舰船推进器噪声分离方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,关于舰船振动噪声的研究多集中在机械设备激励壳体振动声辐射的机理和传递路径研究、推进轴系振动噪声固有结构特征研究、推进器噪声理论预报、机理分析与模型试验等方面,而对舰船总体航行辐射中推进器噪声分离研究、推进器直接辐射噪声分离方法研究较少。因此,开展舰船推进器噪声分离方法研究,对进一步降低舰船辐射噪声水平、评估推进器噪声水平等具有重要意义。
     针对舰船推进器噪声分离以及推进器直接辐射噪声分离问题开展理论研究、建模仿真分析以及试验研究等。重点研究推进器直接辐射噪声的频谱特征及其随转速的变化规律、推进器通过轴系激励壳体振动噪声的频谱特征,建立总体航行辐射噪声中推进器噪声分离方法、推进器噪声中直接辐射噪声的分离方法,并通过试验分析,验证舰船噪声分离方法的有效性与分离结果的正确性。具体研究内容如下:
     以偶极子声源的声学特征分析为基础,研究推进器直接辐射噪声的一般声学特征,重点分析推进器直接辐射噪声离散谱以及不同频段连续谱随转速增长的变化规律,为后续研究总体航行辐射噪声推进器噪声分离方法、推进器直接辐射噪声与其激励壳体振动声辐射的分离方法研究提供理论依据。
     通过理论研究与仿真分析,阐述推进器激励力作用于艇体产生振动噪声的基本物理过程及主要传递路径,研究推进器作用于艇体产生振动噪声的声学模型及信息模型,分析推进器激励壳体振动辐射噪声的频谱特征。为研究推进器直接辐射噪声与其激励壳体振动产生声辐射分离方法提供了基本依据及信息源等支撑。
     分析机械设备激励壳体振动辐射噪声以及流激壳体振动声辐射的频谱特征,掌握二者与推进器噪声频谱特征的差异,建立不同频段、不同转速推进器直接辐射噪声的数学换算模型,形成总体航行辐射噪声中推进器噪声分离方法、推进器噪声中推进器直接辐射噪声分离方法。
     分析推进器噪声分离方法对舰船噪声振动综合试验的基本要求,研究试验数据分析方法,通过试验数据处理,验证了推进器直接辐射噪声频谱特征随转速的变化规律以及推进器激励壳体振动声辐射频谱特征的理论分析结果。证实舰船总体航行辐射噪声中推进器噪声分离方法的有效性,推进器直接辐射噪声分离方法的实用性,并通过舰船推进直接辐射噪声分离结果与推进器模型试验结果的对比分析,验证舰船推进器分离方法的正确性。
Recently, researches on ship vibration noise are almost focused on aspects such as theprinciples and transfer paths of sound radiations subject to shell vibrations excited bymechanical equipments, inherent structural characteristics of vibration noises of thepropulsion shafting, as well as the theoretical predictions and model tests of propeller noisesand so on. However, studies on noise separation of propellers from the general radiated noisesof ships under service conditions, and separation methods for direct radiated noises ofpropellers from their sound radiations excited by shell vibrations are still relatively rare.Therefore, developing researches on noise separation methods of ship propellers shall have animportant significance for further lowering the radiated noise level of ships, as well as thenoise evaluation of their propellers.
     In this paper, issues on noise evaluation of propellers and separation methods for directradiated noises of propellers from their sound radiations excited by shell vibrations areresearched, where the spectrum characteristics of direct radiated noises of propellers and theirchange laws with the rotating speed, and the spectrum characteristics of vibration noises ofshells excited by propellers through the propulsion shafting are discussed, a set of noiseseparation method for propellers from the general radiated noises of ships under serviceconditions is established successfully, as well as a method for separating direct radiated noisesof propellers and the sound radiations excited by shell vibrations; further more, by means of aseries of test analysis, the effectiveness and the correctness of corresponding results of theseparation methods for ship noises are verified. Details are as follows:
     General acoustic characteristics of direct radiated noises of propellers are researchedfirstly based on the analysis of acoustic characteristics of dipole sound sources, where discretespectrums of direct radiated noises of propellers and the change laws of continuous spectrumsof different frequency bands along with the increasing rotating speed are analyzed in depth,providing a theoretical basis for researches on the propeller noise separation method and thegeneral radiated noises of ships, as well as a method for separating direct radiated noises ofpropellers and the sound radiations excited by shell vibrations.
     By means of theoretical studies and simulation analysis, the basic physical processes andmain transfer paths of propeller’s exciting forces acting on submarine bodies for generatingvibration noises are described, the acoustic model and information model of them are studied,and the spectrum characteristics of vibration radiated noises of shells excited by propellers are analyzed. Works mentioned above together have provided necessary supports such as basicgrounds and information sources for the research of separation methods for direct radiatednoises of propellers and sound radiations excited by shell vibrations.
     By means of analyzing the spectrum characteristics of vibration radiated noises of shellsexcited by mechanical equipments and the vibration sound radiations of shells excited bycurrent, and making clear their differences between the spectrum characteristic of propellernoises, the mathematical conversion model of propeller’s direct radiated noise of differentfrequency bands and different rotating speeds is established properly; and finally, a set ofpropeller noise separation method from the general radiated noises of ships, and the methodfor separating direct radiated noises of propellers and secondary sound radiations excited byshell vibrations are provided.
     To apply the propeller noise separation method on ships, basic requirements ofcomprehensive tests of noises and vibrations are analyzed, and corresponding proceedingmethods for test data are studied in depth; by means of test data processing, the change lawsof spectrum characteristic of propellers’ direct radiated noises with rotating speeds areverified, as well as theoretical analysis results of spectrum characteristic of vibration soundradiations of shells by excited the propeller. On the basis of which, the effectiveness of thepropeller noise separation method from general radiated noises of ships and the practicabilityof the separation method for direct radiated noises of propellers from the vibration soundradiations of shells excited by propellers are proved; further more, the correctness of theseparation method for ship propeller is verified by means of comparative analysis on directradiated noise separation results of ship propulsion and relevant model test results.
引文
[1]吴有生.船舶力学的任务与前景【R】.无锡:中国船舶科学研究中心,2002.
    [2] Chris Norwood,Yan Tso. Submarine Acoustic Singnature–Aplatform Perspecetive.[EB/OL]http://www.dsto.defence.gov.au/corporate/conferences/sub/Yan_Tso.doc.2005-10-05.
    [3]刘伯胜,雷家煜著.水声学原理.第一版.哈尔滨船舶工程学院出版社,1993.
    [4] Urick R J. Principles of underwater sound [M]. New York: Mcgraw-Hill Book Co.,1983
    [5] Junger M C. Radiation loading of cylindrical and spherical surfaces. J. Acoust. SocAm.,1952,24(3):288—289
    [6] Bleich H H, Baron M L. Free and forced vibrations of an infinitely long cylindricalshell in an infinite acoustic medium. J. Appl. Mech.,1954,21(1):167—177
    [7] Molloy C T. Use of four-Pole Parameters in vibration calculations. Journal of theAcoustical Soeiety of America,1957,29:842-853
    [8] Plona T J, Sinha B K, Kostek S, et al. An symmetric wave propagation influid-loaded cylindrical shells.: Theory versus experiment, J. Acoust. Soc. Am.,1992,92:1144-1155
    [9] H. G. Dorder and R. G. White. Vibration Power Flow from Machine into Built-upStructures. PartⅠ: Introduction and Approximate of Beam and Plate-like Foundation.Journal of Sound and Vibration.1980, Vol.68, No.1, pp59-75.
    [10] H. G. Dorder, R. G. White. Vibration Power Flow from Machine into Built-upStructures. PartⅡ: Wave Propagation and Power flow in Beam-stiffened Plate.Journal of Sound and Vibration.1980,68(1):77-96.
    [11] H. G. Dorder, R. G. White. Vibration Power Flow from Machine into Built-upStructures. PartⅢ: Power Flow through Isolation System. Journal of Sound andVibration.1980,68(1):97-117.
    [12] J. M. Cuschieri. Structural Power-Flow Analysis Using a Mobility Approach of anL-shaped Plate. Journal of Acoustical Society of American.1990,87(3):1159-1165.
    [13]商德江,何祚镛.加肋双层圆柱壳振动声辐射数值计算分析.声学学报.2001,26(3):193—201
    [14]张敬东,何祚镛.有限元+边界元—修正的模态分解法预报水下旋转壳体振动和声辐射.声学学报.1990,15(1):12~19.
    [15]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解.声学学报.2001,26(1):1-5
    [16]刘涛,范军,汤渭霖.水中有限长圆柱薄壳声辐射共振特性.声学学报.2002,9:64-71
    [17]骆东平,张玉红.环肋增强柱壳振动特性分析.中国造船.1989,104(1):64-74
    [18]骆东平,徐治平.环肋柱壳在流场中振动特性分析.中国造船.1990,(2):67-79
    [19]芮筱亭,王士明,孙一平.带有集中质量和弹簧及刚体的分布质量梁系统振动的传递矩阵法.南京理工大学学报.1993,6:76-79
    [20]孙玲玲,宋孔杰.复杂机械系统多维耦合振动传递矩阵分析.机械工程学报.2005,41(4):38-42.
    [21]刘保国.复杂隔振系统振动传递特性及实验研究.山东大学硕士论文.2007年
    [22]韩蕴韬,张阿漫等.双层圆柱壳振动传递及声辐射试验研究.传感器与微系统.2007,26(7):41-44
    [23]杨德森,吴一.水下目标辐射噪声线谱的分析.哈尔滨工程大学学报.1996,17(1):38-44.
    [24]殷敬伟,惠俊英等.基于DEMON线谱的轴频提取方法研究.应用声学.2005,24(6):369—374
    [25]杨春.基于鱼雷报警声纳的目标识别技术基础研究.哈尔滨工程大学博士学位论文.2005.
    [26]熊紫英,朱锡清.基于LOFAR谱和DEMON谱特征的舰船辐射噪声研究.船舶力学.2007,11(2):300-306.
    [27]胡桥等.基于集成EMD和DEMON谱的辐射噪声特征提取研究.振动与冲击.2008,27S:49-51.
    [28]嵇绍岭等.水下目标信号的Lofar谱图特征的主分量分析研究.数据采集与处理.2003,18(2):123-126.
    [29] Wu J.S. Computer method torsion-and-flexure-coupled forced vibration of shaftingsystem with damping. Journal of Sound and Vibration.1995,180(3):417-435P
    [30] Lau1agne, Guyader J.L.. Modal analysis of a shells acoustic radiation in light andheavy fluids. Journal of Sound and Vibration.1989,131(3):397-415P
    [31] Gordon C.Eversitine. Coupled finite element/boundary element approach forfluid-structure interaction. J,Acoust,Soc,Am..1990,87(5):1938-1947P
    [32] Paul G. Dylejko, Nicole J. Kessissoglou. Optimisation of a resonance changer tominimise the vibration transmission in marine vessels. Journal of Sound andVibration.2007,300:101-116P
    [33]张文平,曹贻鹏.推进轴系振动对潜艇尾部结构水下辐射噪声的影响分析[J].舰船科学技术,2006,28(2):54-59
    [34]曹贻鹏,张文平.使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J].哈尔滨工程大学学报,2007,28(7):747-751
    [35]曹贻鹏.推进轴系引起的艇体结构振动与辐射噪声控制研究[D].博士学位论文,黑龙江,哈尔滨:哈尔滨工程大学,2008
    [36]陈之炎.船舶推进轴系振动[M].上海交通大学出版社,1987
    [37]商德江,复杂弹性壳体水下结构振动和声场特性研究[D].哈尔滨工程大学博士学位论文,1999
    [38] Christopher Earls Brennen. Cavitation and bubble dynamics [M].Oxford UniversityPress,1995
    [39] Zhang,Duncan H, On the non-spherical collapse and rebound of a cavitation bubble,1994
    [40]胡健.螺旋桨空泡性能及低噪声螺旋桨设计研究[D].博士学位论文,黑龙江,哈尔滨:哈尔滨工程大学,2006
    [41]张永坤,熊鹰,赵小龙.螺旋桨无空泡噪声预报[J].噪声与振动控制,2008(1)
    [42]朱锡清,等.船舶螺旋桨低频噪声研究[J].水动力进展研究,2000(3):74-81
    [43] Didier Frechou,Laurence Briancon-Marjollet. Propulsor noise prediction[J].Acroplis,2004,23(25):469-480P
    [44]周心一,吴有生.流体动力性噪声的相似关系研究[J].声学学报,2002,27(4):373-378
    [45] Roth P R.Effective measurements using digital signal analysis(correction, transferand coherence functions in measurements, using digital signal analysis)[J]. IEEESpectrum,1971,8(4):62-70.
    [46] Chung J Y, Crocker M J, Hamilton J F. Measurement of frequency responses and themultiple coherence function of the noise-generation system of a diesel engine[J]. TheJournal of the Acoustical Society of America,1975,58(3):635-642.
    [47] Risuo OGUMA. Extended Partial and Multiple Coherence Analyses and TheirApplication to Reactor Noise Investigation. Journal of Nuclear Sxience andTechnology,1982,19(7):543-554.
    [48] Chakravorty P K. Identification of self noise sources in a ship. Naval EngineersJournal,1990,(9):67-69.
    [49] John Patrick Homer. Advanced signal processing techniques used for noise sourceidentification in mining equipment[D].BS Mechanical Engineering, ThePennsylvania State University,USA.
    [50] J.H.Wang,C.Chang. Identification of the number and location of acoustic sources.Journal of Sound and Vibration284(2005),393-420.
    [51] Veronesi W A, Maynard J D. Nearfield acoustic holography(NAH)Ⅱ:Holographic reconstruction algorithms and computer implementation.J.A.S.A,1987,81(5):1037-1322.
    [52] Mingsian R. Bai_, Jia-Hong Lin. Source identification system based on thetime-domain nearfield equivalence source imaging: Fundamental theory andimplementation. Journal of Sound and Vibration307(2007)202–225.
    [53] Paolo Castellini, Milena Martarelli. Acoustic beamforming: Analysis of uncertaintyand metrological performances. Mechanical Systems and Signal Processing22(2008)672–692.
    [54]刘培晨,戈升波.利用偏相干函数识别振动源和噪声源[J].山东纺织工学院学报,1994,9(4):58-64.
    [55]张宝成,徐雪仙.舰船水下噪声相干测量和分析的发展过程—单输入/单输出和多输入/单输出比较[J].船舶力学,1999,3(5):68-79.
    [56]梁兴雨,舒歌群.基于相干功率谱分析的复杂柴油机噪声源识别[J].内燃机学报,2006,24(4):344-350.
    [57]章林柯,何琳,江涌.基于M IMO模型的潜艇声学故障预报研究[J].武汉理工大学学报(交通科学与工程版),2008,32(2):320-322.
    [58]杨殿阁,郑四发,理愈康,等.用于声源识别的声全息重建方法的研究[J].声学学报,2001,26(2):156-160.
    [59]于飞,陈剑,周广林,等.噪声源识别的近场声全息方法和数值仿真分析[J].振动工程学报,2003,16(3):339-343.
    [60]杨金才,郝志勇,贾维新.用连续小波变换识别内燃机噪声源[J].浙江大学学报,2006,40(3):404-407.
    [61]杨金才,郝志勇.用A计权连续小波变换识别内燃机噪声源[J].浙江大学学报,2006,40(7):1174-1177.
    [62]冯国胜,李劲松,刘鹏.基于小波变换的客车车内振动噪声源识别[J].振动、测试与诊断,2006,26(3):196-199.
    [63]胡家雄.从潜艇水下噪声频谱中分离出螺旋桨噪声的研究[J].舰船科学技术,1997
    [64]蒋行海等.螺旋桨噪声贡献的分离方法研究[J].声学技术,2009,28(6):287-288
    [65]程广福,刘文帅,张文平.舰艇辐射噪声源分离方法研究[J].哈尔滨工程大学学报,2004,25(5):563-565
    [66]戚定满,鲁传敬,何友声.噪声谱的无量纲特性[J].上海交通大学学报,1999,33(10):1210-1212
    [67]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1981
    [68] Ross D. Mechanics of underwater noise [M]. Pergamon Press Inc,1976
    [69]“XXXX声学特性的物理基础”.中船重工七〇二研究所翻译出版,2001
    [70]赵键.水下轴对称薄壳的振动和声辐射研究.上海交通大学博士论文.1988:29-35页
    [71] T. Yen and F. L. Dimmaggio.Forced vibration of submerged spheroidalshells.J.A.S.A.1967,Vol41:618-626P
    [72] S. S.劳尔.工程中的有限元法.科学出版社,1991:280-320页
    [73] ANSYS软件手册.Theory Manual.2.1-2.19
    [74] SYSNOISE软件手册.Theory Manual.29-35P
    [75] J.S.贝达特,A.G.皮尔索.凌福根译.第1版.相关分析和谱分析的过程应用.国防工业出版社.1983,5:187-208页
    [76] Lighthill M J. On sound generated aerodynamically, I. General Theory[J]. Proc.Roy.Soc.,1952,A211:564-587P
    [77] CurleN. The influence of solid boundaries on aerodynamic sound[C]. ProcRoy Soc,London: Roy Soc,1955,231A-1187:505-514P
    [78] Ffowcs-Williams JE, Hawkings D L. Sound generation by turbu-lence and surface inarbitrarymotion[C].Proc Roy Soc, Lon-don: Roy Soc,1969,264A:321-342P
    [79]罗柏华,刘宇陆.湍流边界层流场与噪声实验研究[J].实验力学.2001.16(4):378-386
    [80]曾文德,王永生,杨琼方.湍流边界层流场与噪声实验研究[J].兵工学报,2010,31(9):1204-1208
    [81]胡其望.潜艇指挥台围壳模型噪声机理研究[D].硕士学位论文.黑龙江,哈尔滨:哈尔滨工程大学,2007
    [82]朱习剑,何祚镛.陷落腔的流场数值计算研究[J].应用力学学报,1996,13(4):102-107
    [83]衣云峰,何祚镛.圆柱形腔流激振荡及其藕合共振的研究[J].声学学报,1996,21(4):439-456
    [84]王超,黄胜.螺旋桨噪声预报方法的综述,黑龙江省造船工程学会2008年学术年会论文集;
    [85]龙军,张靖,刘文帅.-舰船辐射噪声特征建模,舰船科学技术,2011,33(7):68-70
    [86]孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势,振动与冲击,2005
    [87]孙焱.被动目标分频段调制特征提取方法研究,哈尔滨工程大学硕士论文,2007
    [88]陈美霞,骆东平,陈小宁,蔡敏波,周锋.有限长双层壳体声辐射理论及数值分析,中国造船,2003
    [89]王晓峰.水下加肋双层弹性壳体散射声场分析,哈尔滨工程大学硕士论文,2007
    [90]曹贻鹏;张文平.轴系纵振对双层圆柱壳体水下声辐射的影响研究,《船舶力学》2007
    [91] Lian W L, Lavrich P. Prediction of power flow through machine vibration isolations.Journal of Sound and Vibration.1999,224(4):757-774P
    [92] Pan J., Pan J. Q. Total power flow from a vibrating rigid body to a thin panel throughmultiple elastic mounts. Journal of Acoustic Soc Am..1992,92:895-907P
    [93] Kon Y K, White R G. Analysis and control of vibration power transmission tomachinery supporting structures subjected to a multi-excitation system,Part3:Vibration power cancellation and control experiments. Journal of Sound andVibration.1996,196(4):509-522P
    [94] Tong Z., Zhang Y.. Dynamic behavior and sound transmission analysis of afluid–structure coupled system using the direct BEM-FEM. Journal of Sound andVibration.accepted2006.
    [95] Yoshikawa S,W illams E G.Vibration of two concentric submerged cylindricalshells coupled by the contained
    [96] Junger M.C.,Feit D..Sound, structure and their interaction.Cambridge,MA.MIT.Press,1986
    [97] Zhou Q, JOSEPH P F. A numerical method for the calculation of dynamic responseand acoustic radiation from an underwater structure. Journal of Sound andVibration.2005,283:853-873P
    [98] Lee Young Shin, Choi Myung Hwan. Free vibration of circular cylindrical shellswith an interior plate using the receptance method. Journal of Sound and Vibration.2001,248(3):477-497P