短柄草小分子RNA的鉴定与基因组分析及microRNA的古进化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短柄草是温带禾本科植物,因具有基因组小、生长周期短及转化容易等特点,而被推认为温带禾谷类物种的模式植物。比较基因组学研究表明,禾谷类基因组发生了不止一次的全基因组复制。尽管如此,包括短柄草、水稻、高粱和玉米在内的现代禾谷类物种基因组间仍然保持着良好的共线性关系。小分子RNA (small RNA)是一类长18-30nt的单链RNA,在植物的生长发育、逆境响应和维持基因组稳定性方面发挥着重要作用。植物小分子RNA主要分为两类:微RNA(microRNA或miRNA)和小干扰RNA (small interfering RNA或siRNA)。其中miRNA主要在转录后和翻译水平沉默靶mRNA,而24nt siRNA则主要在表观遗传学如DNA甲基化等水平上调节基因的表达。鉴于小分子RNA的重要生物学功能以及短柄草在禾谷类研究中的模式物种地位,本文从短柄草小分子RNA的鉴定、各类小分子RNA的基因组分析以及miRNA在古染色体演化过程中的进化规律等方面开展了以下研究:
     一、测定了四个短柄草小分子RNA文库并对它们进行了详细的分析。为发现新的短柄草小分子RNA包括miRNA,我们以营养器官(BdR)、幼穗(BdV)、20小时光照/4小时黑暗生长2周的幼苗(L20h)和8小时光照/16小时黑暗生长2周的幼苗(L8h)为材料构建文库,进行了小分子RNA高通量测序。通过生物信息学分析,在全基因组范围内鉴定了一批miRNA基因、nat-siRNA和phased-siRNA。比较分析发现光周期过程中差异表达的miRNA的功能主要集中在发育(如miR156-160-444)和抗性(miR169-408-1432)方面。除此之外,有些差异表达的siRNA有可能参与光合作用,nat-siRNA则很少参与短柄草的生长发育和光周期过程,而phased-siRNA主要参与花序发育过程。
     二、比较了禾谷类物种miRNA的进化规律。为进一步了解miRNA基因家族的特点,本文在基因组范围内将短柄草中鉴定的miRNA基因与其他禾谷类物种中的miRNA进行了比较。首次发现miRNA家族除了通过全基因组复制(WGD)和串联复制进行扩增外,还可以通过转座进行复制。其中串联复制在miRNA基因的扩增中发挥了重要作用,这可能和miRNA基因特殊的发卡结构有关。另外,这些由复制而来的miRNA基因在进化过程中,可以通过成熟miRNA序列的点突变获得新功能。
     三、研究了禾谷类古基因组演化中保守miRNA的演变规律。为了研究miRNA基因在WGD后二倍化过程中的演变规律,我们以起源于共同多倍体祖先的短柄草、水稻、高粱和玉米为研究对象,对这些基因组变化中的miRNA演变模式进行了分析。通过全基因组共线性和古复制关系分析,我们发现miRNA基因的产生与丢失(Birth and death)服从基因平衡假说。约有45%的miRNA家族是剂量效应敏感型基因,在二倍化过程中被过保留下来。这些miRNA在亚基因组优势效应下偏好性地分布在古染色体复制对上。同时发现过保留和非过保留miRNA家族的靶基因在功能上有所差异,过保留miRNA家族的靶基因在应答胁迫方面富集,而非过保留miRNA家族的靶基因则主要集中在生物调节等基本生物学过程。
     总之,本文通过剖析短柄草小分子RNA的组成及基因组分布,发现了一批与组织特异性和光周期相关的miRNA基因,探索了miRNA基因的扩增机制,初步明确了miRNA的古进化规律,为在短柄草和禾谷类作物中进一步研究miRNA基因的功能提供了基础。
The temperate grass Brachypodium is considered as a promising model of wheat and other energy crops due to its physical and genomic attributes:small genome size, rapid generation time, and highly efficient transformation. As a member of the Pooideae subfamily, Brachypodium shares the same ancetral genome with other grass crops such as rice, sorghum and maize, among which chromosomic synteny and paleo-duplication have been clearly identificated. Small RNAs are single-stranded RNAs of18-30nucleotide (nt) long. They play important roles in plant development, response to various stresses and maintenance of genome stability. There are two major categories of small RNAs in plants, microRNA (miRNA) and small interfering RNA (siRNA). MiRNAs regulate the expression of target genes mainly in the post-transcriptional and translational level, while siRNAs modify genes in epigenetics level. In this PhD dissertation, three aspects of studies were performed surrounding the Brachypodium small RNAs:
     1. To identify novel Brachypodium small RNAs (including miRNAs), we sequenced four small RNAs libraries from vegetative tissues, young spikes,8h light/16h dark treated2week old seedlings, and20h light/4h dark treated2week old seedlings. Bioinformatic analaysis identified a number of miRNA genes, nat-siRNAs and phased siRNAs. Some conserved miRNAs exhibited day length-specific expression patterns, mainly involved in development such as miR156-160-444and disease-resistance such as miR169-408-1432. Only a few novel miRNAs were found to be potentially involved in response to day length. The targets of these differential small RNAs were annotated as photosynthesis related genes and hence affect the growth and development of Brachypodium plants. However, a small number of nat-siRNAs were found to be involved in the development and photoperoid process in Brachypodium, while phased-siRNAs may play important roles in the flower development.
     2. To further characterize Brachypodium small RNAs in the genome, we performed a genome wide analysis of their structures and family expansion mechanims. We found that, similar to protein-coding genes, the miRNA families were also amplified via transposition in addition to whole genome duplication (WGD), segmental duplication and tandem duplication. Interestingly, tandem duplication seems to significantly contribute to the expansion of miRNA families probably due to their special hairpin structure. Moreover, with the mutation in mature miRNA sequence and the promoter sequences, the duplicated miRNA genes may undergo sub-/neo-functionalization where they may take on novel functions to mke plants better adapt to the environment in the evolution process.
     3. Grass species including Brachypodium, rice, sorghum and maize were derived from the same paleo-polyploid ancestor. We conducted a colinearity and paleo-duplication analysis in the genomes of the four grasses, in order to comprehend the evolutionary patterns and their functional evolution. We found that similar to transcript factors, miRNA genes were dosage sensitive, involving in the complicated regulatory network. About45%miRNA gene families were over-retained. This evidence is in support of the gene balance hypothesis that explains gene activities during the genome diploidization process. We found that the distribution of the duplicated miRNAs is biased among ancient chromosome pairs, displaying clear post-WGD subgenome dominance. We also found that, in contrast to the targets of the under-retained miRNA families, which were mainly involved in essential biological regulation processes and metabolic processes, the over-retained miRNA families targets were enriched functions for stress response.
     In summary, this work discovered a set of tissue-specific or day length specific miRNAs. It also explores the potential mechanisms for the miRNA family expansion in the grass genomes. Furthermore, the work analyzed the miRNA paleo-evolution patterns, and discovered the subgenome dominance of miRNA genome distribution which provides additional evidence for the gene dosage hypothesis. This work may lay a foundation for further study of miRNA functions in Brachypodium and other grass species.
引文
Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., and Sundaresan, V. (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15,78-91.
    Addo-Quaye, C., Miller, W., and Axtell, M.J. (2009). CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25,130-131.
    Agmon, N., Pur, S., Liefshitz, B., and Kupiec, M. (2009). Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Res 37,5081-5092.
    Allen, E., Xie, Z., Gustafson, A.M., and Carrington, J.C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121,207-221.
    Allen, E., Xie, Z., Gustafson, A.M., Sung, G.H., Spatafora, J.W., and Carrington, J.C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36,1282-1290.
    Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., TuschI, T., and Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33,2697-2706.
    Ambros, V. (2001). microRNAs:tiny regulators with great potential. Cell 107,823-826.
    Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.
    Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141,1000-1011.
    Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Segurens, B., Daubin, V., Anthouard, V., Aiach, N., Arnaiz, O., Billaut, A., Beisson, J., Blanc, I., Bouhouche, K., Camara, F., Duharcourt, S., Guigo, R., Gogendeau, D., Katinka, M., Keller, A.M., Kissmehl, R., Klotz, C., Koll, F., Le Mouei, A., Lepere, G., Malinsky, S., Nowacki, M., Nowak, J.K., Plattner, H., Poulain, J., Ruiz, F., Serrano, V., Zagulski, M., Dessen, P., Betermier, M., Weissenbach, J., Scarpelli, C., Schachter, V., Sperling, L., Meyer, E., Cohen, J., and Wincker, P. (2006). Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444,171-178.
    Axtell, M.J., Snyder, J.A., and Bartel, D.P. (2007). Common functions for diverse small RNAs of land plants. Plant Cell 19,1750-1769.
    Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2,28-36.
    Bartel, D.P. (2004). MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 116,281-297.
    Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., and Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125,279-284.
    Bentwich, I. (2008). Identifying human microRNAs. Curr Top Microbiol Immunol 320, 257-269.
    Birchler, J.A., and Newton, K.J. (1981). Modulation of protein levels in chromosomal dosage series of maize:the biochemical basis of aneuploid syndromes. Genetics 99, 247-266.
    Birchler, J.A., and Veitia, R.A. (2010). The gene balance hypothesis:implications for gene regulation, quantitative traits and evolution. New Phytol 186,54-62.
    Birchler, J.A., Bhadra, U., Bhadra, M.P., and Auger, D.L. (2001). Dosage-dependent gene regulation in multicellular eukaryotes:implications for dosage compensation, aneuploid syndromes, and quantitative traits. Dev Biol 234,275-288.
    Blanc, G., and Wolfe, K.H. (2004). Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16,1679-1691.
    Blomme, T., Vandepoele, K., De Bodt, S., Simillion, C., Maere, S., and Van de Peer, Y. (2006). The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7, R43.
    Borsani, O., Zhu, J., Verslues, P.E., Sunkar, R., and Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123,1279-1291.
    Briggs, W.R., and Olney, M.A. (2001). Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol 125,85-88.
    Brodersen, P., and Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends Genet 22,268-280.
    Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320,1185-1190.
    Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S., and Peacock, W.J. (1993). DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A 90,287-291.
    Chan, S.W., Henderson, I.R., and Jacobsen, S.E. (2005). Gardening the genome:DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6,351-360.
    Chapman, B.A., Bowers, J.E., Feltus, F.A., and Paterson, A.H. (2006). Buffering of crucial functions by paleologous duplicated genes may contribute cyclically to angiosperm genome duplication. Proc Natl Acad Sci U S A 103,2730-2735.
    Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303,2022-2025.
    Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., Ma, L., Chen, J.Y., Zen, K., Zhang, J., and Zhang, C.Y. (2009). Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10, R78.
    Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell 18, 412-421.
    Conant, G.C., and Wolfe, K.H. (2008). Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast. Genetics 179,1681-1692.
    Cuperus, J.T., Fahlgren, N., and Carrington, J.C. (2011). Evolution and functional diversification of MIRNA genes. Plant Cell 23,431-442.
    Davis, J.C., and Petrov, D.A. (2005). Do disparate mechanisms of duplication add similar genes to the genome? Trends Genet 21,548-551.
    Devos, K.M. (2005). Updating the 'crop circle'. Curr Opin Plant Biol 8,155-162.
    Devos, K.M., and Gale, M.D. (2000). Genome relationships:the grass model in current research. Plant Cell 12,637-646.
    Dezulian, T., Schaefer, M., Wiese, R., Weigel, D., and Huson, D.H. (2006). CrossLink: visualization and exploration of sequence relationships between microRNAs. Nucleic Acids Res 34, W400-404.
    Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103, 29-38.
    Dopman, E.B., and Hartl, D.L. (2007). A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 104,19920-19925.
    Draper, J., Mur, L.A., Jenkins, G, Ghosh-Biswas, GC., Bablak, P., Hasterok, R., and Routledge, A.P. (2001a). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127,1539-1555.
    Draper, J., Mur, L.A.J., Jenkins, G, Ghosh-Biswas, GC., Bablak, P., Hasterok, R., and Routledge, A.P.M. (2001b). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol.127,1539-1555.
    Ettwiller, L., and Veitia, R.A. (2007). Protein coevolution and isoexpression in yeast macromolecular complexes. Comp Funct Genomics,58721.
    Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., and Carrington, J.C. (2007). High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes. PLoS One 2, e219.
    Felippes, F.F., Schneeberger, K., Dezulian, T., Huson, D.H., and Weigel, D. (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA 14, 2455-2459.
    Feuillet, C., and Keller, B. (2002). Comparative genomics in the grass family:molecular characterization of grass genome structure and evolution. Ann Bot 89,3-10.
    Finnegan, E.J., and Matzke, M.A. (2003). The small RNA world. J Cell Sci 116, 4689-4693.
    Freeling, M. (2008). The evolutionary position of subfunctionalization, downgraded. Genome Dyn 4,25-40.
    Freeling, M. (2009). Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60, 433-453.
    Freeling, M., Lyons, E., Pedersen, B., Alam, M., Ming, R., and Lisch, D. (2008). Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 18,1924-1937.
    Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26,407-415.
    Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15,2038-2043.
    Gale, M.D., and Devos, K.M. (1998). Comparative genetics in the grasses. Proc Natl Acad Sci U S A 95,1971-1974.
    Gaut, B.S., and Doebley, J.F. (1997). DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94,6809-6814.
    Ge, H., Liu, Z., Church, GM., and Vidal, M. (2001). Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29, 482-486.
    German, M.A., Pillay, M., Jeong, D.H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L.A., Nobuta, K., German, R., De Paoli, E., Lu, C., Schroth, G, Meyers, B.C., and Green, P.J. (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26, 941-946.
    Ghildiyal, M., and Zamore, P.D. (2009). Small silencing RNAs:an expanding universe. Nat Rev Genet 10,94-108.
    Gregory, B.D., O'Malley, R.C., Lister, R., Urich, M.A., Tonti-Filippini, J., Chen, H., Millar, A.H., and Ecker, J.R. (2008). A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14,854-866.
    Guddeti, S., Zhang, D.C., Li, A.L., Leseberg, C.H., Kang, H., Li, X.G., Zhai, W.X., Johns, M.A., and Mao, L. (2005). Molecular evolution of the rice miR395 gene family. Cell Res 15,631-638.
    Guo, H.S., Xie, Q., Fei, J.F0, and Chua, N.H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17,1376-1386.
    Guttridge, C.G., and Thompson, P.A. (1959). Effect of gibberellic acid on length and number of epidermal cells in petioles of strawberry. Nature 183,197-198.
    Hartlerode, A.J., and Scully, R. (2009). Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423,157-168.
    Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J., and Jenkins, G. (2006). Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173, 349-362.
    He, Y., and Amasino, R.M. (2005). Role of chromatin modification in flowering-time control. Trends Plant Sci 10,30-35.
    Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006). Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38, 721-725.
    Henz, S.R., Cumbie, J.S., Kasschau, K.D., Lohmann, J.U., Carrington, J.C., Weigel, D., and Schmid, M. (2007). Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol 144,1247-1255.
    Herr, A.J., Jensen, M.B., Dalmay, T., and Baulcombe, D.C. (2005). RNA polymerase IV directs silencing of endogenous DNA. Science 308,118-120.
    Hertel, J., Lindemeyer, M., Missal, K., Fried, C., Tanzer, A., Flamm, C., Hofacker, I.L., and Stadler, P.F. (2006). The expansion of the metazoan microRNA repertoire. BMC Genomics 7,25.
    Howell, M.D., Fahlgren, N., Chapman, E.J., Cumbie, J.S., Sullivan, C.M., Givan, S.A., Kasschau, K.D., and Carrington, J.C. (2007). Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA-and tasiRNA-directed targeting. Plant Cell 19,926-942.
    Hsieh, L.C., Lin, S.I., Shih, A.C., Chen, J.W., Lin, W.Y., Tseng, C.Y., Li, W.H., and Chiou, T.J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151,2120-2132.
    Hughes, K.A., Ayroles, J.F., Reedy, M.M., Drnevich, J.M., Rowe, K.C., Ruedi, E.A., Caceres, C.E., and Paige, K.N. (2006). Segregating variation in the transcriptome: cis regulation and additivity of effects. Genetics 173,1347-1355.
    Hunter, C., Willmann, M.R., Wu, G., Yoshikawa, M., de la Luz Gutierrez-Nava, M., and Poethig, S.R. (2006). Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133,2973-2981.
    Iizuka, M., and Smith, M.M. (2003). Functional consequences of histone modifications. Curr Opin Genet Dev 13,154-160.
    Initiative, I.B. (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463,763-768.
    Jansen, R., Greenbaum, D., and Gerstein, M. (2002). Relating whole-genome expression data with protein-protein interactions. Genome Res 12,37-46.
    Jen, C.H., Michalopoulos, I., Westhead, D.R., and Meyer, P. (2005). Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biol 6, R51.
    Jia, Y., Lisch, D.R., Ohtsu, K., Scanlon, M.J., Nettleton, D., and Schnable, P.S. (2009). Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5, e1000737.
    Jiang, N., Bao, Z., Zhang, X., Eddy, S.R., and Wessler, S.R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature 431,569-573.
    Jin, H. (2008). Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582,2679-2684.
    Jin, Y.K., and Bennetzen, J.L. (1994). Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bsl retroelement of maize. Plant Cell 6,1177-1186.
    Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.L., Walbot, V., Sundaresan, V., Vance, V., and Bowman, L.H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19, 1429-1440.
    Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799.
    Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57,19-53.
    Kapitonov, V.V., and Jurka, J. (2007). Helitrons on a roll:eukaryotic rolling-circle transposons. Trends Genet 23,521-529.
    Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007). Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5, e57.
    Kawashima, C.G, Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y.N., Saito, K., Takahashi, H., and Dalmay, T. (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57, 313-321.
    Khraiwesh, B., Zhu, J.K., and Zhu, J. (2011). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta.
    Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H., Hwang, D., and Nam, H.G (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323,1053-1057.
    Kim, V.N. (2005). MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol 6,376-385.
    Kohl, M., Wiese, S., and Warscheid, B. (2011). Cytoscape:software for visualization and analysis of biological networks. Methods Mol Biol 696,291-303.
    Kozomara, A., and Griffiths-Jones, S. (2011). miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, D152-157.
    Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and Marra, M.A. (2009). Circos:an information aesthetic for comparative genomics. Genome Res 19,1639-1645.
    Lai, J., Li, Y., Messing, J., and Dooner, H.K. (2005). Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci U SA 102,9068-9073.
    Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131,4311-4322.
    Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11,204-220.
    Lawton-Rauh, A. (2003). Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol 29,396-409.
    Li, A., and Mao, L. (2007). Evolution of plant microRNA gene families. Cell Res 17, 212-218.
    Li, C.F., Pontes, O., E1-Shami, M., Henderson, I.R., Bernatavichute, Y.V., Chan, S.W., Lagrange, T., Pikaard, C.S., and Jacobsen, S.E. (2006). An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126,93-106.
    Li, L., Huang, Y., Xia, X., and Sun, Z. (2006). Preferential duplication in the sparse part of yeast protein interaction network. Mol Biol Evol 23,2467-2473.
    Li, Y., Li, W., and Jin, Y.X. (2005). Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37,75-87.
    Li, Y.F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell, M.J., Zhang, W., and Sunkar, R. (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J 62,742-759.
    Liang, G., and Yu, D. (2010). Reciprocal regulation among miR395, APS and SULTR2;1 in Arabidopsis thaliana. Plant Signal Behav 5,1257-1259.
    Liang, G., Yang,F., and Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62,1046-1057.
    Lu, C., Jeong, D.H., Kulkarni, K., Pillay, M., Nobuta, K., German, R., Thatcher, S.R., Maher, C., Zhang, L., Ware, D., Liu, B., Cao, X., Meyers, B.C., and Green, P.J. (2008). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A 105,4951-4956.
    Maere, S., Heymans, K., and Kuiper, M. (2005a). BiNGO:a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21,3448-3449.
    Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., and Van de Peer, Y. (2005b). Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102,5454-5459.
    Maher, C., Stein, L., and Ware, D. (2006). Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16,510-519.
    Mallory, A.C., Bartel, D.P., and Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17,1360-1375.
    Mallory, A.C., Dugas, D.V., Bartel, D.P., and Bartel, B. (2004). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14,1035-1046.
    Mathelier, A., and Carbone, A. (2010). MIReNA:finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26, 2226-2234.
    Meyers, B.C., Axtell, M.J., Bartel, B., Bartel, D.P., Baulcombe, D., Bowman, J.L., Cao, X., Carrington, J.C., Chen, X., Green, P.J., Griffiths-Jones, S., Jacobsen, S.E., Mallory, A.C., Martienssen, R.A., Poethig, R.S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D., and Zhu, J.K. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell 20,3186-3190.
    Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, GJ., and Qi, Y. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5'terminal nucleotide. Cell 133, 116-127.
    Michlewski, G., Guil, S., Semple, C.A., and Caceres, J.F. (2008). Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32,383-393.
    Mlotshwa, S., Yang, Z., Kim, Y., and Chen, X. (2006). Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol 61,781-793.
    Morgante, M., Brunner, S., Pea, G, Fengler, K., Zuccolo, A., and Rafalski, A. (2005). Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37,997-1002.
    Murat, F., Xu, J.H., Tannier, E., Abrouk, M., Guilhot, N., Pont, C., Messing, J., and Salse, J. (2010). Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20, 1545-1557.
    Nakazawa, Y., Hiraguri, A., Moriyama, H., and Fukuhara, T. (2007). The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol Biol 63,777-785.
    Nassif, N., Penney, J., Pal, S., Engels, W.R., and Gloor, G.B. (1994). Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol 14,1613-1625.
    Navarro, L., Jay, F., Nomura, K., He, S., and Voinnet, O. (2008). Suppression of the microRNA pathway by bacterial effector proteins. Science 321,964.
    Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M., and Laufs, P. (2006). The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18,2929-2945.
    Onodera, Y., Haag, J.R., Ream, T., Costa Nunes, P., Pontes, O., and Pikaard, C.S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120,613-622.
    Osato, N., Yamada, H., Satoh, K., Ooka, H., Yamamoto, M., Suzuki, K., Kawai, J., Carninci, P., Ohtomo, Y., Murakami, K., Matsubara, K., Kikuchi, S., and Hayashizaki, Y. (2003). Antisense transcripts with rice full-length cDNAs. Genome Biol 5, R5.
    Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263.
    Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., and Burgyan, J. (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62,960-976.
    Papp, B., Pal, C., and Hurst, L.D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature 424,194-197.
    Papp, I., Mette, M.F., Aufsatz, W., Daxinger, L., Schauer, S.E., Ray, A., van der Winden, J., Matzke, M., and Matzke, A.J. (2003). Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132,1382-1390.
    Paterson, A.H., Bowers, J.E., and Chapman, B.A. (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101,9903-9908.
    Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., SpannagI, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboob ur, R., Ware, D., Westhoff, P., Mayer, K.F., Messing, J., and Rokhsar, D.S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457,551-556.
    Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L., and Poethig, R.S. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18,2368-2379.
    Piriyapongsa, J., and Jordan, I.K. (2007). A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2, e203.
    Piriyapongsa, J., and Jordan, I.K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA 14,814-821.
    Project, I.R.G.S. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
    Puchta, H. (2005). The repair of double-strand breaks in plants:mechanisms and consequences for genome evolution. J Exp Bot 56,1-14.
    Qi, Y., and Hannon, G.J. (2005). Uncovering RNAi mechanisms in plants:biochemistry enters the foray. FEBS Lett 579,5899-5903.
    Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20, 3407-3425.
    Reyes, J.L., and Chua, N.H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49,592-606.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110,513-520.
    Rizzon, C., Ponger, L., and Gaut, B.S. (2006). Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2, e115.
    Robins, H., Li, Y., and Padgett, R.W. (2005). Incorporating structure to predict microRNA targets. Proc Natl Acad Sci U S A 102,4006-4009.
    Rubio-Somoza, I., and Weigel, D. (2011). MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16,258-264.
    Rubio-Somoza, I., Cuperus, J.T., Weigel, D., and Carrington, J.C. (2009). Regulation and functional specialization of small RNA-target nodes during plant development. Curr Opin Plant Biol 12,622-627.
    Salse, J., Bolot, S., Throude, M., Jouffe, V., Piegu, B., Quraishi, U.M., Calcagno, T., Cooke, R., Delseny, M., and Feuillet, C. (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20,11-24.
    Schnable, J.C., Springer, N.M., and Freeling, M. (2011). Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A 108,4069-4074.
    Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S.M., Belter, E., Du, F., Kim, K., Abbott, R.M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S.M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M.J., McMahan, L., Van Buren, P., Vaughn, M.W., Ying, K., Yeh, C.T., Emrich, S.J., Jia, Y., Kalyanaraman, A., Hsia, A.P., Barbazuk, W.B., Baucom, R.S., Brutnell, T.P., Carpita, N.C., Chaparro, C., Chia, J.M., Deragon, J.M., Estill, J.C., Fu, Y., Jeddeloh, J.A., Han, Y., Lee, H., Li, P., Lisch, D.R., Liu, S., Liu, Z., Nagel, D.H., McCann, M.C., SanMiguel, P., Myers, A.M., Nettleton, D., Nguyen, J., Penning, B.W., Ponnala, L., Schneider, K.L., Schwartz, D.C., Sharma, A., Soderlund, C., Springer, N.M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T.K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J.L., Dawe, R.K., Jiang, J., Jiang, N., Presting, G.G, Wessler, S.R., Aluru, S., Martienssen, R.A., Clifton, S.W., McCombie, W.R., Wing, R.A., and Wilson, R.K. (2009). The B73 maize genome:complexity, diversity, and dynamics. Science 326,1112-1115.
    Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6, e230.
    Schwartz, J.S., Doyle, R.M., Manzaneda, J.A., Rey, J.P., Mitchell-Olds, T., and Amasino, M.R. (2010). Natural Variation of Flowering Time and Vernalization Responsiveness in Brachypodium distachyon. Bioenerg. Res.3,38-46.
    Senchina, D.S., Alvarez, I., Cronn, R.C., Liu, B., Rong, J., Noyes, R.D., Paterson, A.H., Wing, R.A., Wilkins, T.A., and Wendel, J.F. (2003). Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20,633-643.
    Seoighe, C., and Wolfe, K.H. (1999). Yeast genome evolution in the post-genome era. Curr Opin Microbiol 2,548-554.
    Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L., and Meyerowitz, E.M. (2007). Redundancy and specialization among plant microRNAs:role of the MIR 164 family in developmental robustness. Development 134,1051-1060.
    Simpson, GG., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113,777-787.
    Smith, L.M., Pontes, O., Searle, I., Yelina, N., Yousafzai, F.K., Herr, A.J., Pikaard, C.S., and Baulcombe, D.C. (2007). An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19,1507-1521.
    Song, Q.X., Liu, Y.F., Hu, X.Y., Zhang, W.K., Ma, B., Chen, S.Y., and Zhang, J.S. (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11,5.
    Song, X., Li, P., Zhai, J., Zhou, M., Ma, L., Liu, B., Jeong, D.H., Nakano, M., Cao, S., Liu, C., Chu, C., Wang, X.J., Green, P.J., Meyers, B.C., and Cao, X. (2011). Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J.
    Sonnhammer, E.L., and Durbin, R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1-10.
    Sullivan, C.S., and Ganem, D. (2005). MicroRNAs and viral infection. Mol Cell 20,3-7.
    Sunkar, R., Kapoor, A., and Zhu, J.K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18,2051-2065.
    Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., and Messing, J. (2004). Close split of sorghum and maize genome progenitors. Genome Res 14,1916-1923.
    Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., and Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49,493-500.
    Thomas, B.C., Pedersen, B., and Freeling, M. (2006). Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16,934-946.
    Trindade, I., Capitao, C., Dalmay, T., Fevereiro, M.P., and Santos, D.M. (2010). miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231,705-716.
    Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants:mechanisms and regulations. Genes Dev 20,759-771.
    Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V, Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16,69-79.
    Veitia, R.A., Bottani, S., and Birchler, J.A. (2008). Cellular reactions to gene dosage imbalance:genomic, transcriptomic and proteomic effects. Trends Genet 24, 390-397.
    Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687.
    Wang, H., Chua, N.H., and Wang, X.J. (2006). Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 7, R92.
    Wang, J., Tian, L., Lee, H.S., Wei, N.E., Jiang, H., Watson, B., Madlung, A., Osborn, T.C., Doerge, R.W., Comai, L., and Chen, Z.J. (2006). Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172,507-517.
    Wang, J.W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749.
    Wang, J.W., Wang, L.J., Mao, Y.B., Cai, W.J., Xue, H.W., and Chen, X.Y. (2005). Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17,2204-2216.
    Wang, X., Shi, X., Hao, B., Ge, S., and Luo, J. (2005). Duplication and DNA segmental loss in the rice genome:implications for diploidization. New Phytol 165,937-946.
    Wang, X.J., Gaasterland, T., and Chua, N.H. (2005). Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6, R30.
    Warner, J.R. (1999). The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24,437-440.
    Wei, B., Cai, T., Zhang, R., Li, A., Huo, N., Li, S., Gu, Y.Q., Vogel, J., Jia, J., Qi, Y., and Mao, L. (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9,499-511.
    Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, E., Kim, H., Goicoechea, J.L., Chen, M., Lee, S., Fuks, G., Sanchez-Villeda, H., Schroeder, S., Fang, Z., McMullen, M., Davis, G., Bowers, J.E., Paterson, A.H., Schaeffer, M., Gardiner, J., Cone, K., Messing, J., Soderlund, C., and Wing, R.A. (2007). Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3, e123.
    Wicker, T., Buchmann, J.P., and Keller, B. (2010). Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res 20,1229-1237.
    Wicker, T., Guyot, R., Yahiaoui, N., and Keller, B. (2003). CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132, 52-63.
    Wierzbicki, A.T., Haag, J.R., and Pikaard, C.S. (2008). Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135,635-648.
    Wierzbicki, A.T., Ream, T.S., Haag, J.R., and Pikaard, C.S. (2009). RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41,630-634.
    Williams, L., Carles, C.C., Osmont, K.S., and Fletcher, J.C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci U S A 102, 9703-9708.
    Woodhouse, M.R., Schnable, J.C., Pedersen, B.S., Lyons, E., Lisch, D., Subramaniam, S., and Freeling, M. (2010). Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homologs. PLoS Biol 8, el000409.
    Wu, G, Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. (2009). The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138,750-759.
    Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., and Qi, Y. (2009). Rice MicroRNA effector complexes and targets. Plant Cell 21,3421-3435.
    Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C., and Qi, Y. (2010). DNA methylation mediated by a microRNA pathway. Mol Cell 38,465-475.
    Wu, M.F., Tian, Q., and Reed, J.W. (2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133,4211-4218.
    Xie, Z., and Qi, X. (2008). Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta 1779,720-724.
    Xiong, Y., Liu, T., Tian, C., Sun, S., Li, J., and Chen, M. (2005). Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 59,191-203.
    Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., and Dubcovsky, J. (2006). The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A103,19581-19586.
    Yang, N., and Kazazian, H.H., Jr. (2006). L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct MolBiol 13,763-771.
    Yang, Z. (1997). PAML:a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13,555-556.
    Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419,308-312.
    Yelin, R., Dahary, D., Sorek, R., Levanon, E.Y., Goldstein, O., Shoshan, A., Diber, A., Biton, S., Tamir, Y., Khosravi, R., Nemzer, S., Pinner, E., Walach, S., Bernstein, J., Savitsky, K., and Rotman, G (2003). Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21,379-386.
    Yoon, E.K., Yang, J.H., Lim, J., Kim, S.H., Kim, S.K., and Lee, W.S. (2010). Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38, 1382-1391.
    Yoshikawa, M., Peragine, A., Park, M.Y., and Poethig, R.S. (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19,2164-2175.
    Yu, J., Hu, S., Wang, J., Wong, GK., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Li, J., Liu, Z., Qi, Q., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Zhao, W, Li, P., Chen, W., Zhang, Y., Hu, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Tao, M., Zhu, L., Yuan, L., and Yang, H. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296,79-92.
    Zhang, B., Pan, X., Cannon, C.H., Cobb, G.P., and Anderson, T.A. (2006). Conservation and divergence of plant microRNA genes. Plant J 46,243-259.
    Zhang, J., Xu, Y., Huan, Q., and Chong, K. (2009). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10,449.
    Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., Maher, C.A., Guill, K., McMulIen, M.D., and Ware, D. (2009). A genome-wide characterization of microRNA genes in maize. PLoS Genet 5, e1000716.
    Zhang, X. (2008). The epigenetic landscape of plants. Science 320,489-492.
    Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., Xiao, F., and Ye, Z. (2011). Over-expression of microRNA 169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33,403-409.
    Zhang, Y. (2005). miRU:an automated plant miRNA target prediction server. Nucleic Acids Res 33, W701-704.
    Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., and Jin, Y. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10,29.
    Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., and Jin, Y. (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354,585-590.
    Zhao, M., Ding, H., Zhu, J.K., Zhang, F., and Li, W.X. (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190,906-915.
    Zhou, L., Chen, J., Li, Z., Li, X., Hu, X., Huang, Y., Zhao, X., Liang, C., Wang, Y., Sun, L., Shi, M., Xu, X., Shen, F., Chen, M., Han, Z., Peng, Z., Zhai, Q., Zhang, Z., Yang, R., Ye, J., Guan, Z., Yang, H., Gui, Y., Wang, J., Cai, Z., and Zhang, X. (2010). Integrated profiling of microRNAs and mRNAs:microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 5, el5224.
    Zhou, M., Gu, L., Li, P., Song, X., Wei, L., Chen, Z., and Cao, X. (2010). Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Frontiers in Biology 5,67-90.
    Zhou, X., Sunkar, R., Jin, H., Zhu, J.K., and Zhang, W. (2009). Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res 19,70-78.
    Zilberman, D., Cao, X., and Jacobsen, S.E. (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716-719.
    Zilberman, D., Cao, X., Johansen, L.K., Xie, Z., Carrington, J.C., and Jacobsen, S.E. (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol 14,1214-1220.
    Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31,3406-3415.