1500MPa级直接淬火马氏体钢的组织控制与强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接淬火工艺具有缩短生产流程、降低成本、节约能源等优点。目前国内外采用直接淬火技术生产钢板的抗拉强度一般在490-980MPa,对1500MPa级直接淬火马氏体钢的研究还较少。随着钢铁材料朝高强度方向发展,有必要对超高强度直接淬火马氏体钢的生产工艺及其强化机理进行深入的研究。
     本文以中碳微合金钢为研究对象,采用直接淬火-低温回火工艺,系统研究了钢坯再加热制度、热变形工艺、冷却工艺对直接淬火钢微观组织与力学性能的影响,分析了直接淬火马氏体钢的晶体学形态,讨论了直接淬火马氏体钢的强化机理。基于直接淬火-回火-重新奥氏体化工艺,研究了α→γ逆相变再结晶的晶粒细化机制,在此基础上,探索了利用纳米级析出相控制得到细晶奥氏体的工艺。
     为了确保合金元素能够较充分的固溶,同时组织中又不出现明显的粗大晶粒,实验钢的加热温度不宜高于1150℃,保温时间不宜超过1h。建立了实验钢在加热过程中的奥氏体晶粒长大动力学模型。
     通过研究实验钢的热变形行为,为实际生产提供控轧工艺参数及理论依据。计算得到了动态再结晶热变形激活能为477.7 kJ/mol,静态再结晶激活能为299.3KJ/mol,建立了动态再结晶本构方程及静态再结晶动力学方程;根据绘制的动态再结晶加工状态图,发现在变形量较小及应变速率较大的情况下,完全动态再结晶很难发生;奥氏体未再结晶温度为900℃;碳化物在奥氏体区的等温析出动力学曲线(PTT)呈典型的C型,随着应变速率的增大,产生的位错储能逐渐增大,使析出曲线向左平移,析出孕育期缩短,但不改变鼻尖温度。
     采用电子背散射技术(EBSD),对直接淬火马氏体钢的晶体学形态进行了分析。直接淬火马氏体的微观结构依次由原奥氏体晶粒、板条束(Packet)、板条块(Block)和板条(Lath)组成。板条束为原奥氏体晶粒内具有相同惯习面的马氏体板条晶区,板条块为板条束内大角度晶界所包围的区域,由具有相似晶体学取向的板条组成。随着未再结晶区变形量的增大,直接淬火马氏体钢的原奥氏体晶粒由等轴晶粒变成扁平化的晶粒,板条束(Packet)尺寸与原奥氏体晶粒的扁平宽度相等,板条块(Block)宽度逐渐减小:当未再结晶区变形量占总变形量的比例由10.5%增大到100%,原奥氏体晶粒尺寸由12.4μm减小到4.4μm,板条块宽度从2.5μm减小到1.3μm。研究发现直接淬火马氏体与母相奥氏体符合K-S关系,与传统再加热淬火马氏体相比,热变形后直接淬火得到的马氏体并未改变其取向分布。
     实验室轧制结果表明,与传统的再加热淬火-回火钢(RQT)相比,再结晶区轧制直接淬火-回火钢(RCR-DQT)、再结晶区-未再结晶区两阶段轧制直接淬火-回火钢(RCR-CR-DQT)的冲击韧性与之相当,横向抗拉强度分别提高了9.4%、14.6%,达到1570MPa、1645MPa。研究表明直接淬火钢较再加热淬火钢强度提高的主要机制是位错强化,是由于直接淬火马氏体继承了热变形过程中产生的大量晶体缺陷,导致位错密度增大的缘故。对RCR-DQT、RCR-CR-DQT两种直接淬火-回火钢,随未再结晶区变形量的增大,原奥氏体晶粒逐渐细化,板条块(Block)宽度逐渐减小,强度逐渐提高,屈服强度与原奥氏体晶粒尺寸、板条块宽度的-1/2次方都存在线性关系,说明细晶强化是强度提高的主要机制,板条块宽度为控制强度的“有效晶粒尺寸”。
     传统再加热淬火-回火钢的横纵向性能差异不明显,而直接淬火-回火钢由于继承了热轧时的织构,导致横纵向性能差异较大。
     在工业生产线上,热轧后分别采用间断式直接淬火工艺(IDQ)与直接淬火工艺(DQ),结果发现直接淬火工艺(DQ)较间断式直接淬火(IDQ)工艺具有更好的强韧性配比。通过精确控制钢坯加热制度、轧制工艺及冷却工艺参数,得到的直接淬火钢板板形良好。
     基于直接淬火-回火-重新奥氏体化工艺,通过降低热变形温度、增大变形量、增大轧后冷却速率、缩短回火时间可以增大逆转变奥氏体的形核率,从而细化奥氏体晶粒。在此基础上,提出了利用纳米级析出相细化奥氏体晶粒的新思路,总结了Ti在生产流程中的演变规律。经实验室轧制及后续热处理,得到的奥氏体晶粒尺寸约为5μm,晶粒细化效果明显,证明设计思路是科学可行的,具有较好的工业化应用前景。
The direct quenching process shorts the production step, reduces cost, save energy and so on. Tensile strength of steel plate produced by directed quenching technology is usually 490-980MPa at home and abroad but few studies were carried out on the 1500MPa level steel through direct quenching. With development of material toward ultra-high strength, it is necessary to study the production process and strengthening mechanism of direct quenching martensite steel aiming at development ultrahigh strength direct quenching martensite steel.
     In this paper, the effects of reheating technique, hot deformation, cooling process on the micro structure and mechanical properties of direct quenched steel were carried out quantitatively on medium carbon microalloyed steel through direct quenching and low temperature tempering process. The crystallography of direct quenched martensitic steel was analyzied, and the strengthening mechanism of the direct quenching martensitic steel was discussed. Grain refinement mechanism of austenite throughα→γreverse phase transformation was studied by means of direct quenching, tempering and reaustenizing. The austenite grain refinement was studied through nano-precipitates to retard the boundary movement during reaustenization process.
     It is found that reheating temperature should be lower than 1150℃and holding time shorter than lh to obtain finer austenite grain for experimental Nb microalloyed steel. The kinetic equations of austenite grain growth in soaking process for tested steels are constructed.
     The thermal deformation behaviors were studied to provide controlled rolling parameters and theoretic understanding. The dynamic recrystallization activation energy and the static recrystallization activation energy are about 477.7 kJ/mol and 299.3KJ/mol, respectively. The kinetic equations of dynamic recrystallization and static recrystallization for tested steels were built, and the dynamic recrystallization process state diagram was obtained. According to the dynamic recrystallization process state diagram, it was found that the large deformation and low strain rate is essential for the full dynamic recrystallization. The strain induced carbide precipitation curves (PTT curves) have also been determined assuming the typical "C" typed shape. The precipitation process is obviously accelerated with strain rate increases without changing the nose-tip temperature.
     The microstructure of direct quenched martensite steel has a multi-scale structure including prior austenite grain, packet, block and lath structure. Packet is the group of laths with the same habit plane in a prior austenite grain and each packet is further subdivided into blocks which have high angle boundaries (the group of laths with a similar orientation). The equiaxed grains of direct quenched martensite steels become into pancake grains with increasing the amount of deformation in the non-recrystallization region, the packet size is equal to the thickness of the pancaked austenite grain and the block size is reduced due to deformation structure. The average austenite grain size decreased from 12.4μm to 4.4μm and the average block width decreased from 2.5μm to 1.3μm, when the fraction of the amount of deformation in the non-recrystallization increased from 10.4% to 100%. The results showed that the K-S orientation relationship between austenite and martensite is observed in direct quenched steels by electron backscattering diffraction (EBSD).
     Comparing with conventional reheat quenching-tempering (RQT), the tensile strengths of RCR-DQT and RCR-CR-DQT steels increases by 9.4% and 14.6%, whereas the toughness is almost same. Analysis on the relationship between microstructure and mechanical properties revealed that dislocation strengthening is the major mechanism to account for the strength increment of DQT steels comparing with the RQT steels, because the dislocation density in DQT steels was higher than that of RQT steels due to the inheritance of deformed substructures of austenite through transformation. The strength increases with increasing the amount of deformation in the non-recrystallization region can be attributed to the finer block, which was found to be the effective grain size controlling the strength. The linear relationship between yield strength and the minus square-roots of prior austenite grain size and block size, suggesting that grain refinement is the main reason to strength enhancement and the block width is the effective size controlling strength. Anisotropy of the DQT steels were obvious than that of RQT due to the texture inheritance from deformed austenite.
     In the industrial production line, compared with the intermittent direct quenching (IDQ), direct quenching (DQ) has better combination of strength and toughness. Direct quenching steel plates have good plate shape by means of precise control of reheating temperature, rolling and cooling process parameters.
     Based on the direct quenching-tempering-reaustenitizing process, by means of lowering hot deformation temperature, increasing the amount of deformation, increasing the cooling rate after hot deformation and shorting the temper time, the nucleation rate of austenite reverse transformation was increases and in turn the austenite grain size was significantly refined. For further refinement of austenite, the idea of grain refinement by nanosized precipitates to suppress the austenite grain growth was introduced and the effects of Titanium on microstructure evolution and mechanical properties was summarized and analyzed. The Lab controlled rolling and following heat treatment result in a clear refined microstructure with austenite grain size about 5μm. It was turned out to be true that austenite grain refinement is feasible by controlled rolling and nanosized precipitation, both of which would assume good prospects for industrial applications.
引文
[1]董瀚.钢铁材料基础研究的评述[J].钢铁,2008,10(43):1-7.
    [2]专家:2009年中国钢产量占全球比重上升情况分析http://www.chinairn.com/doc/4080/530525.html
    [3]简评“淘汰1亿吨钢铁落后产能”的难易http://31steels.toocle.com/detail-4362601.html
    [4]林承江.直接淬火中碳钢的微观组织与力学性能研究[硕士学位论文].昆明:昆明理工大学,2005.
    [5]董瀚,李桂芬,王步震,等.直接淬火装甲钢的微观组织和性能[J].材料开发与应用,1996,11(5):17-23.
    [6]Lee C S, Choo W Y. Effect of austenite conditioning and hardenability on mechanical properties of B-containing high strength steels [J].ISIJ International, Supplement,2000(40):S189-S193.
    [7]Lee C S, Choo W Y.Effect of austenite conditioning on the mechanical properties of DQ processed Ni-Cr-Mo stee[C]. In:Proc of Int Conf on Accelerated Cooling/ Direct Quenching steels, ASM Int,1997.
    [8]Chiaki Ouchi. Development of steel plates by intensive use of TMCP and direct quenching processes[J]. ISIJ International,2001,41(6):542-553.
    [9]Wickman H A, Ayvazian A M, Hickey C F. Evaluation of an army steel produced by the AC/DQ process[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels, TMS,1992.
    [10]Herman W A, Foos M. Weldability and mechanical property evaluation of armor quality AC/DQ low carbon steels[C].In:Conf Proc Low-carbon Steels for the 90's, TMS,1993.
    [11]Manganello S J, Wilson A D.Direct quenching and its effects on high strength armour plate[C]. In:Conf Proc Low-carbon Steels for the 90's, TMS,1993.
    [12]James F E, Michael T C. Plate cooling technologies and market requirements [J]. AISE Steel Technology,2002(6):49-53.
    [13]Growther D N, Mintz B. Influence of grain size on hot ductility of plain carbon steels[J]. Materials Science and Technology,1986,2(9):951-955.
    [14]Shinmiya T, Ishikawa N, Endo S, et al. Transformation and precipitation behavior in the new conceptual TMCP process utilizing heat treatment on line process[J]. Materials Science Forum,2007,539-543(5):4732-4737.
    [15]Garica C I, Deardo A J. Formation of austenite in 1.5% Mn steels[J]. Metall Trans, 1981,12(3)A:521-530.
    [16]Swinden D J, Woodhead J H. Kinetics of the nucleation and growth of proeutectoid ferrite in some Fe-C-Cr alloys [J]. ISIJ International,1971,11(9): 883-899.
    [17]Kozasu I. Controlled rolling and controlled cooling technological evolution in enhancement of mechanical properties through hot rolling [M]. Chijin Shokan Co. Ltd, Tokyo,1997.
    [18]Tamura I, Sekine H, Tanaka T, et al.Thermomechanical processing of high strength low alloy steels [M]. Butterworths, London,1988.
    [19]天野虔一.铁铜工学-第四章厚钢板[M].束京:JFE21世纪财团,2006.
    [20]Hulka K, Bergmen B, Steibelberger A, et al. Development trends in high strength tructural steel. Proc. Int. Conf. On Processing, Microstructure and Properties of Microalloyed and other Moldern High Strength Low Alloyed Steels [C]. Warredale, PA, Iron and Society,1991:177-187.
    [21]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    [22]Palmiere E J. Influence of processing conditions and alloy chemistry on the static recrystallization of microalloyed austenite [J].Mater. Forum,1998,284-296: 151-158.
    [23]小指军夫.李伏桃等译.控制轧制·控制冷却—改善材质的轧制技术发展[M].北京:冶金工业出版社,2002.
    [24]田村今男.王国栋等译.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1992,264.
    [25]潘大刚.直接淬火工艺对中厚钢板组织性能的影响[硕士学位论文].沈阳:东北大学,2003.
    [26]董瀚,李桂芬,王步震,等.轧后直接淬火低碳装甲钢的微观组织和性能[J].兵器材料科学与工程,1996,19(2):29.34.
    [27]Asahi H, Hara T, Sugiyama M, et al. Development of plate and seam welding technology for X120 linepipe[C]. ISOPE Symposium on High-performance Ma terials in Offshore Industry. Honolulu:ISOPE,2003.
    [28]王路兵,武会宾,任毅,等.X120级管线钢DQ-T工艺试验研究[J].金属热处理,2007,32(10):44-47.
    [29]Okamoto K, Yoshie A, Nakao H. Physical metallurgy of direct quenched steel plates and its application for commercial process and products[C].In:Conf Proc Physical Metallurgy of Direct-quenched Steels,TMS,1992.
    [30]Kozasu I. Metallurgical framework of direct quenching of steel[C]. In: International Conference on Thermomechanical Processing of Steel and Other Materials (THERMEC'97),Wollongong, Australia,1997,47-55.
    [31]董成瑞,任海鹏,金同哲,等.微合金非调制钢[M].北京:冶金工业出版社,2001.
    [32]雍岐龙,马鸣图,吴宝榕.微合金钢物理和力学冶金[M].北京:机械工业出版社,1989.
    [33]Gladman T. The physical metallurgy of microalloyed steels[M]. London:The Institute of Materials,1997:47-56.
    [34]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology,1999,15(1):30-36.
    [35]DeArdo A J. Microalloyed strip steels for the 21st century[J]. Materials Science Forum,1998,284-286:15-26.
    [36]王祖滨.低合金钢和微合金钢的发展[J].中国冶金,1999,(3):19-23.
    [37]Meyer L微合金化元素Nb、V、Ti、Zr和B及其在现代汽车钢中的作用[J].宝钢情报,1989,(4):70-80.
    [38]姚连登.微合金化与控制轧制的进展[J].宽厚板,1999,5(1):1-4.
    [39]雍岐龙.微合金钢中微合金碳氮化物在奥氏体中的沉淀问题[博士学位论文].北京:钢铁研究总院,1987.
    [40]Elwazri A M, Wnjara P, Yue S. Dynamic recrystallization of austenite in microalloyed high carbon steels[J]. Materials Science and Engineering,2003, 339(1-2)A:209-215.
    [41]Uranga P, Fernandez A I, Lopez B, et al. Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite[J]. Materials and Science and Engineering,345(1-2)A:319-327.
    [42]Mcqueen H J, Yue S, Ryan N D. Hot working characteristics of steels in austenite state[J]. Journal of Materials Processing Technology,1995,53(1-2):293-310.
    [43]Yu H, Kang Y L, Wang K L, et al. Study of mechanism on microstructure refinement during compact strip production process[J]. Materials Science and Engineering,2003,363(1-2)A:86-92.
    [44]Ghosh A, Das S, Chatterjee S, et al. Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra low carbon Cu bearing HSLA forging[J]. Materials Science and Engineering,2003, 348(1-2)A:299-308.
    [45]Hou H R, Chen Q, Liu Q Y, et al. Grain refinement of a Nb-Ti microalloyed steel through heavy deformation controlled cooling[J]. Journal of Materials Processing Technology,2003,137(1-3):173-176.
    [46]Xue X H, Shan Y Y, Zheng L, et al. Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process[J]. Materials Science and Engineering,2006,438-440A:285-287.
    [47]Gray J M, DeArdo A J.Fundamental Metallurgy of Niobium in Steel[C]. HSLA steels:metallurgy and applications. ASM Int, USA,1986.
    [48]Stalheim D.The Use of Microalloyed Steels for Rolling Plate and Coil[C].高温轧制工艺(HTP)国际研讨会暨技术讲座报告集.北京,2006.
    [49]Taylor K A, Hansen S S. Microstructures and mechanical properties of eperimental low-carbon 0.5Mo-Ti-B steels[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels. TMS,1992.
    [50]織田昌彦,久保弘,秋末治.直送压延にょゐ Nb添加低炭素热延钢板の材質[J].铁と钢,1988Vo1.74(12):2323-2329.
    [51]Fukuda M, Hashimoto T, Kunishige K. Effects of controlled rolling and microalloying on properties of strips and plates[C]. Proc.Microalloying'75,1975, 136-150.
    [52]Pereloma E V, Crawford B R, Hodgson P D. Strain-induced precipitation behaviour in hot rolled strip steel[J].Materials Science and Engineering,2001, 299A:27-37.
    [53]Yuan X Q, Liu Z Y, Jiao S H, et al.The onset temperatures of y to a phase transformation in hot deformed and non-deformed Nb micro-alloyed steels[J]. ISIJ International,2006,46(4):579-585.
    [54]Shikanai N, Suga M. Influence of direct-quenching conditions and alloying elements on mechanical properties of HSLA steel plates[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels,TMS,1992.
    [55]Thillou V, Hua M, Garcia C I, et al. Precipitation of NbC and effect of Mn on the strength properties of hot strip HSLA low carbon steel[J]. Materials Science Forum,1998,284-286:311-318.
    [56]Zhang Z H, Liu Y N, Liang X K, et al. The effect of Nb on recrystallization behavior of a Nb micro-alloyed Steel[J]. Materials Science and Engineering, 2008,474(1-2)A:254-260.
    [57]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J].Acta Metallurgica,1996,44(1):137-148.
    [58]Zurob H S, Brechet Y, Purdy G. A model for the competition of precipitation and recrystallization in deformed austenite[J]. Acta Mater,2001,49:4183-4190.
    [59]Liu W J. A new theory and kinetic modeling of strain-induced precipitation of Nb(CN) in microalloyed austenite[J].Metallurgical and Materials Transactions A,1995,26(7):1641-1657.
    [60]Lee K J. Recrystallization and precipitation interaction In Nb-containing steels[J]. Scripta Materialia,1999,40(7):837-843.
    [61]Speer J G, Hansen S S. Austenite recrystallization and carbonitride precipitation in Niobium microalloyed steels[J]. Metallurgical Transactions A,1989,20(1): 25-38.
    [62]Hong S G, Kang K B, Park C G. Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scripta Materialia,2002,46:163-168.
    [63]Kang K B, Kwon O, Lee W B, et al. Effect of precipitation on the recrystallization behavior of a Nb containing steel[J]. Scripta Materialia,1997, 36(11):1303-1308.
    [64]Cho S H, Kang K B, Jonas J J. The dynamic, static and metadynamic recrystallization of a Nb-microalloyed steel[J]. ISIJ international,2001,41(1): 63-69.
    [65]Abad R, Fernandez A I, Lopez B, et al. Interaction between recrystallization and precipitation during multipass rolling in a low carbon niobium microalloyed steel[J]. ISIJ International,2001,41(11):1373-1382.
    [66]Palmiere E J, Garcia C I, Deardo A J. The influence of niobium supersaturation in austenite on the static recrystallization behavior of low carbon microalloyed steels[J]. Metallurgical and Materials Transaction,1996,27(4)A:951-960.
    [67]Kliber J, Schindler I. Recrystallization/precipitation behavior in microalloyed steels[J]. Materials processing technology,1996,60:597-602.
    [68]Luton M J, Dorvel R, Petkovic R A. Interaction between deformation, recrystallization and precipitation in niobium steels[J]. Metallurgical Transaction A,1980,11(3):411-420.
    [69]Gomez M, Medina S F, Quispe A. Static recrystallization and induced precipitation in a low Nb microalloyed steel[J]. ISIJ International,2002,42(4): 423-431.
    [70]Thillou V, Hua M, Garcia C I, et al. Precipitation of NbC and effect of Mn on the strength properties of hot strip HSLA low carbon steel [J]. Materials Science Forum,1998,284-286:311-318.
    [71]Okaguchl S, Fujiwara K, Hashimoto T. Effect of microalloying elements and hot deformation on microstructure of direct-quenched steel plates[C].In:Conf Proc Physical Metallurgy of Direct-quenched Steels,TMS,1992.
    [73]Taylor K A, Hansen S S. The boron hardenability effect in thermomechanically processed, direct-quenched 0.2 Pct C steel[J]. Metallurgical Transactions A,1990, (21):1697-1708.
    [74]S.K巴纳吉等著,祖荣祥等译.钢中的硼[M].北京:冶金工业出版社,1985
    [75]康显澄.试论硼在钢中的作用[J].特钢通讯,1990,4:1-11.
    [79]Suzuki S, Tanino M, Waseda Y. Phosphorus and boron segregation at prior austenite grain boundaries in low alloyed steel[J]. ISIJ international,2002, 42(6):676-678.
    [82]Wang S C, hsieh R I, Liou H Y. The mechanism for the formation of boron ineffective zone and its effect on the properties of ultra low carbon bainitic steels[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels, TMS,1992.
    [83]Yun Chul Jung,Hiroaki Ueno,Hiroyuki Ohtsub.Effects of small amounts of B, Nb and Ti additions on nucleation and growth processes of intermediate transformation products in Low Carbon 30% Mn Steels[J]. ISIJ International, 1995,8(35):1001-1005.
    [86]Shikanai N, Tagawa H, Yamada M. Influence of alloying elements high hardness [J]. Journal of the The Japan society for Heat Treatment.1987,27 (3):136-142.
    [87]Shikanai N, Suga M. Influence of direct-quenching conditions and alloying elements on mechanical properties of HSLA steel plates[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels,TMS,1992.
    [88]Mekkawy M F, Fawakhry K A E, Mishreky M L, et al. Direct quenching of low manganese steels microalloyed with vanadium or titanium[J]. I&SM,1990(10): 75-82.
    [89]Chang W S. Micro structure and mechanical properties of 780MPa high strength steels produced by direct-quenching and tempering process[J]. Journal of Materials Science,2002(37):1973-1979.
    [90]Siwecki T, Zajac S, Ahlbom B. The influence of thermo-mechanical process parameters on the strength and toughness in direct quenched and tempered boron-steels (Re>700MPa)[C].In:Conf Proc Physical Metallurgy of Direct-Quenched Steels, TMS,1992.
    [91]Kozasu I. Metallurgical framework of direct quenching of steel[C]. In:Conf on Thermomechanical Processing of Steels & Other Materials, TMS,1997.
    [92]Tamura I, Tsuzaki K, Maki T. Morphology of lath martensite formed from deformed austenite in 18%Ni maraging steel[C]. In:Proc of Int Conf on Martensitic Transformation, Leuven, Belgium,1982.
    [93]Tsuzaki K, Fukasaku S I, Tomota Y, et al. Effect of prior deformation of austenite on the γ→ε martensitic transformation in Fe-Mn alloys[J]. Mat.Trans, JIM,1991, 32(3),222.
    [94]Dong H, Li G F, Gao W, et al. Effects of chemical composition and cooling process on structures and properties of direct quenched steels[C]. In:Conf Proc Physical Metallurgy of Direct-quenched Steels,TMS,1992.
    [95]Sitaman S D.Introduction to EBSD analysis of micro-to nanoscale microstructures in metals and ceramics[C]. Proceeding of SPIE,2004,5392: 78-90.
    [96]张志波,刘清友,张晓兵,等.加热温度对管线钢奥氏体晶粒尺寸和铌固溶的影响[J].钢铁研究学报,2008,20(10):36-39.
    [97]张志波,孙新军,刘清友,等.均热过程中低碳钢奥氏体晶粒长大规律研究[J].材料热处理学报,2008,29(5):89-92.
    [98]Manohar P A, Dunne D P, Chandra T etal. Grain growth predictions in microalloyed steels[J]. ISIJ International.1996,36 (2):194-200.
    [99]Garcia C A, Bartolome M J, Capdevila C. Metallo graphic techniques for the determination of the austenite grainsize in medium-carbon microalloyed steels[J].Materials Char-acterization,2001,(46):389-398.
    [100]钟云龙,刘国权,刘胜新,等.新型油井管钢33Mn2V的奥氏体晶粒长大规律[J].金属学报,2003,39(7):699-703.
    [101]Matsuura K, Itoh Y. Analysis the effect of grain size distribution on grain growth by computer simulation[J]. ISIJ International,1991,31(4):366-371.
    [102]Sellars C M, Whiteman J A.Recrystallization and grain growth in hot rolling[J]. Metal Science,1979,13(3-4):187-194.
    [103]Beck P A, Kremer J C, Demer L J. Grain growth in high purity aluminum and in aluminum-mag-nesium alloy[J]. Trans AIME,1948,175:372-394.
    [104]Zener C. Grains, Phases, and interactions:An interpretation of micro structure [J]. Trans AIME,1948,175:15-51.
    [105]Gladman T.On the theory of the effect of precipitate particles on grain growth in metals[C].In:Proceedings of the Royal Society of London. London,1966,294: 298-309.
    [106]Hillert M. On the theory of normal and abnormal grain growth[J]. Acta Metall. 1965,13(3):227-238.
    [107]Satoshi A, Takehide S, Mitsuhiro H. Generalized Nb(C,N) precipitation model applicable to extra low carbon steel[J].ISIJ international,1992,32(3):275-282.
    [108]Yu Q B, Sun Y. Abnormal growth of austenite grain of low-carbon steel[J]. Materials Science and Engineering A,2006.,420:34-38
    [109]Gavard L, Montheillet F, Le C J. Recrystallizatlon and grain growth in highpurity austeniteic stainless steels[J]. Scripta Materialia,1998,39(8): 1095-1099.
    [110]KiyOtaka M, YOuichi I. Analysis the effect of grain size distribution on grain growth by computer simulation[J]. ISIJ International,1991,31(41):366-371.
    [111]Hillert M. Inhibition of grain growth by second-phase particles[J]. Acta Metall, 1988,36(12):3177-3181.
    [112]Hunderi O, Ryum N. A note on the stochastic theory of normal grain growth[J]. Acta Metall Mater,1992,40(5):1069-1071.
    [113]雍歧龙.钢铁中的第二相[M].北京:冶金工业出版社,2006.
    [114]Nordberg H, Aronsson B. Solubility of Niobium carbide in austenite[J]. Journal of the Iron and Steel Institute,1968,206(12):1263-1266.
    [115]Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solution[J]. Journal of Physical Chemistry Solids,1961,19:35-50.
    [116]Wang J, Chen J, Zhao Z. Modeling of microstructural evolution in microalloyed steel during hot forging process[J]. Acta Metall,2006; 19(4):279-286.
    [117]田村今男.钢的再结晶行为及其在热处理中的作用(一、二)[J].热处理.1982;22(2):63-76.
    [118]Bariani P F, Negro T D. Material response to continuously varying rate of straining during hot forging operations [J]. Annals of the CRIP,1999; 48(1): 183-186.
    [119]McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitics state[J]. J Mater Process Technol,1995,53(1/2):293-310.
    [120]Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Mater Sci Technol,1997,13(3): 210-216.
    [121]Sellars C M, Tegart W J M.On the mechanism of hot deformation[J]. Acta Metallurgica,1996,14(9):1136-1138.
    [122]Zener C, Hollomon H. Effect of strain-rate upon the plastic flow of steel [J]. J Appl Phys,1944,15(1):22-27.
    [123]Jonas J J,Sellars C M,Tegart W J.Strength and structure under hot working conditions[J].Int Met Rev,1969,130(14):1-24.
    [124]曹金荣,刘正东,程世长,等.应变速率和变形温度对T122耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,43(1):35-40.
    [125]Gottstein G, Frommert M, Goerdeler M, et al. Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H[J]. Materials Science and Engineering A,2004,387-389:604-608.
    [126]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mater Sci Eng A,2002,322 (1/2):43-63.
    [127]Bodin A, Sietsma J, Zwaag S V D.Determination of static softening after hot deformation by double-hit compression experiment[C]. Proceeding of International Conference on Processing&Manufacturing of Advanced Materials, Las Vegas, USA,TMS,2000.
    [128]Laasroui A, Jonas J J.Recrytallization of austenite after deformation at high temperature and strain rates-analysis and modeling[J].Metall Trans A,1991, 22:151-160.
    [129]Luo H W, Sietsma J, Sybrand V D Z.A metallurgical interpretation of the static recrystallization kinetics of an intercritically deformed C-Mn steel[J]. Metallurgical and Materials Transactions A,2004,35:1889-1898.
    [130]Li G, Maccagno T M, Bai D Q, et al. Effect of initial grain size on the static recrystallization kinetics of Nb microalloyed steels[J]. ISIJ international,1996, 36(12):1479-1485.
    [131]Zahiri S H, Hodgson P D.The static dynamic and metadynamic recrystallization of a medium carbon steel[J]. Materials Science and Technology,2004; 20(4): 458-464.
    [132]曲锦波.HSLA钢板热轧组织性能控制及预测模型[博士学位论文].沈阳:东北大学,1999.
    [133]Fernandez A I, Uraanga P, Lopez B. Static recrystallization behabiour of a wide range of austenite grain sizes in microalloyed steels[J]. ISIJ International,2000, 40(9):893-901.
    [134]Medina S F, Quispe A.Improved model for static recrystallization kinetics of hot deformation austenite in low alloy and Nb/V microalloyed steels[J].ISIJ International,2001,41(7):774-781.
    [135]Cho S H, Kang k B, Jonas J J.The dynamic,static and metadynamic recrystallization of Nb-Microallyed steel[J].ISIJ International,2001,41(1): 63-69.
    [136]王昭东,曲锦波,刘相华,等.松弛法研究微合金钢碳氮化物的应变诱导析出行为[J].金属学报,2000,36(6);618-621.
    [137]Liu W J, Jonas J J.A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J].Metallurgical Transaction A,1983,19A(6):1403-1413.
    [138]Jonas J J, Weiss I. Effect of precipitation on recrystallization in microalloyed steels[J]. Metal Science,1979,13:38-245.
    [139]Dutta B, Sellars C M. Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite[J]. Mater Sci Tech,1987,3(3): 197-206.
    [140]Dong J X, Fulvio Siciliano Jr, Effect of silicon on the kinetics of Nb(C,N) precipitation during the hot working of Nb-bearing steels[J]. ISIJ International, 2000,40(6):613-618.
    [141]Fulvio siciliano Jr, Jonas J J.Mathematical modeling of the hot strip rolling of microalloyed Nb multiply-alloyed Cr-Mo and plain C-Mn steels[J]. Metallurgical and Materials Transactions A,2000,31A(2):511-530.
    [142]俞德刚,谈育煦.钢的组织强度学[M].上海:上海科学技术出版社,1983.
    [143]Strid J, Easterling K E.On the chemistry and stability of complex carbide and nitridesin microalloyed steels[J].Acta metall,1985,33(11),2057-2074.
    [144]陈俊华.Ti-V-Nb微合金钢第二相粒子研究[J].现代制造技术与装备,2006,3:12-14.
    [145]Miller M K, Beaven P A, Brenner S S.An atom probe study of the aging of iron-nickel-carbon martensite[J]. Metallurgical Transactions A,1983,14(6): 1021-1024.
    [146]Wells M G H. An electron transmission study of the tempering of martensite in an Fe-Ni-C alloy[J].Acta Metallurgics 1964,12(4):389-399.
    [147]Barton C J.The tempering of a low-carbon internally twinned martensite[J]. Acta Metallurgica,1969,17(8):1085-1093.
    [148]Murphy S, Whiteman J A.The precipitation of epsilon-carbide in twinned martensite[J].Metallurgical Transactions A,1970,1(4):843-848.
    [149]Padmanabhan R, Wood W E. Precipitation of ε-carbide in martensite[J]. Materials Science and Engineering A,1984,65(2):289-297.
    [150]Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia,2003,51(6):1789-1799.
    [151]Kitahara H, Ueji R, Ueda M, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia,2006,54(5):1279-1288.
    [152]Kitahara H, Ueji R, Ueda M, et al. Crystallographic analysis of plate martensite in Fe-28.5 at.% Ni by FE-SEM/EBSD[J]. Materials Characterization,2005, 54(4-5):378-386.
    [153]Weiss R K, Thompson S W. Strength differences between direct quenched and reheated and quenched plate steels[C]. In:Proceedings of the Symposium on Physical Metallurgy of Direct-Quenched Steels, Warrendale, USA,1992.
    [154]Sugden A A B, Bhadeshia H K D H.A model for the strength of the as-deposited regions of steel weld metals[J]. Metall Trans A,1988,19(6):1597-1602.
    [155]Norstrom L A.On the yield strength of quenched low-carbon lath martensite[J]. Scandinavian Journal of Metallurgy,1976,5(4):159-165.
    [156]Ansell G S, Arrott A.The strengthening mechanism of ferrous martensite [J]. Trans Metall Soc AIME,1963,227(10):1080-1082.
    [157]Speich G R, Leslie W C. Tempering of steel[J]. Metallurgical Transactions A, 1972,3(5):1043-1054.
    [158]石德珂.材料科学基础[M].北京:机械工业出版社.2003.
    [159]Charleux M, Poole W J, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metallurgical and Materials Transactions A,2001,32(7):1635-1647.
    [160]Roberts W, Karlsson S, Bergstrom Y.The rate of dislocation multiplication in polycrystalline iron[J]. Materials Science and Engineering A,1973,11(4): 247-254.
    [161]王春芳,王毛球,时捷,等.低碳马氏体钢的微观组织及其对强度的影响[J],钢铁,42(11):57-60.
    [162]王春芳.低合金马氏体钢强韧性组织控制单元的研究[博士学位论文].北京:钢铁研究总院,2008.
    [163]Morito S, Yoshida H., Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A,2006, 25(438-440):237-240.
    [164]翁宇庆.钢铁结构材料的组织细化[J].钢铁,2003,38(5):1-11.
    [165]杜林秀,姚圣杰,熊明鲜,等.低碳结构钢的奥氏体晶粒超细化[J].东北大学学报(自然科学版),2007,28(11):1575-1578.
    [166]Torkizane M, Matsumura N, Tsuzaki K. Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steels[J]. Metallurgical Transactions A,1982,13A(8):1979-1987.
    [167]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制对应变强化相变的影响[J],金属学报,2000,36(10):1055-1060.
    [168]杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J].金属学报,2000,10(36):1050-1054.
    [169]Hiroyuki S. Grain refinement through deformation on heating[J]. CAMP-ISIJ, 1999,12(6):1135-1137.
    [170]Tomoyuki Y. Effect of 1 pass warm reduction ratio on reversed austenite grain size of 0.3%C-9%Ni steel[J]. CAMP-ISIJ,1999,12(6):1138-1141.
    [171]Kawabe Y, Muneki S, Nakazawa K, et al. Strengthening and toughening of 280 kg/mm2 grade maraging steel through thermomechanical treatment[J]. Tetsu-to-Hagane,1977,63(10):1691-1699.
    [172]Kawabe Y, Muneki S, Nakazawa K. Ralation of processing variables in thermomechanical treatment to strength,ductility,and toughness of 280 Kg/mm2 grade maraging steel[J]. Tetsu-to-Hagane,1978,64(7):1063-1071.
    [173]Muneki S, Kawabe Y, Nakazawa K, et al. Strengthening and toughening of maraging steel of over 280Kg/mm2[J]. Tetsu-to-Hagane,1978,64(5):605-614.
    [174]Soeno K, Kuroda T, Tuchiya M, et al. Effect of solution treatment temperature on the tensile properties of 18%Ni maraging steels[J]. Tetsu-to-Hagane, 1976,62(8):1009-1016.
    [175]Nakazawa K, Kawabe Y, Muneki S.Effect of alloying elements on strengthening and toughening of maraging steels through cyclic heat treatment[J]. Trans ISIJ, 1982,22:893-900.
    [176]Maki T, Morimoto H, Tamura I. Recrystallisation of the Austenite Transformed Reversely and Structure of Martensite in 18Ni Maraging steel[J]. Tetsu-to-Hagene,1979,65(10):1598-1606.
    [177]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [178]谢辅洲,常铁军10Ni5CrMoV钢的组织遗传规律及其消除工艺研究[J].热加工工艺,2002(3):24-28.
    [179]朱景川,尹钟大,罗鸿.18Ni(200)马氏体时效钢的循环相变晶粒细化新工艺[J].钢铁,2001,36(6):52-55.
    [180]Tamura I, Sekine H, Tanaka T, et al. Thermo-mechanical processing of hight strength low alloy steels[M]. Butterworths, London,1988.
    [181]高灵清.论船体钢的高温回火组织[J].理化检测-物理分册,2002,38(12):553-555.
    [182]王有铭,李曼云,韦光,等.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    [183]Gladman T.Grain Refinement in Multiple Microalloyed steels[C].HSLA steels: Processing, Properties and Applications, Bejing,China,1992.
    [184]Akben M G, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese[J]. Acta Metall,1984,32(4):591-601.
    [185]傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801-804.
    [186]冯端,王业宁,邱第荣.金属物理(上册)[M].北京:科学出版社,1964.
    [187]曹建春,刘清友,雍岐龙,等.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006,41(8):60-63.
    [188]Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solution[J]. Journal of Physical Chemistry Solids,1961,19:35-50