,234:603-611.
    [79]Cases S, Smith SJ, Zheng YW, et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis [J]. Proc Natl Acad Sci USA,1998, 95(22):13018-13023.
    [80]Ceriani RL. Fetal mammary gland differentiation in vitro in response to hormones [J]. Biochemical findings,1970,21:530.
    [81]Chalk AM, Wahlestedt C, Sonnhammer EL. Improved and automated prediction of effective siRNA [J]. Biochem Biophys Res Commun,2004,18,319(l):264-274.
    [82]Chang YW, Traugh JA. Insulin stimulation of phosphorylation of elongation factor 1 (eEF-1) enhances elongation activity [J]. Eur J Biochem,1998,251:201-207.
    [83]Charbonneau H. Cyclic nucleotide phosphodiester ases:structure, regulation, and drugaction [M]. Wiley Chichester,1990,267-296.
    [84]Chen H, Lan XY, Li RB, et al. The effect of CSN1 S2, CSN3 and bate-lg genes on milk performance in Xinong Saanen dairy goat [J]. Yi Chuan Xue Bao,2005,8,32(8):804-810.
    [85]Cifrian E, Guidry AJ. Obrien CN. Nickerson S C. Marquardt W W. Adherence of staphylococcus aureus to cultured [J]. J Dairy Sci,1994,11:970-983.
    [86]Clark TA, Schweitzer AC, Chen TX, et al. Discovery of tissue-specific exons using com-prehensive human exon microarrays [J]. Genome Biology,2007,8:64.
    [87]Coppieters W, Riquet J, Arranz JJ, et al. A QTL with major effect on milk yield and composition maps to bovine chromosome 14 [J]. Mamm Genome,1998,9:540-544.
    [88]Cote J, Dupuis S, Jiang Z, et al. Caspase-2 pre-mRNA alternative splicing:Identification of an intronic element containing a decoy 3'acceptor site [J]. Proc Natl Acad Sci USA,2001,1,30, 98(3):938-943.
    [89]Courey AJ, Holtzman DA, Jackson SP, et al. Synergistic Activation by the Glutamine-Rich Domains of Human Transcription Factor Sp1 [J]. Cell,1989,59:827-836.
    [90]Courey AJ, Tjian R. Analysis of Spl Invivo Reveals Multiple Transcriptional Domains, Including A Novel Glutamine-Rich Activation Motif [J]. Cell,1988,55:887-898.
    [91]Cramer P, Pesce CG, Baralle FE, et al. Functional association between promoter structure and transcript alternative splicing [J]. Proc Natl Acad Sci USA,1997,94:11456-11460.
    [92]Cui Y, Riedlinger G, Miyoshi K. Inactivation of star5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival and differentiation [J]. Mol Cell Biol,2004,24(18):8037-8047.
    [93]Currie MJ, Bassett NS, Breier BH, et al. Differential effects of maternal ovine placental lactogen and growth hormone (GH) administration on GH receptor, insulin-like growth factor (IGF)-1 and IGF binding protein-3 gene expression in the pregnant and fetal sheep [J]. Growth Regul,1996,9, 6(3):123-129.
    [94]Denhardt DT, Guo X. Osteopontin:a Protein with Diverse Functions [J]. FASEB J,1993,7: 1475-1482.
    [95]Ebner KE, Hoover CR, Hageman EC, et al. Cultivation and properties of bovine mammary cell cultures [J]. Exp Cell Res,1961,23:373-381.
    [96]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J]. Nature,2001,411 (6836):494-498.
    [97]Elhadidy M, Zahran E. Biofilm mediates Enterococcus faecalis adhesion, invasion and survival. into bovinemammary epithelial cells[J]. Lett Appl Microbiol,2013,11,14, publishde online.
    [98]Erdmann B, Breter H. In regular distribution of mammary-derived growth inhibitor in the bovine mammary epithelium [J]. CeZZ Tissue Res,1993,272:383-389.
    [99]Fawcett L, Baxendale R, Stacey P, et al. Molecular cloning and characterization of a distinct human phosphodiesterasegene family:PDE11A [J]. Proc Natl Acad Sci USA,2000,3,28,97(7): 3702-3707.
    [100]Fong YW, Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation [J]. Nature, 2001,414:929-933.
    [101]French PJ, Peeters J, Horsman S, et al. Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays [J]. Cancer Res,2007,15,67(12): 5635-5642.
    [102]Gajewska M, Zielniok K, Debski B, et al. IGF-Ⅰ retards proper development of acinar structures formed by bovine mammary epithelial cells via sustained activation of Akt kinase [J]. Domest Anim Endocrinol,2013,10,45(3):111-121.
    [103]Gautier M, Capitan A, Fritz S, et al. Characteriz at ion of the DGAT1 K232A and variable number of tandem repeat polym Orphisms in French dairy cattle [J]. J Dairy Sci,2007,90(6):2980-2988.
    [104]Georges M, Nielsen D, Mackinnon M, et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing [J]. Genetics,1995,2,139(2):907-920.
    [105]Gibson CA, Vega JR, Baumrucker CR, et al. Establishment and characterization of bovine mammary epithelial cell lines [J]. In Vitro Cell Dev Biol,1991,27(7):585-594.
    [106]Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. Co-transcriptional splicing of pre-messenger RNAs:considerations for the mechanism of alternative splicing Gene.2001,10,17,277(1-2): 31-47.
    [107]Gordon NF, Myburgh DP, Schwellnus MP, et al. Effect of beta-blockade on exercise core temperature in coronary artery disease patients. Med Sci Sports Exerc [J].1987,11,19(6): 591-596.
    [108]Grisart B, Coppieters W, Farnir F, et al. Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition [J]. Genome Research,2002,12:222-231.
    [109]Grisart B, Farnir F, Karim L, et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition [J].Proc Natl Acad Sci USA,2004,2,24,101(8):2398-2403.
    [110]Guerrucci MA, Monnier A, Delalande C, et al. The elongation factor-ldelta (EF-1delta) originates from gene duplication of an EF-1beta ancestor and fusion with a protein-binding domain [J]. Gene, 1999,233(1-2):83-87.
    [111]Gupta S, Zink D, Korn B, et al. Strengths and weaknesses of EST-based prediction of tissue-specific alternative splicing [J]. BMC Genomics,2004,5:72.
    [112]Haddad JJ. Cytokines and neuro-immune-endocrine interactions:a role for the hypothalamic-pituitary-adrenal revolving axis [J]. J Neuroimmunol,2002,133:1
    [113]Heegaard CW, Rasmussen LK, Andreasen PA. The plasminogen activation system in bovine milk: differential localization of tissue-type plasminogen activator and urokinase in milk fractions is caused by binding to casein and urokinase receptor[J]. Biochim Biophys Acta,1994,5,26,1222(1): 45-55.
    [114]Heyen DW, Weller JI, Ron M, et al. A genome scans for QTL influencing milk production and health traits in dairy cattle [J]. Physiol Genomics,1999,1:165-175.
    [115]Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits [J]. Nat Rev Genet,2005,2,6(2):95-108.
    [116]Hoskins AA, Friedman LJ, Callagher SS, et al. Ordered and dynamic assembly of single spliceosomes [J]. Science,2011,331(6022):1289-1295.
    [117]Houdebine LM, Djiane J, Dusanter-Fourt I, et al. Hormonal action controlling mammary activity [J]. J Daily Sci,1985,68:489-500.
    [118]Huynh HT, Pollak M. An immortalized bovine mammary epithelial cell line expresses the gene encoding mammary derived growth inhibitor (MDGI) [J]. In Vitro Cell Dev Biol Anim,1995, 31(1):252.
    [119]Huynh HT, Robitaille G, Turner JD. Establishment of bovine mammary epithelial cells (MAC-T): An in vitro model for bovine lactation [J]. Exp Cell Res,1991,197(2):191-199.
    [120]Ikonen T, Ojala M, Ruottinen O. Associations between milk protein polymorphism and first lactation milk production traits in Finnish Ayrshire cows [J]. J Dairy Sci,1999,5, 82(5):1026-1033.
    [121]Ilkbahar YN, Thordarson G, Camarillo IG, et al. Differential expression of the growth hormone receptor and growth hormone-binding protein in epithelia and stroma of the mouse mammary gland at various physiological stages [J]. J Endocrinol,1999,4,161(1):77-87.
    [122]Jacob AN, Kandpal G, Kandpal RP, Isolation of expressed sequences that include a gene for familial breast cancer (BRCA2) and other novel transcripts from a five mega base region on chromosome 13q12 [J]. Oncogene,1996,13(1):213-221.
    [123]Janssen GM, Moller W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis [J]. J Biol Chem,1988,263:1773-1778.
    [124]Jedrzejczak M, Szatkowska I. Bovine mammary epithelial cell cultures for the study of mammary gland functions [J]. In Vitro Cell Dev Biol Anim,2013,11,14, publishde online.
    [125]Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays [J]. Science,2003,19,302(5653):2141-2144.
    [126]Kadener S, Fededa JP, Rosbash M, et al. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation [J]. Proc Natl Acad Sci USA,2002,99:8185-8190.
    [127]Kan Z, Rouchka EC, Gish WR, et al. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs [J]. Genome Res,2001,11:889-900.
    [128]Kapp LD, Lorsch JR. The molecular mechanics of eukaryotic translation. Annu [J]. Rev Biochem, 2004,73:657-704.
    [129]Katoh T, Suzuki T. Specific residues at every third position of siRNA shape its efficient RNAi activity specific residues at every third position of siRNA shape its efficient RNAi activity [J]. Nucleic Acids Res,2007,2,35(4):e27, published online.
    [130]Khatib H, Zailtoun I, Wiebelhaus-Finger J, et al. The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations [J]. J Dairy Sci,2007, 90(6):2966-2970.
    [131]Knabel M, Kolle S, Sinowatz F. Expression of growth hormone receptor in the bovine mammary gland during prenatal developmet [J]. Anat Embryol (Berl),1998,8,198(2):163-169.
    [132]Kolbehdari D, Wang Z, Grant JR, et al. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls [J]. J Anim Breed Genet.2009,6,126(3): 216-227.
    [133]Kolettas E, Lymboura M, Khazaie K, et al. Modulation of elongation factor-1 delta (EF-1 delta) expression by oncogenes in human epithelial cells [J]. Anticancer Res,1998,18(1A):385-392.
    [134]Konig H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator[J]. EMBO J,1998,17(10):2904-2913.
    [135]Kornblihtt AR. Promoter usage and alternative splicing [J]. Curr Opin Cell Biol.2005,6, 17(3):262-268.
    [136]Kozlowski M, Gajewska M, Majewska A, et al. Differences in growth and transcriptomic profile of bovine mammary epithelial monolayer and three-dimansional cell cultures [J]. Journal of physiology and pharmacology,2009,1:5-14.
    [137]Kuehn C, Edel C, Weikard R, et al. Dominance and parent-of-origin effects of coding and non-coding alleles at the acylCoA-diacylglycerol-acyltransferase (DGAT1) gene on milk production traits in German Holstein cows [J]. BMC Genet,2007,9,24,8:62.
    [138]Kuthe A, Wiedenroth A, Magert HJ, et al. Expression of different phosphodiesterase genes in human cavernous smooth muscle [J]. The Journal of Urology,2001,165:280-283.
    [139]Lam BJ, Hertel KJ. A general role for splicing enhancers in exon definition [J]. RNA,2002,8: 1233-1241.
    [140]Lamb BT, Gearhart JD. YAC transgenics and the study of genetics and human disease [J]. Curr Opin Genet,1995,12,5(3):342-348.
    [141]Lasfargues Y. Cultivation and behavior of the normal mammary epithelium of the adult mouse [J]. Anat Rec,1957,127:17-24.
    [142]Lee JA, Xing Y, Nguyen D, et al. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements [J]. PLoS Biol,2007,5(2):e40, published online.
    [143]Lengi AJ, Corl BA. Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5 [J]. Lipids,2007,42(6):499-508.
    [144]Leonard S, Khatib H, Schutzkus V, et al. Effects of the Osteopontin Gene Variants on Milk Production Traits in Dairy Cattle [J]. J Dairy Sci,2005,88:4083-4086.
    [145]Lincoln DT, Waters MJ, Breipohl W, et al. Growth hormone receptor expression in the proliferating rat mammary gland [J]. Acta Histochem,1990(40):47-49.
    [146]Liu XF, Li M, Li QZ, et al. Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro [J]. In Vitro Cell Dev Biol Anim,2012,10,48(9):554-561.
    [147]Liu Y, Chen Q, Zhang J T. Tumor suppressor gene 14-3-3 sigma is down-regulated whereas the proto-oncogene translation elongation factor 1delta is up-regulated in non-small cell lung cancers as identified by proteomic profiling[J]. J Proteome Res,2004,3(4):728-735.
    [148]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods.2001,12,25(4):402-408.
    [149]Looft C, Reinsch N, Karall-Albrecht C, et al. A mammary gland EST showing linkage disequilibrium to a milk production QTL on bovine Chromosome 14 [J]. Mamm Genome,2001, 12:646-650.
    [150]Lopez A. Alternative splicing of pre-mRNA:developmental consequences and mechanisms of regulation [J]. Ann Rev Genet,1998,32:279-305.
    [151]Loughney K, Martins TJ, Harris EA. Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated,3',5'-cyclic nucleotide phosphodiesterases [J]. J Biol Chem,1996,271(2):796.
    [152]Lu A, Hu X, Chen H, et al. Single nucleotide polymorphisms in bovine PRL gene and their associations with milk production traits in Chinese Holsteins[J]. Mol Biol Rep,2010,1,37(1): 547-51
    [153]Lunden A, Nilsson M, Janson L. Marked effect β-Lacto globulin polymorphism on the ratio of casein to total protein in milk [J]. J Dairy Sci,1997,80:2996-3005.
    [154]Lynch KW, Weiss A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T cells implicates protein kinase C and Ras [J]. Mol Cell Biol,2000,20(1):70-80.
    [155]Lynch KW. Regulation of alternative splicing by signal transduction pathways [J]. Adv Exp Med Biol,2007,623:161-74
    [156]Mai MD, Sahana G, Christiansen FB, et al. A genome-wide association study for milk production traits in Danish Jerseycattle using a 50K single nucleotide polymorphism chip [J]. J Anim Sci, 2010,11,88(11):3522-3528.
    [157]Masciarelli S, Horner K, Liu C, et al Cyclic nucleotide phosphodiesterase 3A deficient mice as a model of female infertility [J]. J Clin Invest,2004(114):196-205.
    [158]Matitashvili E, Zavizion B, Dwyer D, Bauman D E. Primary bovine mammary epithelial cells in culture [J]. Dairy Sci,1996,79:132.
    [159]Matukumalli LK, Lawley CT, Schnabel RD, et al.2009. Development and characterization of a high density SNP genotyping assay for cattle [J]. PLOS ONE 4:e5350, published online.
    [160]Maxa J, Neuditschko M, Russ I, et al. Genome-wide association mapping of milk production traits in Braunviehcattle [J]. J Dairy Sci,2012,9,95(9):5357-64.
    [161]McCarthy MI, Hirschhorn JN. Genome-wide association studies:potential next steps on a genetic journey [J]. Human molecular Genetics,2008,17(2):156-165.
    [162]McGrath MF. A novel system for mammary epithelial cell culture [J]. Journal of Dairy Science, 1987,70 (9):1967-1980.
    [163]Mehar SK, Peter CT, Imke T, et al. Quantitative trait loci mapping in dairy cattle:review and meta-analysis [J]. Genet Sel Evol,2004,36:163-190.
    [164]Meins F. Related Articles RNA degradation and models for posttranscriptional gene silencing [J]. Plant Mol Biol.,2000,43 (2-3):261-273.
    [165]Meredith BK, Kearney FJ, Finlay EK, et al. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland [J]. BMC Genet,2012,13:21.
    [166]Michael F, McGrath. A novel system for mammary epithelial cell culture [J]. Journal of Dairy Science.1987,70(9):1967-1980.
    [167]Minella O, Mulner-Lorillon O, Poulhe R, et al. The guanine-nucleotide-exchange complex (EF-1 beta gamma delta) of elongation factor-1 contains two similar leucine-zipper proteins EF-1 delta, p34 encoded by EF-1 delta 1 and p36 encoded by EF-1 delta 2 [J]. Eur J Biochem,1996,237(3): 685-690.
    [168]Mironov AA, Fickett JW, Gelfand M S. Frequent alternative splicing of human genes [J]. Genome Res,1999,9:1288-1293.
    [169]Modrek B, Lee C. A genomic view of alternative spicing [J]. Nature Genet,2002,30:13-19.
    [170]Modrek B, Resch A, Grasso C, et al. Genome-wide analysis of alternative splicing using human expressed sequence data [J]. Nucleic Acids Res,2001,29:2850-2859.
    [171]Monzani PS, Sangalli JR, De Bem TH, et al. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning [J]. Genet Mol Res,2013,2,28,12(3): 3675-3688.
    [172]Mulner-Lorillon O, Minella O, Cormier P, et al. Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes [J]. J Biol Chem,1994,269:20201-20207.
    [173]Myles S, Davison D, Barrett, et al. Worldwide population differentiation at disease-associated SNPs [J]. BMC Med Genomics,2008,1:22.
    [174]Nemir M, Bhattacharyya D, Li X, et al. Targeted Inhibition of Osteopontin Expression in the Mammary Gland Causes Abnormal Morphogenesis and Lactation Deficiency [J]. J Biol Chem, 2000,275:969-976.
    [175]Ogawa K, Utsunomiya T, Mimori K, et al. Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma [J]. Br J Cancer,2004,91(2):282-286.
    [176]Olsen HG, Lien S, Svendsen M, et al. Fine mapping of milk production QTL on BTA6 by combined linkage and linkage disequilibrium analysis [J]. J Dairy Sci,2004,87:690-698.
    [177]Pantsckenko AG, Woodcock-Mitchell J, Bushmich SL, et al. Establishment and characterisation of a caprine mammary epithelial cell line (CMEC). In Vitro Cell [J]. Dev Biol Animal,2000,36: 26-37.
    [178]Phil JA,Burdon TG,Watson CJ. Diferential activation of STATs 3 and 5 during mammary gland development[J]. FEBS Lett,1996,396(1):77-80.
    [179]Pittman YR, Valente L, Jeppesen MG, et al. Mg2+ and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha [J]. J Biol Chem,2006,281:19457-19468.
    [180]Pryce JE, Bolormaa S, Chamberlain AJ, et al. A validated genome-wide association study in dairy cattle breeds for milk production and fertility traits using variable length haplotypes[J]. J Dairy Sci, 2010,93(7):3331-3345.
    [181]Rahmatalla SA, Muller U, Strucken EM, et al. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle[J]. J Appl Genet, 2011,11,52(4):459-465.
    [182]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nat Biotechnol,2004,3,22(3):326-330
    [183]Riquet J, Coppieters W, Cambisano N, et al. Identity-by-descent fine-mapping of QTL in outbred populations:Application to milk production in dairy cattle [J].Proc Natl Acad Sci,1999,96: 9252-9257.
    [184]Rittling SR, Novick KE. Osteopontin expression in mammary gland development and tumorigenesis [J].Cell Growth Differ,1997,10,8(10):1061-1069.
    [185]Roberts GC, Smith CW. Alternative splicing:combinatorial output from the genome [J]. Curr Opin Chem Biol,2002,6(3):375-383.
    [186]Roperch JP, Lethrone F, Prieur S, et al. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking:identification of common effectors with p53 and p21 (Wafl) [J]. Proc Natl Acad Sci,1999,9(14):8070-8073.
    [187]Rybalkin SD, Yan C, Bornfeldt KE, et al. Cyclic GMP phosphodiesterases and regulation of smooth muscle function [J]. Circ Res,2003,93 (4):280-291.
    [188]Sahana G, Guldbrandtsen B, Lund MS. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle [J]. J Dairy Sci,2011,1,94(1):479-486.
    [189]Sausbier M, Schubert R, Voigt V, et al. Mechanisms of NO/cGMP-dependent vasorelaxation [J]. Circulation Res,2000,87 (9):825-830.
    [190]Schennink A, Stoop WM, Visker MH, et al. Short communication:Genome-wide scan for bovine milk-fat composition. Ⅱ. Quantitative trait loci for long-chain fatty acids [J]. J Dairy Sci,2009,9, 92(9):4676-4682.
    [191]Schmid B, Schiller DL, Grund C. Tissue type-specific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland [J]. Cell Biol,1983,96(1):372.
    [192]Schopen GC, Visker MH, Koks PD, et al. Whole-genome association study for milk protein composition in dairy cattle [J]. J Dairy Sci,2011,6,94(6):3148-3158.
    [193]Schulman NF, Sahana G, Iso-Touru T, et al. Mapping of fertility traits in Finnish Ayrshire by genome-wide associationanalysis [J]. Anim Genet,2011,6,42(3):263-9.
    [194]Schwartz DS, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex [J]. Cell,2004,19,116(6):831-841.
    [195]Shakur Y, Holst LS, Landstrom TR, et al. Regulation and function of the cyclic nucleotide phosphodiesterase(PDE3) gene family [J].Prog Nucleic Acid res mol boil,2001,66:241-277.
    [196]Shamay A, Cohen N, Niwa M, et al. Effect of unsulin-like growth factor I on deoxyribonucleic acid synthesis and galactopoiesis in bovine undifferentiated and lactating mammary tissue in vitro [J]. Endocrinology,1988,123:804-809.
    [197]Shin C, Manley JL. Cell signaling and the control of pre-mRNA splicing [J]. Nat Rev Mol Cell Biol,2004,5(9):727-738.
    [198]Smith SJ, Case S, Jensen DR, et al. Obesity Resistance and Multiple Mechanisms of Triglyceride Synthesis in Mice Lacking D gat [J]. Nature Genetics,2000,25(1):87-90.
    [199]Smith DJ, Stevens ME, Sudanagunta SP, et al. Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet,1997,5,16(1):28-36.
    [200]Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases [J]. J Biol Chem,1998,273 (25):15553.
    [201]Sordillo LM, Oliver SP, Akers RM. Culture of bovine mammary epithelial cells in D-valine modified medium:selective removal of contaminating tibroblasts [J]. CeN.Biol,1988,12: 355-364.
    [202]Sourd LF, Boulben S, Bouffant LR, et al., EEF1B:at the dawn of the 21st century [J]. Biochim Biophys Acta,2006,1-2,1759(1-2):13-31.
    [203]Spelman RJ, Ford CA, McElhinney P, et al. Characterization of the DGATI gene in the New Zealand dairy population [J]. Dairy Sci,2002(85):3514-3517.
    [204]Stoop WM, Schennink A, Visker MH, et al. Genome-wide scan for bovine milk-fat composition. I. Quantitative trait loci for short- and medium-chain fatty acids [J]. J Dairy Sci,2009,9,92(9): 4664-4675.
    [205]Sun D, Jia J, Ma Y, et al. Effects of DGATI and GHR on milk yield and milk composition in the Chinese dairy population [J]. Anim Genet,2009,12,40(6):997-1000.
    [206]Thaller G, Kramer W, Winter A, et al. Effects of DGAT1 variants on milk production traits in German cattle breeds [J]. J Anim Sci,2003,8,81(8):1911-1918.
    [207]Tong HL, Li QZ, Gao XJ, et al. Establishment and characterization of a lactating dairy goat mammary glandepithelial cell line [J]. In Vitro Cell Dev Biol Anim,2012,3,48(3):149-155.
    [208]Tsiaras AM, Bargouli GG, Banos G, et al. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows [J]. J Dairy Sci,2005,1, 88(1):327-334.
    [209]Uemoto Y, Abe T, Tameoka N, et al. Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle [J]. Anim Genet,2010,6,28, published online.
    [210]Uetsuki T, Naito A, Nagata S, et al. Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor2-alpha [J]. J Biol Chem.,1989,264(10):5791-5798.
    [211]van Oordt WH, Diaz-Meco MT, Lozano J, et al. The MKK (3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation [J]. J Cell Biol, 2000,149(2):307-316.
    [212]van Staveren WC, Glick J, Markerink-van Ittersum M, et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain [J]. J Neurocytol,2002,31(8-9):729-741.
    [213]Venema RC, Peters HI, Traugh JA, et al. Phosphorylation of valyl-tRNA synthetase and elongation factor1 in response to phorbol esters is associated with stimulation of both activities [J]. J Biol Chem,1991,266:1993-1998.
    [214]Verma IM, Somia N. Gene therapy-promises, problems and prospects[J]. Nature,1997,9,18, 389(6648):239-242.
    [215]Viitala S, Szyda J, Bloot S, et al. The role of the bovine growth hormone receptor and prolactin receptor genes in milk fat and protein production in Finnish Ayrshire dairy catle [J]. Genetics, 2006,173(4):2151-2164.
    [216]Viitala SM, Schulman NF, de Koning DJ, et al. Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle[J]. J Dairy Sci,2003,5,86(5):1828-1836.
    [217]Wang P, Wu P, Egan RW,et al. Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5) [J]. Gene,2003,9,18(314):15-27.
    [218]Weg-Remers S, Ponta H, Herrlich P, et al. Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway [J]. EMBO J,2001,20(15):4194-4203.
    [219]Wellnitz O, Kerr DE. Cryopreserved bovine mammary cells to model epithelial response to infection [J]. Vet Immunol Immunopathol,2004(101):191-202.
    [220]Winter A, Kramer W, Werner FA, et al. Association of a Lysine-232-alanine Polymorphism in a Bovine Gene Encoding Acyl-CoA:Diacylglycerol Acyltransferase (DGAT1) with Variation at a Quantitative trait Locus for Milk Fat Content [J]. PNAS,2002,99:9300-9305.
    [221]Wright G. High level expression of active human antitrypsin in milk of transgenic sheep [J]. Bio Technology,1991,9:830-834.
    [222]Wu HL, Shi Y, Lin Y, et al. Eukaryotic translation elongation factor 1 delta inhibits the ubiquitin ligase activity of SIAH-1 [J]. Mol Cell Biochem,2011,357(1-2):209-215.
    [223]Xie J, Black DL. A CaMK IV responsive RNA element mediates depolarization induced alternative splicing of ion channels [J]. Nature,2001,410(6831):936-939.
    [224]Xu Q, Modrek B, Lee C. Genoe-wide dtection of tissue specific alternative splicing in the human transcriptome [J]. Nucleic Acids Research,2002,30(17):3754-3766.
    [225]Yang Z, Fu Y, Liu B, et al. Farrerol regulates antimicrobial peptide expression and reduces Staphylococcus aureus internalization into bovine mammary epithelial cells [J]. Microb Pathog, 2013,11,65C:1-6.
    [226]Yuasa K, Kotera J, Fujishige K, et al. Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression[J]. J Biol Chem,2000, 10,6,275(40):31469-31479.
    [227]Zavizion B, Duffelen M, Schaeffer W, et al. Establishment and characterization of a bovine mammary myoepithelial cell line [J]. In Vitro Cell Dev Biol Anim,1996,32(3):149-158.
    [228]Zavizion B, van Duffelen M, Schaeffer W, et al. Establishment and characterization of a bovine mammary epithelial cell line with unique properties [J]. In Vitro Cell Dev Biol Anim,1996,3, 32(3):138-148.
    [229]Zhang JY, Zhang GL, Yang RJ, et al. Cloning and Characterization of Four New Splice Variants of Insulin-Like Growth Factor-I Gene in Chinese Red Steppes [J]. Journal of Animal and Veterinary Advances,2011,10(18):2459-2464.
    [230]Zhang Z, Buckler ES, Casstevens TM, et al. Software engineering the mixed model for genome-wide association studies on large samples [J]. Briefings in Bioinformatics,2009,10(6): 664-675.
    [231]Zhao K, Liu HY, Zhou MM, et al. Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis [J]. Cell Biol Int, 2010,7,34(7):717-721.