火力发电机组汽轮机高温部件变形及蠕变寿命的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的一次能源以煤为主,火力发电机组总装机容量占全国总装机容量的75%以上,而火力发电机组年总发电量占全国年总发电量的80%以上,火力发电机组的安全运行对于工业发展和人民生活具有重要的意义。随着我国电网已进入到了以超高压、大容量、自动化为标志的新阶段,对发电机组自动化控制技术的发展提出了更高的要求,提高发电自动化控制和实现发电机组实时在线监测对保证机组的安全、经济运行具有重要意义。汽轮机是火力发电机组最重要的部件之一,本论文围绕汽轮机高温部件的变形和蠕变寿命开展研究。
     定义了等效对流换热系数,在圆筒壁非稳态导热理论的基础上,首次推导出内、外壁均为第三类非齐次边界条件、蒸汽温度非线性变化时二维圆筒壁温度分布的解析模型,该模型具有求解精度高、可以直接应用于实时分析系统的特点。提出了复杂结构有限子结构计算方法,应用二维圆筒壁非稳态导热解析模型,解决了汽缸、转子等复杂结构的温度场解析求解问题。针对有限子结构中非稳态温度分布,定义了反映不同形状下各段汽缸膨胀的特征值——膨胀特征温度,用来表征不规则物体的变形和膨胀能力,由膨胀特征温度计算各段的变形量,使得在线监测汽轮机各级轴向胀差成为可能。
     提出了胀差裕度的定义,通过胀差裕度的在线计算结果,调整机组启动过程中温升率的变化,保证汽轮机在胀差满足要求的条件下快速启动,提高了机组启动过程的安全性,给电网的安全运行提供了保障。汽轮机通流部分胀差在线监测与变温度速率控制系统实现了对汽轮机轴向胀差在线监测与闭环控制。
     根据单轴及多轴蠕变实验数据,运用ANSYS用户编程特性UPFs(User Programming Features),对缺口试件高温蠕变进行研究。研究结果表明缺口喉部骨架点(Skeletal Point)应力受到结构和加载的影响,与选用的蠕变方程无关。高温蠕变引起缺口喉部应力的再分布,给出了等效骨架点应力的定义,根据金属蠕变寿命曲线,确定不同结构下多轴蠕变寿命。
     引入应变阈值,结合Norton-Kachanov蠕变方程,改进了蠕变损伤模型,模型更准确描述蠕变全过程,修改有限元软件子程序,模拟了螺栓的蠕变过程。结果表明,螺栓蠕变断裂并不是在应力集中的螺纹处,而是在螺杆处,有限元计算结果与试验结果吻合较好。
In China, coal was the major one time resource, the installed gross capacity of thermal generation was over 75 percent of the installed gross capacity of the whole nation, and the gross generation of thermal generation was over 80 percent of gross generation of the whole nation. The safety operation of thermal generating units is important to industry development and the people’s livelihood. High parameter, large capacity and automatization demand not only for electrical grid but also for power generating units will become a tendency in order to increase economics. To ensure the stability of electrical grid running the Automatic Generation Control technology has to be improved. To improve automatic generation control and to realize on-line monitor have the great significance in theory and practical application. The steam turbine is one of the most important parts in thermal generating units. This work is involved in the deformation and creep life of the high temperature parts of steam turbine.
     An equivalent coefficient of convective heat transfer was defined. Based on heat transfer differential equation for cylinder, two dimensional transient analytical solution along radial and axial direction with respect to the boundary conditions of outer and inner wall with third type non-homogeneous temperature boundary is achieved, which can be used in on-line temperature monitoring system for the steam turbine casing. In order to demonstrate the expansion ability of irregular finite sub-structure, a new characteristic value, called expansion characteristic temperature, is defined. And an appropriate algorithm which can be used to calculate the deformation of different parts is also proposed. Owing to such a definition, it is possible to evaluate deformation between casing and rotor.
     The Axial deformation Margin was defined. The value of the axial deformation margin was calculated on-line, which was used to control the steam temperature changing rate. It ensured the faster start-up of steam turbine with allowable axial deformation. And it improved the operation safety of the grid and the power stations. The axial deformation on-line monitor and automatic changing temperature-speed control system was closed loop control.
     Using UPFs (User Programming Features) of ANSYS, the creep of notched bar under high temperature was implemented based on the experimental data of uniaxial and multiaxial specimen. The stress redistribution in the throat cross section of the notch induced by high-temperature multiaxial creep and the creep control stress- Equivalent Skeletal Stress (ESS) were founded. The rupture time of the multiaxial creep was estimated according to the uniaxial creep life curve or the rupture life equation based on ESS. The relationship of the skeletal stress and the notch geometry has been established.
     Creep damage model was improved by inducting strain threshold value based on Norton-Kachanov creep model, which was more exact to describe creep process. Creep behavior of bolt was simulated by reworking ABAQUS subroutine based on improved creep damage model. It is indicated that creep rupture of bolt is not taking place at screw thread where the stress concentrated, but taking place at the position of screw shaft. A good coincidence comparing the result calculated according to the theoretical model presented in this paper with finite element calculation can be observed.
引文
[1]中电联统计信息部.全国电力工业统计快报.
    [2] Arab Oil & Gas Group.BP Statistical Review of World Energy 2006.Energy Supplies Available and Reliable in 2005 Despite Physical Disruptions.Arab Oil & Gas,2006,35(835):40-48.
    [3] US Glass METAL & GLAZING. NFRC Board Provides Annual Energy Performance Guidance.US Glass METAL & GLAZING, 2005, 40(10): 33-36.
    [4]朱宝田,苗廼金,雷兆团,等.我国超超临界机组技术参数与结构选型的研究.热力发电,2005, 34(7):1-6.
    [5] M.N. Ozisik.热传导(Heat Conduction).俞昌铭译.北京:高等教育出版社, 1984.
    [6] J.P.Holman.Heat transfer.New York: McGraw Hill Book Company, 1997.5-20.
    [7] H.S. Carslw, J.C. Jaeger. Conduction of Heat in Solids, 2nd ed. Clarendon Press, 1959.
    [8] M.M. Yanovich. Heat transfer in electronic packaging.Hewitt G F, ed. Proceeding of the 10th International Heat Transfer Conference. Brighton: 1994. 93-104.
    [9] A.D. Krans, A. Bar-cohen. Thermal analysis and control of electronic equipment. Washington : Hemisphere Publishing Corporation, 1993.303-600.
    [10] Xin R.C., Tao W.Q. Analytical solution for transient heat conduction in two semi-infinite bodies in contact.ASME J. Heat Transfer, 1994, 116(1): 224-228.
    [11] J.H. Daniels. Dynamic Representation of a large Boiler-Turbine Unit. ASME Pape, 1961.
    [12] J.E. Greenspon. Vibrations of a Thick-Walled Cylindrical Shell-Comparison of the Exact Theory with Approximate Theories. The Journal of the Acoustical Society of America, 1960, 32(5):571-578.
    [13] A.M. Velez Garcia. Temperature Field Due to Conduction Heat Transferin Thin Circular Plates, Infinitely Long Cylinders and Spheres With Discrete Heat Generation Sources Using Green’s Functions Techniques. Master of Science in Mechanical Engineering University of Puerto Rico Mayaguez Campus, 2003.51-61
    [14]蔡睿贤,张娜.柱坐标下变热物性非定常轴对称导热方程的解析解.自然科学进展,2002,12(11):1155-1161.
    [15]蔡睿贤,蔡档.工程热物理学科中的若干解析解.西安交通大学学报,2000,34(2):1-5.
    [16]孟繁娟,何光新.汽缸热膨胀的计算方法.汽轮机技术,1998,40(4):219-221.
    [17]顾卫东,曲大庄,吕桂萍,等.亚临界300MW汽轮机高中压内缸热应力分析.汽轮机技术,2003,45(3):147-148.
    [18]刘钧朴,朱丹书,张行政,等.核电汽轮机高压缸三维有限元热应力分析.动力工程,1995,15(2):35-41.
    [19]沈佩华.引进型300MW汽轮机内缸法兰螺栓的有限元应力分析.中国电力,2004,37(10):42-45.
    [20]任庆民,徐鸿.一种计算瞬态汽缸热膨胀的新方法.现代电力,2002,19(5): 1-7.
    [21]张志明,徐鸿,郑善合,等.一种基于有限体积法计算汽轮机汽缸轴向膨胀的新方法.中国电机工程学报,2006,26(11):47-50.
    [22]毕仲波,丁兆海,丁俊齐,等.125MW汽轮机低压内缸应力场的三维壳体有限元计算.动力工程,2001,21(3):1203-1207.
    [23]朱华,阿迪尔M.S.,赵敬德,等.汽轮机启、停过程中汽缸温差的数值计算.动力工程, 2001, 21(3): 1193-1196.
    [24]李益民,李中华,王华,等.某电厂50MW汽轮机汽缸温度场及热应力有限元分析.热力发电.2003,32(9):21-24.
    [25]刘占生,顾卫东,朱自民,等.超临界汽轮机高压缸有限元热应力分析.汽轮机技术,2002,44(1):23-25,60.
    [26]杨寿敏.汽轮机转子暂态温度场及弹塑性应力有限元分析及其应用.中国电机工程学报,1990,10(4):8-17.
    [27]王璋奇,安利强,彭震中.基于参数化建模的转子有限元剖分.热能动力工程,2001,16(95):537-539.
    [28] Delson J K. Thermal stress computation for steam-electric generator dispatch. IEEE Transactions on Power Systems, 1994, 9(1): 120-127.
    [29] Mukhopadhyay N K, Dutta B K, Kushwaha H S, et al. On line fatigue life monitoring methodology for power plant components. International Journal of Pressure Vessels and Piping, 1994, 60(3): 297-306.
    [30]黄仙,倪维斗.汽轮机转子热应力的’复频法’建模研究.动力工程,1996,15(6):6-11.
    [31]许德刚.汽轮机转子的温度场及热应力场计算.应用力学学报. 1996, 13(3): 79-84.
    [32]倪维斗,黄仙,张保衡.汽轮机转子热应力的在线监控模型.清华大学学报(自然科学版),1998,38(4):102-104.
    [33]黄仙,杨昆,张保衡.汽轮机转子热应力自适应模型研究.中国电机工程学报, 1998, 18(1): 16-18.
    [34]张娜,蔡睿贤.考虑中心孔影响的汽轮机转子不定常温度场显式解析解.中国电机工程学报, 1999, 19(7): 38-40.
    [35] Mukhopadhyay N K, Dutta B K, Kushwaha H S. On-line fatigue-creep monitoring system for high-temperature components of power plants. International Journal of Fatigue, 2001, 23(6): 549-560.
    [36] Zucca S, Botto D, Gola M M. Faster on-line calculation of thermal stresses by time integration. International Journal of Pressure Vessels and Piping, 2004, 81(5): 393-399.
    [37]汤云柯.汽轮机转子应力分析与机组运行寿命研究: [工学博士学位论文].北京:清华大学, 1992.
    [38]张恒良,谢诞梅,熊扬恒,等.600MW汽轮机转子高精度热应力在线监测模型研制.中国电机工程学报,2006,26(1):21-25.
    [39]杨宜科,吴天禄.金属高温强度及试验.上海:上海科学技术出版社,1986.
    [40] Jie Zhao, Shuang-qi Han, Hong-bo Gao, et al. Remaining life assessment of a CrMoV steel using the Z-parameter method. International Journal of Pressure Vessels and Piping, 2004, 81(7): 757-760.
    [41] T.H. Hyde, W. Sun, J.A. Williams. Life estimation of pressurized pipe bends using steady-state creep reference rupture stresses. International Journal of Pressure Vessels and Piping, 2002, 79(7): 799-805.
    [42] Jochen Weber, A. Klenk, M. Rieke. A new method of strength calculation and lifetime prediction of pipe bends Operating in the creep range. International Journal of Pressure Vessels and Piping, 2005, 82(2): 77-84.
    [43]孙继跃,束国刚,陈国良,等.电厂管道寿命计算机在线监测系统的设计.北京科技大学学报,1997,19(2):161-164.
    [44]毛雪平.超临界汽轮机转子材料特性的实验研究:[博士学位论文].北京:华北电力大学, 2003.
    [45]涂善东.高温结构完整性原理.北京:科学出版社,2003.
    [46]余寿文,冯西桥.损伤力学.北京:清华大学出版社, 1997. 47~58.
    [47] James M. Hill, Jeffrey N. Dewynne. Heat Conduction. Oxford: Blackwell Scientific Publications, 1987.
    [48]刘颖.圆柱函数.北京:国防工业出版社, 1983. 69-73.
    [49]刘式适,刘式达.特殊函数.北京:气象出版社, 2002. 386-427.
    [50]孟繁娟,何光新.汽缸热膨胀的计算方法.汽轮机技术, 1998, 40(4): 219-221.
    [51]刘殊一,高璞珍,李剑钊.船用汽轮机冷态启动过程中热膨胀的研究.热能动力工程, 2003, 18(6): 597-599.
    [52]刘殊一,梁军,高璞珍.汽轮机高压缸三维瞬态温度场计算与实验.热能动力工程, 1999, 14(2): 140-142.
    [53] Berman I M. Power Plant Simulators and Operator Training. Power Engineering, 1981, 85(1): 38-46.
    [54]葛晓霞.汽轮机汽缸壁温及胀差全工况仿真数学模型.中国电机工程学报, 1995, 15(5): 311-316.
    [55]李荣夫.超临界汽轮机汽缸等铸钢件材料的选用.电站系统工程,2003,19(2):59-61.
    [56]林富生.超超临界参数机组材料国产化对策.动力工程,2004, 24(3):312-316.
    [57]赵中平,姚珉芳.超级超临界机组开放探讨—从材料的成就看我国超级超临界机组的发展.动力工程,2000,20(2):640-644.
    [58]黄蓉.我国超临界汽轮机组选材及国产化分析.汽轮机技术, 2001,43(1):9-13.
    [59] Viswanathan R., Bakker W.T.. MATERIALS FOR STEAM TURBINES FOR ULTRA SUPERCRITICAL POWER PLANTS. Twentieth Annual International Pittsburgh Coal Conference Proceedings, Pittsburgh, Pennsylvania, USA, 2003.1-19.
    [60] Wright I.G., Maziasz P.J., Ellis F.V., et al. MATERIALS ISSUES FOR TURBINES FOR OPERATION IN ULTRA-SUPERCRITICAL STEAM. The 20th International Technical Conference on Coal Utilization and fuel systems, Clearwater, Florida, USA, 2004. 1079-1092.
    [61] Mohsen Mohammadi, Hamid Reza Salimi. Failure Analysis of a Gas Turbine Marriage Bolt. Journal of Failure Analysis and Prevention, 2007, 7(2):81-86.
    [62]张联盟,黄学辉,宋晓岚.材料科学基础.武汉:武汉理工大学出版社, 2004. 578
    [63] Kachanov L.M.. Theory of Creep. Boston: National Lending Library for Science and Technology, 1967.
    [64] Robtonov Y.N. Creep problems in structural members. North Holland: Amsterdam, 1969.
    [65] Kachanov L M. Introduction to Continuum Damage Mechanics. London: Martinus Nijhof Publishers, 1986.
    [66] Lemaitre J, Chaboche J L.固体材料力学.北京:国防工业出版社,1997.
    [67]毛雪平,刘宗德,杨昆,等.30Cr1Mo1V蠕变损失的实验研究.中国电机工程学报,2003,23(7):201-203.
    [68]毛雪平,刘宗德,杨昆,等.2Cr11NiMoVNbNB钢蠕变损伤规律的研究.中国电机工程学报, 2003, 23(1): 159-162.
    [69] Lemaitre J., Chaboche J.L. Mechanics of Solid Materials. London: Cambridge University Press, 1990.
    [70]荆建平,孟光.汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析.中国电机工程学报,2003,23(9):167-172.
    [71] Cocks A C F, Ashby M F. Intergranular fracture during power-law creep under multiaxial stresses. Metal Science, 1980, 14(8-9): 395-402.
    [72] R.W. Evans, B. Wilshire. Strength of Metals and Alloys. New York: Pergamon Press, 1985. 1807
    [73] J. Lemaitre, A. Plumtree. Application of Damage Concepts to Predict Creep Fatigue Failures. Transactions of the ASME, Journal of Engineering Materials and Technology, 1979, 101(1): 284-292.
    [74] A. Plumtree, G. Shen. Predicton of Long-term Creep and Rupture Life. ISIJ International, 1990, 30(10): 812-816.
    [75] V. Gaffard, J. Besson. Creep failure Model of a 9Cr1Mo-NbV(P91) steel integrating multiple deformation and damage mechanisms. Advanced Fracture Mechanics for Life and Safety Assessments. The 15th European Conference of Fracture. Stockholm, Sweden, 2004. 11-13.
    [76] G.A. Webster, K.M. Nikbin, F. Biglarl. Finite element analysis of notched bar skeletal point stresses and dimension changes due to creep. Fatigue Fract Engng Mater Struct, 2004, 27(4): 297-303.
    [77] Kachanov L M.Introduction to continum damage mechanics.Dordrecht: Martinus Nijhoff Publishers,1986.
    [78] Wilthan B, Tanzer R, Schuetzenhoefer W, et al. Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400K. RARE METALS, 2006, 25(5): 529-531.
    [79] Du H L, Datta P K, Inman I. Microscopy of wear affected surface produced during sliding of Nimonic 80A against Stellite 6 at 20 deg C. Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing, 2003, 357(2): 412-422.
    [80]蒲泽林,杨昆,刘宗德,等.汽轮机联轴器螺栓疲劳特性及寿命预测模型的研究.中国电机工程学报,2002,22(7):90-94.
    [81]范志超,陈学东,蒋家羚.16MnR钢循环蠕变?疲劳交互作用损伤力学模型.固体力学学报,2006,27(1):65-70.
    [82] Bertini L.Life predictions by three creep-fatigue interaction models. influence of multiaxiality and time-variable loadings.Materials at High Temperature,1991,9(1):23-29.
    [83]荆建平,孟光.汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析.中国电机工程学报,2003,23(9):167-172.
    [84] Jing Jianping,Sun Yi.A continuum damage mechanics model on low cycle fatigue life assessment of steam turbine rotor.International Journal of Pressure Vessels and Piping,2001,78(1):59-64.
    [85] Chaboche J L . Time-independent constitutive theories for cyclic plasticity.International Journal of Plasticity,1986,2(2):149-188.
    [86] Chaboche J L . Constitutive equations for plasticity and cyclic viscoplasticity.Int.J.Plasticity,1989,5:247-302.
    [87] Chaboche J L.Continuum damage mechanics.Transaction of the ASME,Journal of Applied Mechanics,1988,55(1):65-72.
    [88] Armstrong P J, Frederick C O. A mathematical representation of the multiaxial Bauschinger effect. C.E.G..B. Report RD/B/N731, Central Electricity Generating Board, 1966.
    [89] Issam Doghri. Fully implicit integration and consistent tangent modulus in elasto-plasticity. International Journal for Numerical Methods in engineering, 1993, 36(22): 3915-3932.
    [90] Asada Y,Asayame T,Moriishita M,et al.Creep-fatigue damage evaluation of 304 stainless steel and 2.25Cr1Mo steel based on the overstress concept.Advances in Piping Analsis and Life Assessment for Pressure Vessels and Pining,ASME,PVP,1988,129:93-99.
    [91] Chaboche J L , JUNG O . Application of a kinematic hardening viscoplasticity model with thresholdsto the residual stress relaxation.International Journal of Plasticity,1998,13(10):785-807.
    [92] Chaboche J L. Time independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 1986, 2(2): 149-188.
    [93] Lemaitre J, Chaboche J L. Mechanics of Solid Materials. Cambridge: Cambridge University Press, 1990.
    [94] ChabocheJ L.Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals.Bulletin de l'Academie Polonaise des Sciences, Serie de Science Techniques,1977,25(1):33-42.
    [95] Kachanov L M.On the time to failure under creep condition.Izv.Akad,Vauk USSR, Otd.Tekhn Nauk,1958,(8):26-31.
    [96] Lemaitre J.A course on damage mechanics.Second Revised and Enlarged Edition,Springer-Verlag,1996.
    [97] Chaboche J L.Continuum damage mechanics:part I-general concepts; part II - damage growth,crack initiation,and crack growth.Journal of Applied Mechanics,1988,55(3):59-72.
    [98] Schwertel J,Schinke B.Automated Evaluation of Material Parameters of Viscoplastic Constitutive Equations.Journal of Engineering Materials and Technology,1996,118:273-280.
    [99]李海燕,聂景旭.粘塑性损伤统一本构模型中材料常数的一种确定方法.航空动力学报,2003,18(3):388-393.
    [100]宋迎东,王舸,高德平.一种弹-粘塑性本构模型材料常数的估计方法.固体力学学报,2000,21(2):152-156.
    [101]毛雪平,刘宗德,杨昆,等.30Cr2MoV转子钢高温下的低周疲劳特性实验研究.中国电机工程学报,2002,22(6):119-122.