稻瘟病菌液泡运输途径相关基因MoYpt7和MoMon1的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液泡在调控细胞的生长发育方面具有多重作用。真菌的液泡和哺乳动物中的溶酶体以及植物中的液泡有类似的功能,包括离子的代谢和储存、pH和渗透压调控、营养运输以及细胞凋亡等。液泡是真菌生理活动中的关键细胞器,直接参与菌丝细胞内的长距离营养运输,调控菌丝的扩展和分支的形成;通过对自噬的调控间接参与真菌某些关键结构的形成,如附着胞的形成和假菌丝的生长等。稻瘟病菌(Magnaporthe oryzae)是一种严重危害水稻产量的植物病原丝状真菌;同时稻瘟病菌也是研究病原真菌与寄主植物互作的模式生物之一。了解其致病过程和机理对于水稻稻瘟病的防治有重要作用。
     本论文主要研究和阐明液泡运输与稻瘟病菌生长、发育和致病性之间的关系。获得的主要研究结果如下:
     1)在稻瘟病菌附着胞的差减文库中,找到了细胞自噬相关基因的EST (expressed sequence tags),进而找到基因,定名为MoYpt7,通过保守结构域分析该基因编码Rab GTPase。对MoYpt7进行细胞定位,该基因在菌丝和分生孢子的液泡膜上强烈表达;通过构建MoYpt7基因置换载体,得到基因MoYpt7缺失突变体AMoYpt7。
     2) AMoYpt7突变体在CM培养基上的菌落形态发生变化,菌丝稀疏;几乎不产孢,少数孢子可以萌发,但不形成附着胞;在完整的水稻或者大麦叶片上不能形成可见病斑,对水稻根部也不能完成侵染,致病性丧失;突变子在OMA培养基上与2539菌株交配,不能产生子囊壳,育性受到影响;基因MoYpt7缺失,细胞自噬过程中断,菌丝中大量小液泡聚集。
     3)通过同源序列比对,PCR的方法,得到液泡运输相关基因MoMonl;将稻瘟病菌MoMonl基因,互补到酵母Monl基因缺失突变体中,能够恢复酵母的液泡形态;通过构建MoMonl基因置换载体,得到基因MoMonl缺失突变体ΔMoMonl。
     4)基因缺失突变体MoMonl,液泡融合受阻,细胞自噬过程中断;菌落形态改变,菌丝稀疏;孢子产量显著下降,不能形成附着胞;与2539菌株的交配,不能形成子囊壳;在大麦和水稻上的致病性丧失。
     液泡广泛存在于真核生物中,液泡参与细胞内营养物质的运输等多个生命过程,与液泡相关的运输过程在植物病原真菌中的研究很少,结合细胞自噬在稻瘟病菌中研究液泡的运输国内尚属首次;同时,研究过程中采用的方法对其它病原真菌的研究起到借鉴作用。
In eukaryotic cells, the vacuole/lysosome is a complex organelle with a range of various functions, such as nutrient transport, the storage of Ca2+, ion homeostasis and degradation of macromolecules. In filamentous fungi, the inheritance and morphology of vacuole are vital for fungal growth, differentiation and symbiosis and/or pathogenesis. Magnaporthe oryzae is a filamentous ascomycete fungus that has been served as an excellent model organism for studying plant-pathogen interactions. A deep understanding of the molecular background of this fungus is beneficial for the control of the rice blast.
     This work is aimed to investigate the relationship between vacuole trafficking and cell development, differentiation and pathogenicity in M. oryzae. We isolated and cloned two vacuole fusion-related genes, MoYpt7and MoMonl, which is a homolog of gene Ypt7or Monl respectively in Saccharomyces cerevisiae. The functional analyses of MoYpt7and MoMonl during the infection process of rice blast were discussed.
     An EST (expressed sequence tags) for MoYpt7was found in the appressorium of the rice blast fungus. MoYpt7is a Rab GTPase, conserved from yeast to mammalian. The ΔMoYpt7mutant, in which the MoYpt7gene has been deleted, exhibits defective in mycelial growth and conidial production. Among the few conidia generated, conidia are malformed and defective in appressorial formation. Consequently, the ΔMoYpt7mutant fails to cause diseases on rice CO-39and barley ZJ-8. The cellular localization assay shows that the MoYpt7is mainly localized to vacuolar membranes. Furthermore, the ΔMoYpt7mutant shows lots of small and fragmented vacuoles in hypha, blocked in autophagy process, a breach in cell wall integrity and more sensitive to ions stress.
     Similarly, a sequence homologue was isolated by using the amino acid sequence of Monl searching against M. oryzae genome databases, assigned MoMonl. A targeted gene deletion strategy was adopted to determine the role of MoMonl in fungal development and pathogenicity at the molecular level. The ΔMoMonl mutant showed accumulation of small punctuate vacuoles in the hypha and hypersensitive to monensin, an antibiotic that can block intracellular protein transport. Secondly, the ΔMoMonl mutant exhibited reduced in hyphal development, conidiogenesis and failed to produce the appressorium. Additionally, the ΔMoMonl mutant revealed blocked in autophagy and a defect in pathogenicity.
     In summary, MoYpt7and MoMonl also have essential function in vacuolar assembly and growth, conidiation, appressorium formation and pathogenicity in M. oryzae.
引文
Adachi, K., Hamer, J. E.,1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell.10,1361-74.
    Baars, T. L., et al.,2007. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell.18,3873-82.
    Bagar, T., et al.,2009. Live-cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot Cell.8,703-12.
    Baker, B., et al.,1997. Signaling in plant-microbe interactions. Science.276,726-733.
    Bayer, M. J., et al.,2003. Vacuole membrane fusion:Vo functions after trans-SNARE pairing and is coupled to the Ca2+ -releasing channel. J Cell Biol.162,211-22.
    Bock, J. B., et al.,2001. A genomic perspective on membrane compartment organization. Nature.409, 839-41.
    Bonangelino, C. J., et al.,1997. Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol.17,6847-58.
    Bone, N., et al.,1998. Regulated vacuole fusion and fission in Schizosaccharomyces pombe:an osmotic response dependent on MAP kinases. Curr Biol.8,135-44.
    Bowman, B. J., et al.,2009. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell.8,1845-55.
    Brett, C. L., Merz, A. J.,2008. Osmotic regulation of Rab-mediated organelle docking. Curr Biol.18, 1072-7.
    Burri, L., Lithgow, T.,2004. A complete set of SNAREs in yeast. Traffic.5,45-52.
    Cai, H., et al.,2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell.12,671-82.
    Choi, W., Dean, R.,1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls Appressorium formation and other aspects of growth and development. Plant Cell.9,1973-1983.
    Couch, B., et al.,2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics.170,613-630.
    Crotzer, V. L., Blum, J. S.,2005. Autophagy and intracellular surveillance:Modulating MHC class Ⅱ antigen presentation with stress. Proc Natl Acad Sci USA.102,7779-80.
    Dean, R. A., et al.,2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature.434, 980-6.
    Dean, R., et al.,2012. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol.13, 414-430.
    Dixon, K. P., et al.,1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell.11,2045-58.
    Dou, X. Y., et al.,2011. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PloS ONE.6, e16439.
    Dufresne, M., Osbourn, A. E.,2001. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact.14,300-307.
    Ebbole, D. J.,2007. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol.45,437-456.
    Enyenihi, A. H., Saunders, W. S.,2003. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics.163,47-54.
    Gary, J. D., et al.,2002. Regulation of Fabl phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell.13,1238-51.
    Gietz, R. D., Schiestl, R. H.,2007. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols.2,35-37.
    Gilbert, M., et al.,2006. A P-type ATPase required for rice blast disease and induction of host resistance. Nature.440,535-539.
    Gustin, M. C., et al.,1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev.62,1264-300.
    Hamer, J. E., et al.,1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science.239,288-90.
    Herr, F. B., Heath, M. I. C.,1982. The effects of antimicrotubule agents on organelle positioning in the cowpea rust fungus,Uromyces phaseoli var.vignae. Experimental Mycology.6,15-24.
    Hickey, C. M., et al.,2009. The major role of the Rab Ypt7p in vacuole fusion is supporting HOPS membrane association. J Biol Chem.284,16118-25.
    Howard, R. J., Valent, B.,1996. Breaking and entering:host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol.50,491-512.
    Hyde, G. J., et al.,2002. Regulators of GTP-binding proteins cause morphological changes in the vacuole system of the filamentous fungus, Pisolithus tinctorius. Cell Motil Cytoskeleton.51,133-46.
    Hyde, G. J., et al.,1999. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cell Motil Cytoskeleton.42,114-24.
    J, K., et al.,2009. Two fission yeast rab7 homologs, ypt7 and ypt71, play antagonistic roles in the regulation of vacuolar morphology. Traffic.10,912-924.
    Jones, S., et al.,1999. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers. Genetics.152,1543-56.
    Kabeya, Y., et al.,2005. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell.16,2544-53.
    Kang, S. H., et al.,1999. Regulation of cAMP-dependent protein kinase during appressorium formation in Magnaporthe grisea. Fems Microbiol Lett.170,419-423.
    Kikuma, T., et al.,2006a. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryotic Cell.5,1328-1336.
    Kikuma, T., et al.,2006b. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell.5,1328-36.
    Kirkin, V., et al.,2009. A role for ubiquitin in selective autophagy. Mol Cell.34,259-69.
    Kissova, I., et al.,2007. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy.3,329-36.
    Klionsky, D. J.,2005. The molecular machinery of autophagy:unanswered questions. J Cell Sci.118,7-18.
    Kuratsu, M., et al.,2007. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol.44,1310-23.
    Lee,1. H., et al.,2001. Null mutants of the neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Mol Biol Cell.12,2195-206.
    Lee, Y. H., Dean, R. A.,1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell.5,693-700.
    Levine, B., Klionsky, D. J.,2004. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell.6,463-477.
    Li, Y., et al.,2010. MoRic8 is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact.23,317-31.
    Liu, S., Dean, R. A.,1997. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact.10,1075-86.
    Liu, X. H., et al.,2010. Disruption of MoCMK1, encoding a putative calcium/calmodulin-dependent kinase, in Magnaporthe oryzae. Microbiol Res.165,402-410.
    Liu, X. H., et al.,2007. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgAtgl, in appressorium turgor and pathogenesis. Eukaryotic Cell.6,997-1005.
    Menasche, G., et al.,2000. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics.25,173-176.
    Mitchell, T. K., Dean, R. A.,1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell.7,1869-78.
    Money, N., Howard, R.,1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol.20,217-227.
    Nguyen, Q. B., et al.,2008. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol.68,1348-65.
    Noda, T., et al.,2000. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol.148,465-80.
    Nuoffer, C., et al.,1994. A GDP-bound of rabl inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J Cell Biol.125,225-37.
    Oka, M., et al.,2004. Molecular cloning and functional characterization of avaB, a gene encoding Vam6p/Vps39p-like protein in Aspergillus nidulans. Fems Microbiol Lett.232,113-121.
    Palmer, G. E., et al.,2007. Autophagy in the pathogen Candida albicans. Microbiology.153,51-8.
    Peplowska, K., et al.,2007. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell.12,739-50.
    Peters, C., et al.,2004. Mutual control of membrane fission and fusion proteins. Cell.119,667-78.
    Penalva, M. A.,2005. Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet Biol.42,963-75.
    Price, A., et al.,2000. The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol.148,1231-1238.
    Prosser, J.1., Tough, A. J.,1991. Growth mechanisms and growth kinetics of filamentous microorganisms. Crit Rev Biotechnol.10,253-74.
    Ramanujam, R., Naqvi, N. I.,2010. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathog.6, e1000897.
    Rho, H. S., et al.,2009. Phospholipase C-mediated calcium signalling is required for fungal development and pathogenicity in Magnaporthe oryzae. Mol Plant Pathol.10,337-46.
    Rho, H. S., et al.,2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells.12,407-411.
    Riederer, M. A., et al.,1994. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol.125,573-82.
    Rubinsztein, D. C., et al.,2007. Potential therapeutic applications of autophagy. Nat Rev Drug Discov.6, 304-12.
    Rutherford, S., Moore, I.,2002. The Arabidopsis Rab GTPase family:another enigma variation. Curr Opin Plant Biol.5,518-28.
    Rothlisberger, S., et al.,2009. The dynamin-related protein Vpsl regulates vacuole fission, fusion and tubulation in the fission yeast, Schizosaccharomyces pombe. Fungal Genet Biol.46,927-35.
    Salminen, A., Novick, P. J.,1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell.49,527-38.
    Schimmoller, F., et al.,1998. Rab GTPases, directors of vesicle docking. J Biol Chem.273,22161-22164.
    Schwartz, M. L., Merz, A. J.,2009. Capture and release of partially zipped trans-SNARE complexes on intact organelles. J Cell Biol.185,535-49.
    Seabra, M. C., Wasmeier, C.,2004. Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol.16,451-7.
    Segev, N.,2001. Ypt and Rab GTPases:insight into functions through novel interactions. Curr Opin Cell Biol.13,500-511.
    Segev, N., et al.,1988. The yeast GTP-binding Yptl protein and a mammalian counterpart are associated with the secretion machinery. Cell.52,915-924.
    Seiler, S., et al.,1999. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr Biol.9,779-85.
    Sesma, A., Osbourn, A.,2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature.431,582-586.
    Shepherd, V. A., et al.,1993. Cell-to-cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci.105 (Pt 4),1173-8.
    Shoji, J. Y., et al.,2006. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot Cell.5,411-421.
    Steinberg, G.,2000. The cellular roles of molecular motors in fungi. Trends Microbiol.8,162-8.
    Steinberg, G.,2007. On the move:endosomes in fungal growth and pathogenicity. Nat Rev Microbiol.5, 309-16.
    Steinberg, G., Schliwa, M.,1993. Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci.106 (Pt 2),555-64.
    Steinberg, G., et al.,1998. Kinesin from the plant pathogenic fungus Ustilago maydis is involved in vacuole formation and cytoplasmic migration. J Cell Sci.111 (Pt 15),2235-46.
    Stenmark, H.,2009. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Bio.10,513-525.
    Takeshige, K., et al.,1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol.119,301-11.
    Talbot, N. J., et al.,1993. identification and characterization of Mpg1, a gene involved in pathogenicity from the rice blast fungus magnaporthe-grisea. Plant Cell.5,1575-1590.
    Talbot, N. J.,1995. Having a blast:exploring the pathogenicity of Magnaporthe grisea. Trends microbiol. 3,9-16.
    Talbot, N. J., et al.,1997. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiological and Molecular Plant Pathology. 50,179-195.
    Talbot, N. J.,2003. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea. Annu Rev Microbiol.57,177-202.
    Tarutani, Y., et al.,2001. Cloning and characterization of Aspergillus nidulans vpsA gene which is involved in vacuolar biogenesis. Gene.268,23-30.
    Touchot, N., et al.,1987.4 additional members of the ras gene superfamily isolated by an oligonucleotide strategy-molecular-cloning of ypt-related cdnas from a rat-brain library. Proc Natl Acad Sci USA. 84,8210-8214.
    Valent, B.,1990. Rice blast as a model system for plant pathology. Phytopathology.80,33-36.
    Veneault-Fourrey, C., et al.,2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science.312,580-583.
    Veses, V., et al.,2008. Vacuoles and fungal biology. Curr Opin Microbiol.11,503-510.
    Veses, V., et al.,2009. Vacuole inheritance regulates cell size and branching frequency of Candida albicans hyphae. Mol Microbiol.71,505-19.
    Wang, C. W., et al.,2003. Yeast homotypic vacuole fusion requires the Cczl-Monl complex during the tethering/docking stage. J Cell Biol.163,973-985.
    Weisman, L. S.,2006. Organelles on the move:insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol.7,243-52.
    Wickner, W., Haas, A.,2000. Yeast homotypic vacuole fusion:A window on organelle trafficking mechanisms. Annu Rev Biochem.69,247-275.
    Xiang, X., Morris, N. R.,1999. Hyphal tip growth and nuclear migration. Curr Opin Microbiol.2,636-40.
    Xu, J.-R., et al.,1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact.10,187-194.
    Xu, J. R., Hamer, J. E.,1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev.10,2696-2706.
    Xu, J. R., et al.,1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci U S A.95,12713-8.
    Zelter, A., et al.,2004. A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genet Biol.41,827-41.
    Zhang, H., et al.,2011. Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS ONE. 6,e17241.
    Zustiak, M. P., et al.,2008. Feast or famine:autophagy control and engineering in eukaryotic cell culture. Curr Opin Biotech.19,518-526.
    刘小红,细胞自噬与稻瘟病菌Magnaporthe grisea生长、发育和致病性的关系。2007,浙江大学博士学位论文。
    杜万清,俞立。自噬过程的晚期阶段。中国细胞生物学学报,2011,33(1):1-7。
    吴文林,吴穗洁。Rab蛋白的结构、功能与研究展望。台湾海峡,2006,25(4):599-605。