叶肉细胞特异表达焦磷酸化酶基因OsIP1在不同“源、库类型”水稻品种中的效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高产育种始终是水稻最重要的育种目标之一。为了提高水稻的产量水平,一些研究者提出了这样一种思路:改进作物光合作用效率和光合产物的分配进而提高水稻产量。淀粉和蔗糖是植物光合作用形成的主要终产物。在C3植物中,卡尔文循环中形成的磷酸丙糖(Triosephosphate, TP)决定了淀粉和蔗糖的合成与分配。总体而言,大部分TP通过位于叶绿体被膜上的磷酸丙糖转运器(triose phosphate translocator, TPT)与无机磷酸基团(pi)的对等交换被转移至细胞质,并在细胞质内的一系列酶促反应下合成蔗糖,而滞留在叶绿体内的TP可在一系列酶促反应下合成淀粉。胞质型无机焦磷酸化酶(Inorganic pyrophosphatase, PPase)可在细胞质内催化焦磷酸基团(ppi)分解为磷酸基团(pi)。通过调节ppi和pi的比例,可以有机协调蔗糖合成反应、淀粉合成以及质体中的糖酵解反应。因此,从理论上推测过表达外源无机焦磷酸化酶基因时,可不断使细胞质中的ppi转化为pi,刺激细胞质中的酶促反应向有利于蔗糖合成方向进行,同时也为TP通过TPT进入细胞质提供充足的交换体pi[1]。由于蔗糖合成量的增加必将消耗更多的光合原初产物,从而促进源叶片的光合作用,增加植物光合产物的合成。
     蔗糖是植物碳转运的主要形式。蔗糖在维管束中的长距离运输需要ppi的存在。若人为操作PPase基因在植物体内恒定而持续的表达,可能会导致维管束中的ppi也被分解为pi,造成蔗糖在韧皮部的装载受阻,不能及时被输送到植物需要的各个部位。前人研究表明特异启动PPase基因的表达可避免这一问题。本研究尝试利用叶肉细胞特异表达启动子驱动PPase基因的表达,同时为了降低转基因安全性风险,利用水稻自身的胞质型无机焦磷酸化酶基因OsIPl作为靶基因,研究其在水稻产量形成中的潜在效应。
     另外,不同源库类型的品种对植物光合产物的需求也不同,光合产物的分配常受到库需要量的支配,改变光合产物的分配后,对产量的影响可能也不相同。因此,本研究还将分析OsIPl基因在不同源库类型品种中是否存在效应差异的问题,或曰其更适用于在那类品种上加以应用。研究主要结论如下:
     1、以6个不同穗型的水稻品种为试验材料,通过剪叶和疏花处理,明确了各水稻品种的源、库特征。结果表明:4个粳稻品种中,中超123穗型最大,籽粒充实度较差,有明显的两次灌浆现象,为典型“源限制型”品种;穗粒并重型品种恢236表现库大源足,粒/叶和粒重/叶均最小,但籽粒充实度也较差,为“源大库大流不畅”;多穗型品种武陵粳1号源库较协调,同化物质运转能力较强。同为多穗型品种农垦57,结实率、籽粒充实度均最高,单株总库容量最小,属于“库限制型”品种。2个籼稻品种中,扬稻6号表现与武陵粳1号相似,为“源库协调型”;R6547籽粒充实度较好,即使在剪叶处理下灌浆后期物质也有向茎秆再积累的现象,属于“库限制型”品种。
     2、利用生物信息学对水稻中约30个无机焦磷酸化酶编码基因进行了氨基酸序列比较、结构域特征、亚细胞定位预测以及上游顺式元件释义等分析,进而克隆了1个预测为编码胞质型可溶性无机焦磷酸化酶的基因OsIPl (Os04g0687100)利用水稻叶肉细胞特异启动子cyFBPase驱动OsIPl基因的表达,构建了嵌合基因cyFBPase:OsIPl的双T-DNA植物表达载体。
     3、通过农杆菌转化法将嵌合基因cyFBPase:OsIPl分别导入“源限制型”水稻品种中超123和“库限制型”品种农垦57中,分别获得了20、28个阳性转基因植株。根据QPCR分析和农艺性状比较,筛选高表达量且农艺性状没有明显改变的T2转基因纯合株系进行产量比较试验,分析在水稻叶肉细胞中特异性过表达OsIPl基因的效应。结果显示:
     1)在营养生长期,转基因株系的最高茎蘖数和穗数相比各受体亲本均有不同程度的提高,且在分蘖性较强的品种上的提高效应更为明显;
     2)在籽粒灌浆结实期,叶片、叶鞘中可溶性总糖、蔗糖和淀粉含量在整个灌浆期的变化趋势与对照相似,但是在灌浆高峰期时,多数转基因植株的叶片和叶鞘中的蔗糖含量显著高于对照。
     3)转基因株系的单株产量较野生型对照呈现不同程度的增加,其中“源限制型”品种中超123转基因株系单株产量较对照增幅达显著水平,而“库限制型”品种农垦57的相关转基因株系增产未达显著水平。此外,在单株干物总重上,转基因株系相对野生型对照均有显著提高。
     以上结果表明:cyFBPase:OsIPl基因的过表达均能使两种类型的品种生产更多的光合产物,产量较对照也不同程度增加,表明利用叶肉细胞过表达OsIPl基因这一策略改进水稻的产量具有一定的可行性,但在不同源库类型的品种中的增产效应有所差异。
High-yielding breeding is one of the most important rice breeding aims. For increasing rice grain production, some researchers have proposed a hypothese of increasing yield by improving photosynthetic efficiency and altering partitioning of photosynthetic products.. Photosynthesis results in the synthesis of two primary carbohydrates in plants, sucrose and starch. The triose phosphate (TP) synthesized from the calvin cycle determines the synthesis and distribution of starch and sucrose in C3plants. In general, most of TP can be transported out of chloroplasts into the cytosol through the exchange of inorganic phosphate ion (pi) and the inner chloroplast membrance localized triose-phosphate translocator. In cytosol, the TP will be used for sucrose synthesis by a series of enzymatic reaction, while in chloroplast it was synthesized starch under a series of enzymatic reaction. Soluble cytoplasmic inorganic pyrophosphatases (ppase) hydrolyze inorganic pyrophosphate (ppi) to two ions of inorganic phosphate (pi) in cytoplasm. By adjusting the proportion of ppi and pi, sucrose/starch synthesis, glycolysis in plasmid can be properly coordinate with each other. Therefore, over-expression exogenous PPase could continually catalyze ppi converting to pi in cytosol, which will stimulate enzymatic reaction towards the sucrose synthesis, and will provide sufficient pi for the TP exported from the stroma to the cytosol. The increased amount of sucrose synthesis will consume more photosynthetic products, which will in turn increase photosynthesis and photoassimilate of source leaves.
     Sucrose is the main form of carbohydrates transported from source to sink tissues in higher plants. Sucrose biosynthesis in the mesophyll cytosol requires pi, while sucrose transport in vascular bundle requires certain concentration of ppi. As a result, constitutive expression ppase gene in plant would lead to the ppi in vascular bundle decomposed into pi. This will cause sucrose that can not be loaded into the phloem, which will affect it transported to plant tissues in time. Previous studies have shown that specific expression of an exogenous ppase gene in mesophyll tissue can avoid this problem. For reducing the transgenic risk, in this thesis, we cloned an inorganic pyrophosphatase gene OsIPl from rice, and put it under the rice mesophyll-specific promoter "cyFBPase" to produce a construct cyFBPase:OsIP1. Through Agrobacteria mediated transformation, we transformed it into rice for studying its potential effects on rice yield increase. Moreover, different source-sink types of rice varieties are different on the requirement of more photosynthetic products, therefore, if their distribution of photosynthesis products were changed in a same way, their yield formation would be affected differently. Consequently, in this thesis, we also evaluated the effects of expression OsIPl gene between different source-sink types of rice varieties, and the result could provide the clue that which kind of varieties are more suitable to be improved by OsIPl.
     The results are as follows:
     1、Through the treatments of leaf-cutting (cutting off half of the flag leave when panicle emergence) and spikelet thinning (cutting off odd primary branches when panicle emergence), six rice cultivars with various panicle characteristics were investigated for identifying source-limiting and sink-limiting varieties, respectively. The results indicated that among the four japonica rice varieties, Zhongchao123had the largest panicle than those of the others, and showed poorly grain filling characteristics with two times of grain filling. This indicated that Zhongchao123was source-limiting variety. Hui236showed large sink and ample source, poor grain filling capacity, and least ratio of grain number/leaf and grain weight/leaf. This indicated that the transport capacity of photosynthesis products (source) to grain (sink) was not smooth in Hui236. Wuling jing1had more panicles as well as the stronger capacity of the translocating assimilation product, which showed the source coordinated with sink was very well. Nongken57, on the contrary, although it was like Wuling jing1with more panicles, it had the highest seed-setting percentage and grain filling degree. This indicated that the sink capacity of Nongken57was the smallest compared to the other three varieties, therefore it was classified into sink-limiting variety. For the two indica rice varieties, Yangdao6belonged to the type with good source-sink coordination like Wulingjing1, while R6547was considered a typical sink-limiting variety, which showed well grain filling degree, and even after the treatment of leaf-cut there still had photosynthesis products transported into stems at the later filling stage.
     2、Total of30inorganic pyrophosphatase genes predicted in rice were firstly analyzed by a series of bioinformatics methods, such as protein clusters, amino acids sequence alignment, protein subcellular localization prediction and cis-elements analysis. Among them, one gene (Os04g0687100) that was considered encoding soluble cytoplasmic inorganic pyrophosphatase, named as OsIPl, was cloned. The rice mesophyll-specific promoter "cyFBPase", from a cytosolic fructose-1,6-bisphosphatase gene, was used to drive OsIPl to make a chimeric gene cyFBPase:OsIP1in a double T-DNA plant expression vector.
     3、We transfered this chimeric gene, cyFBPase:OsIPl, into different rice varieties, including source-limiting variety Zhongchao123and sink-limiting variety Nongken57by using Agrobacterium-mediated method, and respectively obtained20,28independent positive transformants. We selected some To transgenic plants with high expression level by real-time PCR and generated their T2homozygous lines with similar morphological and agronomic traits to their wild-type parents. The effects of over-expressed OsIPl specifically in the mesophyll cell were estimated by investigating tiller dynamics, soluble and stored carbohydrate contents in leaf blade and in leaf sheath, dry weight, yield and so on. The preliminary results showed as follows:
     1) During the vegetative stage, the tiller capability and panicle number of transgenic lines increased to a different extent compared to the corresponding wild type. The increased effect seems to be more obvious in the high tillering variety, Nongken57than that in R6547.
     2) At different time-testing point, during the grain-filling stage, changing trends of the soluble sugar, sucrose and starch content in leaf blade and leaf sheath of transgenic lines were consistent with those of the wild types. However, at the peak grain-filling stage, the sucrose content of leaf blade and leaf sheath in the most transgenic lines was significantly increased comparing to their wild parents.
     3) Compared with the wild types, the dry weights and grain yields of transgenic lines increased in different extents. The grain yield of transgenic lines in Zhongchao123background were all significantly higher than that of the wild type, while the yield increasement of Nongken57transgenic lines did not reach significant level.
     In summary, we tried a new strategy to improve the photosynthesis production of two source-sink type rice varieties by specific over-expression of OsIPl gene in mesophyll cells. We found that compared with the wild type, the grain yield of transgenic lines were increased to a different extent. The results suggested that this strategy was feasible to improve rice grain yield although the various effects of OsIP1gene on different types of source-sink rice varieties were found.
引文
1、司丽珍,储成才.植物蔗糖合成的分子机制[J].中国生物工程杂志,2003,23(1):11-16.
    2、Lerchl J, Geigenberger, P Stitt M, et al. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants[J]. Plant Cell,1995, (7):259-270.
    3、司丽珍,水稻细胞质型1,6-二磷酸果糖酶基因启动子的分离、鉴定及碳水同化产物分配的分子调控.中国科学院博士论文,2002
    4、唐曹甲子,吉林省高产水稻品种源库特征与评价体系的研究.吉林大学硕士论文,2011
    5、田春艳,水稻直立穗性状的遗传及分子标记定位研究.扬州大学硕士论文,2009
    6、王丰,张国平,白朴.水稻源库关系评价体系研究进展与展望[J].中国水稻科学,2005,19(6):556-560
    7、霍中洋,叶全宝,李华,等.水稻源库关系研究进展[J].中国农学通报,2002,18(6):72-77
    8、王志敏,方保停.论作物生产系统产量分析的理论模式及其发展[J].中国农业大学学报,2009,14(1):1-7
    9、盛大海,刘元英,李广宇.水稻源库关系研究进展与应用[J].东北农业大学学报,2009,40(5):117-122
    10、王忠主编.植物生理学.第一版.北京:中国农业出版社出版2000:238-239.
    11、屠乃美,官春云.作物源-库关系研究的现状[J].作物研究,1995,9(2):44-48
    12、Wilson J. Photosynthesis and energy conversion[M].Warring P F,Cooper J P. Potential crop production educational books. Exeter NH,1971:43-75
    13、薛艳凤,蔡一霞,朱庆森.亚种间杂交稻籽粒灌浆特性的研究现状[J].江苏农业科学,2001,3:3-5,8
    14、郑华,屠乃美.水稻源库关系研究现状与展望[J].作物研究,2000,3:37-44
    15、Shi-Jeah S S, Dian-Peng X, Clanton C. Identifcation of actively filling sucrose sinks[J]. Plant Physiol,1989,89(4):1117-1121
    16、杨建昌,刘立军,王志琴,等.稻穗颖花开花时间对胚乳发育的影响及其生理机制[J].中国农业科学,1999,32(3):44-51
    17、凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究[J].中国农业科学,1986,(3):1-8
    18、兰洪国,杜春影,刘梦红.水稻源库关系研究进展[J].北方水稻,2007,1:73-17
    19、洪植番,林菲,庄宝华,等.两系杂交稻栽培生理生态特征Ⅲ.结实特性与库源特征[J].福建农学院学报,1992,21(3):251-258
    20、朱庆森,王志琴,张祖建,等.水稻籽粒充实程度的指标研究[J].江苏农学院学报,1995,16(2):1-4
    21、朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量库源特征[J].中国农业科学,1997,30(3):52-59
    22、曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272
    23、张俊国.不同粳稻品种源库关系的研究[J].吉林农业科学,1990(2):35-41
    24、张洪程,严宏生,苏祖芳,等.水稻高效栽培株型的研究[M]凌启鸿.稻麦研究新进展.南京:东南大学出版社,1991:99-106
    25、张俊国.不同粳稻品种源库关系研究不同栽培条件下品种源库关系的变化.吉林农业科学,1991,(2):8-14
    26、曹卫星主编.作物栽培学总论[M].科学出版社,2006,第三章
    27、周文新,雷驰,屠乃美.水稻源库关系研究动态[J].湖南农业大学学报(自然科学版)30(4):389-393
    28、Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat[J]. Aust. J BiolSci,1970,23:725-741
    29、 Evans L T.作物进化、适应性与产量[M].王志敏译.北京:中国农业大学出版社,2005
    30、杨守仁.水稻源与库的辩证关系[M].北京:农业出版社,1980,176-185
    31、杨建昌,王志琴,朱庆森,等.水稻产量源库关系的研究[J].江苏农学院学报,1993,14(3):47-53
    32、凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11
    33、王夫玉,黄丕生.水稻群体库源特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26-33
    34、谭周滋,周广洽.杂交水稻库、源关系的研究-Ⅱ激素在调节库、源关系中的应 用[J].湖南农业科学,1988,4:16-19
    35、王国忠,刘秀丽.不同类型水稻品种的籽粒灌浆生理[J].江苏农学院学报,1997,18(4):19-22
    36、周睿,杨洪强,束怀瑞,等.脱落酸对植物库强度的调节作用[J].植物生理学通讯,1996(3):223-228
    37、杨建昌,朱庆森,王志琴,等.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系[J].作物学报,1997,23(4):385-392
    38、曹显祖,朱庆森,杨建昌,等.水稻不同库源类型品种的栽培对策研究[J].江苏农学院学报,1988,9(3):11-15
    39、杨建昌,何杰生,朱庆森,等.中低产田水稻群体粒叶比与产量关系的研究[J].江苏农学院学报,1993,14(增):11-13
    40、蒋之埙,黄仲青,李奕松,等.中粳稻播栽密度和追氮方法的扩库增源效应研究[J].江苏农学院学报,1998,19(1):35-39
    41、杨爱馥,无载体骨架无选择标记玉米转化体系的优化.大连理工大学博士论文,2008
    42、李霞,刘鹏,刘庆.转基因动、植物的研究进展及其安全性分析[J].生命科学仪器,2008,6:9-13
    43、Chen H, Lin Y J, Zhang Q F, et al. Review and prospect of transgenic rice research [J]. Chinese Sci Bull.,2009,54(18):2699-2717
    44、朱祯.转基因水稻研发进展[J].中国农业科技导报,2010,12(2):9-16
    45、马祥建,郝德荣.转基因植物的安全性问题及其解决途径[J].江苏农业科学,2011,39(6):501-504
    46、王延锋,郎志宏,赵奎军,等.转基因作物的生态安全性问题及其对策[J].生物技术通报,2010,7:1-6
    47、李文凤,季静,王罡,等.提高转基因植物标记基因安全性策略的研究进展[J].中国农业科学,2010,43(9):1161-1170
    48、张洁,郑文永,王冬梅.无选择标记转基因植物研究进展[J].安徽农业科学,2009,37(12):5390-5392
    49、孙磊,张国军,闫爱玲,等.含甘露糖异构酶基因植物表达载体的构建[J].生物技术,2012,22(4):18-21
    50、何海燕,周洁,李亚丽,等.剔除转基因植物中选择标记的研究进展[J].浙江 农业学报,2012,24(2):335-339
    51、Lucca P, Ye X, Potrykus I. Effective selection and regeneration of transgenic rice plants with mannose as selective agent[J]. Molecular Breeding,2001,7(1):43-49
    52、Wright M, Dawson J, Dunder E, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker[J]. Plant Cell Reports,2001,20(5):429-436
    53、Depicker A,et al. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the agrobacterium plant cell interaction[J].Mol Gen Genet,1985,201:477-484
    54、H.Ebinuma, K.Sugita,et al. Systems for the removal of a selection marker and their combination with a positive marker[J]. Plant Cell Rep,2001,20:383-392
    55、陈扬勋,无筛选标记转基因抗旱水稻新材料的创制.中国农业科学院硕士论文,2012
    56、McKnight TD, Lillis MT, Simpson RB. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains[J]. Plant Molecular Biology,1989, 13:533-540
    57、陆美芳,刘巧泉,于恒秀,等.农杆菌介导的水稻双载体共转化法中部分影响因素的研究[J].生物技术通报,2005,5:55-62
    58、陈扬勋,张治国,路铁刚.无筛选标记转基因作物的研究进展[J].生物技术通报,2012,12:1-7
    59、Daley M, Knauf VC, Summerfelt KR, Turner JC Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants[J]. Plant Cell Rep,1998,17:489-496
    60、张余洋,欧阳波,叶志彪.无抗性标记基因转基因植物研究进展[J].农业生物技术学报,2004,12(5):589-596
    61、Matthews P R, Wang M B, Waterhouse P M, et al. Marker gene elimination from transgenic barley, using co-transformation with adjacent "twin-T-DNAs" on a standard A grobacterium transformation vector[J].Mol. Breeding,2001,7(3):195-202
    62、Mc Cormac A C, Wu H X, Bao M Z et al. The use of visualmarker genes as cell-specific reporters of Agrobacterium mediated T-DNA delivery to wheat(Triticum aestivum L.) and barley(Hordeum vulgare L.)[J].Euphytica.1998,99(1):17-25
    63、Miller M, Tagliani L, Wang N, et al. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system[J]. Transgenic Research,2002,11:381-396
    64、于恒秀,陆美芳,陈秀花,等.不同转化方法培育无抗性选择标记转基因水稻效率的比较[J].中国水稻科学,2009,23(2):120-126
    65、Chen S, Li X, X,Liu X, et al. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system[J]. Plant Cell Rep.2005,23:625-631
    66、燕丽,崔继哲,张亮.共转化法及其在植物基因工程中的应用[J].生物技术通报,2008,1:91-94
    67、Rooke L, Barcelo P, Lazzeri PA, et al. Transgene inheritance, segregation and expression in bread wheat[J]. Euphytica,2003,129:301-309
    68、Romano A, Bernardi J, Mooibroek H et al. Transgene organization in potato after particle bombardment-mediated (co)transformation using plasmids and gene cassettes [J]. Transgenic Res.2003,12:461-473
    69、Wu L, Nandi S, Chen L, et al. Expression and inheritance of nine transgenes in rice[J]. Transgenic Res.2002,11:533-541
    70、方进,翟文学,王文明,等.转基因水稻T-DNA侧翼序列的扩增与分析[J].遗传学报.2001,28(4):345-351
    71、Shiva Prakash N, Prasad V, Chidambram TP, et al. Effect of promoter driving selectable marker on corn transformation[J]. Transgenic Res.2008,17:695-704
    72、孙家利,闫晓红,王力军,等.Cre/loxP位点特异性重组系统在植物中应用的研究进展[J].中国农业学报.2010,43(6):1099-1107
    73、Dale E C, Ow D W. Gene transfer and subsequent removal of the selection gene from the host genome[J]. Proc Natl Acad Sci,1991,88:10558-10562
    74、Kopertekh L, Broer I, Schiemann J. Developmentally regulated site-specific marker gene excision in transgenic B. napus plants[J]. Plant Cell Reports,2009,28:1075-1083
    75、Cuellar W, Gaudin A, Solorzano D, et al. Self-excision of the antibiotic resistance gene nptll using a heat inducible Cre-loxP system from transgenic potato [J]. Plant Molecular Biology,2006,62:71-82
    76、马三梅,王永飞.去除转基因植物标记基因的研究进展[J].广西植物,2004,24 (3):270-274
    77、Goldsbrough AP, Lastrella CN, Yoder JI. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato [J]. Biotechnology, 1993,11:1286-292
    78、Cotsaftis O, Breitle JC, Pereira A, et al. Transposon-mediated generation of T-DNA and marker-free rice plants expressing a Bt endotoxin gene[J]. Mol Breeding,2002, 10:165-180
    79、Siebert R, Puehta H. Efficient repair of genomic double-strand breaks via homologous recombination between directly repeated sequences in the plant genome[J]. Plant Cell,2002,14:1121-1131
    80、Zubko E., Scutt C., and Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes[J]. Nature Biotechnology,2000,18:442-445
    81、Ebinuma H, Sugita K Matsunaga E, et al. Systems for the removal of a selection marker and their combination with a positive marker [J]. Plant Cell Rep.2001, 20:383-392
    82、叶凌凤,王映皓,贺舒雅.无选择标记的植物转基因方法研究技术进展[J].中国农业大学学报,2012,17(2):1-7
    83、张余洋,转基因番茄标记基因剔除及翻译起始因子4E基因顺化植物的病毒抗性.华中农业大学博士论文,2006
    84、张玉江,水稻光合同化产物合成和分配的分子调控.安徽农业大学硕士论文,2004
    85、Miziorko, H.M. and GH. Lorimer, Ribulose-1,5-bisphosphate carboxylase-oxygenase[J]. Annu Rev Biochem,1983,52:507-356
    86、Quick WP, S.U., Stitt M, Decreased ribulose-1,5-bisphosphate carboxylase /oxygenase in transgenic tobacco transformed with antisense rbcS.1. impact on photosynthesis in ambient growth conditions[J]. Planta,1991,183(4):542-54
    87、Hudson, G.S., et al., Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants[J]. Plant Physiol,1992,98(1):294-302
    88、Lauerer.M, B.L.a.S.M., Decreased ribulose-1,5-bisphosphate carboxylase oxygenase in transgenic tobacco transformed with 'antisense'rbcS VI. Effect on photosynthesis in plants grown at different irradiance[J].Planta,1993,190(3): 332-345
    89、Fichtner.K, Q.W.P, Bogorad.L and Stitt.M. Decreased ribulose-l,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with "antisense" rbcS V. Relationship between photosynthetic rate, storage strategy, biomass allocation and vegetative plant growth at three different nitrogen supplies[J]. Planta,1993,190(1):1-9
    90、Read, B.A. and F.R. Tabita, High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications[J]. Arch Biochem Biophys,1994,312(1):210-218
    91、Uemura, K., et al., Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation[J]. Biochem Biophys Res Commun,1997,233(2):568-571
    92、Whitney, S.M. and T.J. Andrews, Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco[J]. Proc Natl Acad Sci U S A,2001.98(25):14738-14743
    93、廖志勇,外源无机焦磷酸化酶基因(PPa)转化水稻的效应研究.扬州大学硕士学位论文,2006
    94、Heldt H W, Fliigge U I. Metabolite transport inplant cells. In Plant Organelles,Tobin A K ed,University Press,1992,21-47
    95、王庆梅,杨树德,陈珈.叶绿体内被膜上的磷酸丙糖转运器[J].植物学通报,2001,18(1):11-15
    96、Flugge U I. Reaction mechanism and asymmetric orintation of the reconstituted chloroplast phosphate translocator [J]. Biochimica et Biophysica Acta,1992. 1110:112-118
    97、Flugge U I, Fischer K,Gross A, et al. The triose phosphate-3-phosphoglycerate phosphate translocator from spinach chloroplasts:mucleotide sequence of a full-length cDNA clone and import of the in vitrosynthesized precursor protein into chloroplasts[J]. The EMBO Journal,1989,8:39-846
    98、Willey D L,Fischer K,Wachter E. Molecular cloning and structural analysis of the phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator[J]. Planta,1991,183:451-461
    99、Gray J C. Manipulation of phosphoribulokinase and phosphate translocator activities in transgenic tobacco plants[J]. Journal of Experimental Botany,1995, 46:1309-1315
    100、Knight S,Gray J C. The N-terminal hydrophobic region of the mature phosphate translocator protein is sufficient for targeting to the chloroplast inner envelope membrane[J]. Plant Cell,1995,7:1421-1432
    101、Heineke D, Kruse A, Flugge U I, et al. Effect of antisense repression of the chloroplast triose phosphate translocator on photosynthesis metabolism in transgenic potato plants[J]. Planta,1994,193:174-180
    102、娄丽娟,水稻品种“恢236”转外源焦磷酸化酶(ppa)基因的效应研究.扬州大学硕士论文,2011
    103、Sakamoto, T., Phytohormones and rice crop yield:strategies and opportunities for genetic improvement[J]. Transgenic Res,2006,15(4):399-404
    104、Sonnewald, U., Expression of E. coli inorganic pyrophosphatase in transgenic plants alters photoassimilate partitioning[J]. Plant J,1992,2(4):571-581
    105、王异星,李明启.焦磷酸在植物细胞能量代谢中的作用.热带亚热带植物学报[J].1997,5(4):85-90.
    106、李有忠,马铃薯遗传转化体系的优化及无机焦磷酸酶基因导入的研究.甘肃农业大学硕士论文,2008
    107、王延枝.植物液泡膜上的焦磷酸酶[J].植物生理学通讯,1990,4:73-76
    108、李小园,曾日中,校现周.植物焦磷酸酶(PPase)的研究进展[J].生命科学研究,2004,8(4):83-87
    109、Yao M, Zeng Y, Liu L, et al. Overexpression of the halophyte Kalidium foliatum H(+)-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana[J]. Mol Biol Rep,2012,39(8):7989-7996
    110、Guo S, Yin H, Zhang X, et al. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis[J].Plant Mol Biol, 2006,60(1):41-50
    111、Kunit, M.J. Crystalline inorganic pyrophosphatase inolated from baker's yeast. Gen Phuysiol,1952.35:423-49
    112、Karlsson, J. Membrane-bound potassium and magnesium ion-stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet(Beta vulgaris L.) [J]. Biochim Biophys Aeta,1975,399:356-63
    113、Walker R R, Leigh R A. Mg2+-Dependent, cation-stimulated inorganic pyrophosphatase associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.) [J]. Planta,1981,153(2):150-155
    114、Heinonen JK, Lahti RJ. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase [J]. Anal Biochen,1981,113(2):313-317
    115、Lahti R, RitkrantaT, Valve E, et al., Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12[J]. J Bacteriol,1988, 170(12):5901-5907
    116、Kieber, J.J. and E.R. Signer, Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana[J]. Plant Mol Biol,1991,16(2):345-8
    117、Sarafia V, Kim Y, Poole R J. Molecular cloning and sequence of cDNA encoding the pyrophosphate-endrgized vacuolar membrane proton pymp of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,1992,89:1775-1779
    118、du Jardin P, et al., Molecular cloning and characterization of a soluble inorganic pyrophosphatase in potato[J]. Plant Physiol,1995,109(3):853-860
    119、Jorge A. Identification of cytosolic Mg2+-dependent soluble inorganic pyrophosphatases in potato and phylogenetic analysis [J]. Plant Molecular Biology, 1999,39:449-461
    120、张春凤,转PPase基因马铃薯块茎休眠和发芽特性的分析与评价,硕士学位论文.2009:甘肃农业大学
    121、Jelitto T, Sonnewald U, Willmitzer L, Hajirezeai M, Stitt M. Inorganic pyrophosphatase content and metabolites in potato and tobacco plants expressing E.coli pyrophosphatase in their cytosol[J]. Planta,1992,188:238-244
    122、Geigenberger P, Hajirezaei M, Geiger M, Deiting U, Sonnewald U, Stitt M. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers [J]. Planta,1998,205:428-437
    123、文义凯,正义和反义PPase基因转化马铃薯的研究.甘肃农业大学硕士论文,2010
    124、Lerchl J, Geigenberger, P Stitt M, et al. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants[J]. Plant Cell, 1995, (7):259-270
    125、Si li-zhen,Cao Shou-yun,Chu Cheng-cai. Isolation of a 1195bp 5'-Flanking region of rice cytosolic Fructose-1,6-bisphosphatase and analysis of its expression in transgenic rice[J].Acta Botanica Sinica,2003,45(3):359-364
    126、Hajirezaei M, Sonnewald U. Inhibition of potato tuber sprouting:Low levels of cytosolic pyrophosphate lead to non-sprouting tubers harvested from transgenic potato plants [J]. Potato Research,1999,42:353-372
    127、Farre E M, Geigenberger P, Willmitzer L, Trethewey R N. A possible role for pyrophosphate in the coordination of cytosolic and plastidial carbon metabolism within the potato tuber [J]. Plant Physiol,2000,123:681-688
    128、刘海英,李有忠,柳娜,等.马铃薯无机焦磷酸酶基因cDNA克隆及其反义植物表达载体构建[J].分子植物育种,2008.6(1):131-135
    129、文义凯,杜宏辉,刘柏林,等.转Ppase基因对马铃薯休眠相关生理特性的影响[J].分子植物育种,2010,8(2):325-328
    130、黄东杰,张树珍,冯翠莲,等.无机焦磷酸化酶基因的克隆与植物表达载体的构建[J].热带作物学报,2007.28(2):69-73
    131、赵丽宏,王俊刚,杨本鹏,等.无机焦磷酸化酶基因转化甘蔗的遗传研究[J].生物技术通报,2009,9:73-77
    132、宋敏,李援亚,张云孙.导入AGPase基因的转基因可育水稻及其经济性状的研究[J].华北农学报,2001,16(4):11-14
    133、Smidansky E D, Clancy M, Meyer F D, et al. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increase seed yield[J]. Proc Nat Acad Sci,2002,99(3):1724-1729
    134、Zrenner R, Salanoubat M, Willmitzer L, et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.) [J]. Plant J,1995,7(1):97-107
    135、Smidansky E D, Mart in J M, Hannah C L, et al. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase [J]. Planta,2003,216(4):656-664
    136、Pedro C, Tiziana V, Francisco P, et al. Differential pattern of expression and sugar regulation of arabidopsis thaliana ADP-glucose pyrophosphorylase encoding genes[J]. Biology Chemistry.2005,9:8143-8149
    137、柯建国,江海东,陆建飞,等.水稻不同库源类型品种灌浆特点及库源协调关系的研究[J].南京农业大学学报:自然科学版,1998,21(3):15-20
    138、Bevan MW, Flavell RB, Chilton M D. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation [J]. Nature,1983 304:184-187
    139、Gaskell G, Bauer M W, Durant J, et al. Worlds apart? The reception of genetically modified foods in Europe and the U. S. [J]. Science,1999,285:384-387
    140、Schulze S, Mant A, Kossmann J, et al. Identification of an Arabidopsis inorganic pyrophasphatase capable of being imported into chloroplasts[J]. FEBS Lett,2004,565(1-3):101-105
    141、Koroleva O A, Tomlinson M L, Leader D, et al. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions[J]. Plant J,2005,41(1):162-174
    142、May A, Berger S, Hertel T, et al. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPasel encodes a novel type of inorganic pyrophosphatase[J]. Biochim Biophys Acta,2011,1810(2):178-185
    143、Drozdowicz YM, Rea PA. Vacuolar H(+) pyrophosphatases:from the evolutionary backwaters into the mainstream[J].Trends Plant Sci,2001,6(5):206-211
    144、Drozdowicz YM, Lu YP, Patel V, et al. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum:implications for the origins of pyrophosphate-energized pumps[J]. FEBS Lett,1999,460(3):505-512
    145、Marchler B A, Lu S, Anderson J B, et al. CDD:a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res,2011,39(Database issue);225-229
    146、Marchler B A, Anderson J B, Chitsaz F, et al. CDD:specific functional annotation with the Conserved Domain Database. Nucleic Acids Res,2009,37(Database issue); 205-210
    147、Marchler B A, Bryant S H. CD-Search:protein domain annotations on the fly[J]. Nucleic Acids Res,2004,32(Web Server issue):327-331
    148、Gilmartin P M, Sarokin L, Memelink J, Chua N H. Molecular light switches for plant genes[J]. Plant Cell,1990,2(5):369-378
    149、Gowik U, Burscheidt J, Akyildiz M, et al. Cis-regulatory Elements for MesophyII-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene[J]. Plant Cell,2004,16 (5):1077-1090
    150、Degenhardt J, Tobin EM. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants[J]. Plant Cell,1996,8 (1):31-41
    151、Zhou DX. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors[J]. Trends in Plant Science,1999,4 (6):210-214
    152、Schunmann P H, Richardson A E, Vickers C E, et al. Promoter analysis of the barley Phtl;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation[J]. Plant Physioll,2004,136(4): 4205-4214
    153、Heikinheimo P, Tuominen V, Ahonen A K, et al. Toward a quantum-mechanical description of metal-assisted phosphoryl transfer in pyrophosphatase[J].Proc Natl Acad ,2001,98(6):3121-3126
    Avaeva S M. REVIEW:Active Site Interactions in Oligomeric Structures of Inorganic Pyrophosphatases[J]. Biochemistry Mosc,2000,65(3):361-372
    155、Rashid H, Yokoi S, et al. Transgenic plant production mediated by Agrobacterium in indica rice[J]. Plant Cell Reports,1996,15:727-730
    156、Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York,1989
    157、Yoshida S, Forno D, Cock J, et al. Determination of sugar and starch in plant tissue. In:Yoshida S ed. Laboratory Manual for Physiological Studies of Rice,3rd edn. Los Banos, Laguna, Phillipines:International Rice Research Institute,1976,46-49
    158、陈根云.高光效作物基因工程中的几个问题[J].植物生理学通讯,2002,38(6):541-544
    159、张边江,凌丽俐,陈全战,等.ATP是构建类似C4水稻的重要限制因素[J].华北农学报,2009,24(4):17-22
    160、Ku M S, Agarie S, Nomura M, et al.High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants [J]. Nat Biotechnol, 1999,17(1):76-80
    161、Tsuchida H, Tamai T, Fukayama H, et al. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice[J]. Plant Cell Physiol,2001,42(2):138-145
    162、叶凌凤,王映皓,贺舒雅,等.无选择标记的植株转基因方法研究技术进展[J].中国农业科学,2012,17(2):1-7