缺铁响应转录因子OsbHLH133的功能和缺铁诱导乙烯合成分子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是植物生长所必需的微量元素。土壤中的铁含量丰富,但铁在土壤中的低溶解性使得它能被植物吸收利用的部分极少,同时过量的铁素也会造成植物铁中毒。研究植物的缺铁响应分子机制,对植物适应缺铁和铁过量等环境逆境,培育优良富铁品种等具有重要的意义。
     本研究在水稻中克隆了一个碱性螺旋-环-螺旋(bHLH)家族的转录因子——OsbHLH133. OsbHLH133定位在细胞核中,在根中受缺铁强烈诱导,通过对启动子接GUS报告基因的转基因株系的GUS活性分析,发现缺铁时OsbHLH133主要在整个根部细胞,特别是中柱以及地上部分的维管组织中表达。系统进化树表明,在进化上,OsbHLH133与拟南芥、水稻和番茄中已被报道的参与缺铁响应分子机制的bHLH转录因子位于不同的分支中,表明OsbHLH133极有可能具有不同于已知的铁相关的bHLH蛋白的新功能。
     通过对OsbHLH133超表达转基因植株(OsbHLH133-OE)和T-DNA插入突变体(bhlh133)的研究,发现缺铁时bhlhl33突变体叶片叶绿素含量(SPAD)上升,而OsbHLH133-OE植株的SPAD值下降。与野生型植株相比,突变体植株的地上部分铁含量升高,而根中铁含量降低。OsbHLH133-OE植株的铁含量测定结果与之相反,即地上部分铁含量降低,而根中铁含量上升。此外,OsbHLH133-OE植株木质部液中的铁含量也低于野生型。由此可见,OsbHLH133参与调控铁素在水稻地上部分和根中的分布。
     基因芯片结果结合定量RT-PCR分析表明,缺铁响应基因在根和叶中的表达与铁含量相关联,即铁含量高的组织,缺铁响应基因的表达低,铁含量低的组织,基因的表达被诱导,缺铁响应基因的表达直接反应了植株的局部铁含量水平。另外,芯片分析结果显示有很多信号通路相关的基因在突变体和野生型根中的表达具有显著差异,这些基因包括钙离子信号通路中的相关基因,说明了钙离子信号在植物的铁平衡过程中可能发挥作用。
     本研究旨在完善植物缺铁响应信号途径的理论基础,缺铁诱导乙烯合成也是植物响应缺铁的一种表现,本论文初步开展了缺铁诱导乙烯合成的分子机理研究。通过对拟南芥中的9个有ACC合成酶功能的ACS基因的表达分析,发现AtACS2/6/7/11不论在叶中还是在根中都受到缺铁显著诱导,这表明了拟南芥中这几个ACS基因很可能参与缺铁诱导乙烯合成这个过程中。此外,AtACS2/6的上游调控蛋白AtMPK3/6的转录表达也受缺铁诱导。
     不同缺铁时间的乙烯含量分析表明,缺铁诱导拟南芥的乙烯合成,而诱导倍数最高为1.7-2倍。由于拟南芥ACS家族基因功能冗余严重,我们无法在供缺铁乙烯含量仅2倍的差异条件下,通过ACS基因相关突变体的乙烯含量测定来筛选负责缺铁诱导乙烯合成的ACS基因。通过对拟南芥mpk3和mpk6突变体乙烯含量的测定,发现缺铁时,mpk6植株的乙烯合成量显著低于野生型,而mpk3的乙烯合成量也有所降低,但不显著,这表明AtMPK6很可能参与调控缺铁诱导乙烯合成这个过程。
     综上所述,本论文对水稻OsbHLH133转录因子进行了研究,发现OsbHLH133的表达受缺铁强烈诱导,功能研究表明OsbHLH133调控着铁在水稻地上部分和根部的分布,很有可能参与调控铁在木质部中的长距离运输。通过对拟南芥AtACS基因,AtMPK基因相关突变体的研究,本论文初步确定了参与缺铁诱导乙烯合成的ACS基因,而AtMPK6可能参与调控这个过程。
Iron is an essential mineral element for plant growth. Although iron (Fe) is abundant in the earth's crust, it is not available to plants because the low solubility of Fe in soil solution. On the other hand, excess accumulation of Fe can cause damage to plant cells. Studying on the molecular mechanism in response to Fe deficiency is very important for plants to adapting to the stress caused by Fe deficiency or Fe excess accumulation. It also plays a significant role in developing crop varieties with improved iron content.
     In this study, we characterized a novel basic helix-loop-helix (bHLH) transcription factor in rice, named OsbHLH133. OsbHLH133was targeted to the nucleus, and the transcript abundance of OsbHLH133was strongly up-regulated in roots under Fe-deficiency conditions. Using transgeneic rice expressing the GUS reporter gene driven by the OsbHLH133endogenous promoter, it was found that OsbHLH133is expressed throughout the whole roots, preferently in the stele of the roots and vascular budndles of the shoots in response to Fe deficiency. Phylogenetic analysis showed that OsbHLH133is not closely related to other known Fe-responsive bHLH transcription factors. Thus, OsbHLH133should be involved in an unknown mechanism related to Fe homeostasis.
     Study on OsbHLH133overexpression (OsbHLH133-OE) lines and T-DNA insertional mutant(bhlh133) plants showed that the leaf chlorophyll content (SPAD value) increased in bhlh133mutant while decreased in OsbHLH133-OE plants. Compared to wild type (WT), bhlh133showed growth retardation with enhanced Fe concentration seen in shoots and reduced Fe concentration in roots. OsbHLH133-OE had the opposite effect, which is resulted in an enhanced Fe concentration in roots and reduced Fe concentration in shoots. In addition, Fe concentration in xylem sap of OsbHLH133-OE also reduced. Therefore, alteration of the transcript abundance of OsbHLH133affected Fe distribution between roots and shoots.
     Microarray and quantitative RT-PCR analysis showed that the transcript abundances of some of the genes encoding Fe-related functions in OE, bhlh133and WT plants were related to the local Fe concentration. Expression of Fe deficiency response genes was repressed in the tissue with higher Fe concentration, and was Induced in the tissue with lower Fe concentration. Significant differential expression of a number of signalling pathways, including calcium signalling, was also seen in bhlh133plants compared to WT. It suggested a role for calcium signalling in Fe homeostasis of plants.
     The main purpose of this study is to improve the regulatory mechanism of Fe deficiency response in plants. In response to Fe-deficiency, ethylene production was induced. The preliminary study on the molecular mechanism of ethylene synthesis induced by Fe deficiency was conducted in this study. Analysis of the transcirpt abundances of the9authentic ACS genes in Arabidopsis showed that AtACS2/6/7/11was up-regulated by Fe deficiency in the leaves and roots. It suggested those four ACS genes might be involved in the pathway of ethylene synthesis which was induced by Fe deficiency. Additionally, the expression of AtMPK3and AtMPK6which can phosphorylate AtACS2/6was also induced by Fe deficiency.
     Time-course analysis of ethylene production under different period of Fe deficiency indicated that ethylene production was induced by Fe deficiency in Arabidopsis, and the induction level was up to1.7-2folds. Because of the function reductant of ACSs and less than2folds of ethylene production induced by Fe deficiency, it is difficult to identify the ACS which is involved in biosynthesis of ethylene that induced by Fe deficiency by measuring the ethylene production of ACS mutants. Analysis of the ethylene production of mpk3and mpk6mutant plants showed a significantly reduced ethylene production in mpk6and a slight reduced in mpk3compared to WT under Fe-deficiency condition. It suggested a role for AtMPK6in regulating ethylene production which is induced by Fe deficiency.
     Taken together, we characterized a novel bHLH transcription factor, named OsbHLH133in rice. This transcription factor is strongly up-regulated by Fe deficiency. Our results indicated that OsbHLH133acted as an important regulator of Fe distribution between shoots and roots and it might be involved in regulating the root-to-shoot Fe translocation. The ACS genes involved in the ethylene biosynthesis which is induced by Fe deficiency were identified in Arabidopsis and AtMPK6might be the regulator of this pathway.
引文
Aoyama, T., Kobayashi, T., Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H., Mori, S., and Nishizawa, N. (2009). OsYSL18 is a rice iron (Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Molecular Biology 70, 681-692.
    Baldi, P., and Long, A.D. (2001). A Bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes. Bioinformatics 17,509-519.
    Bashir, K., Inoue, H., Nagasaka, S.J., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2006). Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. The Journal of Biological Chemistry 281,32395-32402.
    Bashir, K., Ishimaru, Y., Shimo, H., Nagasaka, S., Fujimoto, M., Takanashi, H., Tsutsumi, N., An, G., Nakanishi, H., and Nishizawa, N.K. (2011). The rice mitochondrial iron transporter is essential for plant growth. Nature Communication 2,322.
    Briat, J.F., Lobreaux, S., Grignon, N., and Vansuyt, G. (1999). Regulation of plant ferritin synthesis:how and why. Cellular and Molecular Life Sciences 56, 155-166.
    Brown, J.C., and Chaney, R.L. (1971). Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiology 47,836-840.
    Bughio, N., Yamaguchi, H., Nishizawa, N.K., Nakanishi, H., and Mori, S. (2002). Cloning an iron-regulated metal transporter from rice Journal of Experimental Botany 53,1677-1682.
    Busi, M.V., Maliandi, M.V., Valdez, H., Clemente, M., Zabaleta, E.J., Araya, A., and Gomez, D.F. (2006). Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress. The Plant Journal 48,873-882.
    Chen, S.Y., Jin, W.Z., Wang, M.Y., Zhang, F., Zhou, J., Jia, Q.J., Wu, Y.R., Liu, F.Y., and Wu, P. (2003). Distribution and characterization of over 1000 T-DNA tags in rice genome. The Plant Journal 36,105-113.
    Chen, W.W., Yang, J.L., Qin, C., Jin, C.W., Mo, J.H., Ye, T., and Zheng, S.J. (2010). Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology 154,810-819.
    Chen, Y.Y., Wang, Y., Shin, L.J., Wu, J.F., Shanmugam, V., Tsednee, M., Lo, J.C., Chen, C.C., Wu, S.H., and Yeh, K.C. (2013). Iron is involved in the maintenance of circadian period length in Arabidopsis. Plant Physiology 161, 1409-1420.
    Cheng, L.J., Wang, F., Shou, H.X., Huang, F.L., Zheng, L.Q., He, F., Li, J.H., Zhao, F.J., Ueno, D., Ma, J.F., and Wu, P. (2007). Mutation in nicotianamine aminotransferase stimulated the Fe (II) acqusition system and led to iron accumulation in rice. Plant Physiology 145,1647-1657.
    Choe, S., Boutros, M., Michelson, A., Church, G., and Halfon, M. (2005). Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology 6, R16.
    Chu, H., Chiecko, J., Punshon, T., Lanzirotti, A., Lahner, B., Salt, D.E., and Walker, E.L. (2010). Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE 1 and YELLOW STRIPE-LIKE3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiology 154,197-210.
    Colangelo, E.P., and Guerinot, M.L. (2004). The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. The Plant Cell 16, 3400-3412.
    Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L., and Guerinot, M.L. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology 133,1102-1110.
    Curie, C., Panaviene, Z., Loulergue, C, Dellaporta, S.L., Briat, J.F., and Walker, E.L. (2001). Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(Ⅲ) uptake. Nature 409,346-349.
    Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., Misson, J., Schikora, A., Czernic, P., and Mari, S. (2009). Metal movement within the plant:contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany 103,1-11.
    Divol, F., Couch, D., Conejero, G., Roschzttardtz, H., Mari, S., and Curie, C. (2013). The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. The Plant Cell Online.
    Durrett, T.P., Gassmann, W., and Rogers, E.E. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology 144,197-205.
    Duy, D., Wanner, G., Meda, A.R., von Wiren, N., Soll, J., and Philippar, K. (2007). PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. The Plant Cell 19,986-1006.
    Eide, D., Broderius, M., Fett, J., and Guerinot, M.L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. PNAS 93,5624-5628.
    Fairman, R., Beran, R.K., Anthony, S.J., Lear, J.D., Stafford, W.F., William, F., Benfield, D.P., and Brenner, S. (1993). Multiple oligomeric states regulate the DNA binding of helix-loop-helix peptides. PNAS 90,10429-10433.
    Garcia, M.J., Lucena, C., Romera, F.J., Alcantara, E., and Perez-Vicente, R. (2010). Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. Journal of Experimental Botany 61,3885-3899.
    Giehl, R.F., Lima, J.E., and von Wiren, N. (2012). Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. The Plant Cell 24,33-49.
    Graziano, M., and Lamattina, L. (2005). Nitric oxide and iron in plants:an emerging and converging story. Trends in plant science 10,4-8.
    Graziano, M., and Lamattina, L. (2007). Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal 52,949-960.
    Green, L.S., and Rogers, E.E. (2004). FRD3 controls iron localization in Arabidopsis. Plant Physiology 136,2523-2531.
    Guerinot, M. (2010). Iron. Cell Biology of Metals and Nutrients, R. Hell and R.-R. Mendel, eds (Springer Berlin/Heidelberg), pp.75-94.
    Guerinot, M.L., and Yi, Y. (1994). Iron:Nutritious, noxious, and not readily available. Plant Physiology 104,815-820.
    Halliwell, B., and Gutteridge, J.M.C. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS Letters 307, 108-112.
    Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C. (2003). The basic Helix-Loop-Helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution 20,735-747.
    Hell, R., and Stephan, U. (2003). Iron uptake, trafficking and homeostasis in plants. Planta 216,541-551.
    Henriques, R., Jasik, J., Klein, M., Martinoia, E., Feller, U., Schell, J., Pais, M., and Koncz, C. (2002). Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology 50,587-597.
    Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K., and Mori, S. (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology 119, 471-480.
    Hong, S., Kim, S.A., Guerinot, M.L., and McClung, C.R. (2013). Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiology 161,893-903.
    Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2003). Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal 36,366-381.
    Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Journal of Biological Chemistry 284,3470-3479.
    Ishimaru, Y., Bashir, K., Fujimoto, M., An, G., Itai, R.N., Tsutsumi, N., Nakanishi, H., and Nishizawa, N.K. (2009). Rice-specific mitochondrial iron-regulated gene (MIR) plays an important role in iron homeostasis. Molecular Plant 2, 1059-1066.
    Ishimaru, Y., Kakei, Y., Shimo, H., Bashir, K., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., and Nishizawa, N.K. (2011). A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. Journal of Biological Chemistry 286,24649-24655.
    Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., and Nishizawa, N.K. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal 62,379-390.
    Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. The Plant Journal 45,335-346.
    Jean, M.L., Schikora, A., Mari, S., Briat, J.F., and Curie, C. (2005). A loss-of-function mutation in AtYSLl reveals its role in iron and nicotianamine seed loading. The Plant Journal 44,769-782.
    Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6,3901-3907.
    Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C, Jang, S., Lee, S., Yang, K., Nam, J., An, K., Han, M.J., Sung, R.J., Choi, H.S., Yu, J.H., Choi, J.H., Cho, S.Y., Cha, S.S., Kim, S.I., and An, G. (2000). T-DNA insertional mutagenesis for functional genomics in rice. The Plant Journal 22, 561-570.
    Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., Kim, J., Shin, M., Jung, M., and An, G. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. The Plant Journal 45,123-132.
    Jeong, J., Cohu, C., Kerkeb, L., Pilon, M., Connolly, E.L., and Guerinot, M.L. (2008). Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. PNAS 105,10619-10624.
    Joo, S., Liu, Y., Lueth, A., and Zhang, S. (2008). MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. The Plant Journal 54,129-140.
    Kim, S.A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J.M., Ecker, J.R., Kaplan, J., and Guerinot, M.L. (2006). Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314,1295-1298.
    Kobayashi, T., and Nishizawa, N.K. (2012). Iron uptake, translocation, and regulation in higher plants. The Annual Review of Plant Biology 63,131-152.
    Kobayashi, T., Itai, R.N., Aung, M.S., Senoura, T., Nakanishi, H., and Nishizawa, N.K. (2011). The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. The Plant Journal 68, 1-11.
    Kobayashi, T., Nakayama, Y., Itai, R.N., Nakanishi, H., Yoshihara, T., Mori, S., and Nishizawa, N.K. (2003). Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. The Plant Journal 36,780-793.
    Kobayashi, T., Ogo, Y., Itai, R.N., Nakanishi, H., Takahashi, M., Mori, S., and Nishizawa, N.K. (2007). The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. PNAS 104, 19150-19155.
    Kobayashi, T., Itai, R.N., Ogo, Y., Kakei, Y., Nakanishi, H., Takahashi, M., and Nishizawa, N.K. (2009). The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. The Plant Journal 60,948-961.
    Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2004). OsYSL2 is a rice metal-nicotianamine transporter that is regualted by iron and expressed in the phloem. The Plant Journal 39, 415-424.
    Lopez, J., Cruz, A., and Herrera, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6,280-287.
    Lanquar, V., Lelievre, F., Bolte, S., Hames, C., Alcon, C., Neumann, D., Vansuyt, G., Curie, C., Schroder, A., Kramer, U., Barbier, H., and Thomine, S. (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal 24,4041-4051.
    Lee, S., Chiecko, J.C., Kim, S.A., Walker, E.L., Lee, Y., Guerinot, M.L., and An, G. (2009). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology 150,786-800.
    Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., and Zhang, S. (2012). Dual level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics 8, e1002767.
    Li, X.X., Duan, X.P., Jiang, H.X., Sun, Y.J., Tang, Y.P., Yuan, Z., Guo, J.K., Liang, W.Q., Chen, L., Yin, J.Y., Ma, H., Wang, J., and Zhang, D.B. (2006). Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology 141,1167-1184.
    Lin, Z., Zhong, S., and Grierson, D. (2009). Recent advances in ethylene research. Journal of Experimental Botany 60,3311-3336.
    Ling, H.Q., Bauer, P., Bereczky, Z., Keller, B., and Ganal, M. (2002). The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. PNAS 99,13938-13943.
    Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink, C., Blondet, E., Genschik, P., and Bauer, P. (2011). Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. The Plant Cell 23, 1815-1829.
    Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-l-carboxylic acdi synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell 16,3386-3399.
    Long, T.A., Tsukagoshi, H.K., Busch, W., Lahner, B., Salt, D., and Benfey, P.N. (2010). The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. The Plant Cell 22,2219-2236.
    Lucena, C, Waters, B.M., Romera, F.J., Garcia, M.J., Morales, M., Alcantara, E., and Perez, R. (2006). Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. Journal of Experimental Botany 57,4145-4154.
    Lyzenga, W.J., Booth, J.K., and Stone, S.L. (2012). The Arabidopsis ring-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme,1-aminocyclopropane-l-carboxylate synthase 7. The Plant Journal 71,23-34.
    Miihlenhoff, U., Stadler, J.A., Richhardt, N., Seubert, A., Eickhorst, T., Schweyen, R.J., Lill, R., and Wiesenberger, G. (2003). A specific role of the yeast mitochondrial carriers Mrs3/4p in mitochondrial iron acquisition under iron-limiting conditions. Journal of Biological Chemistry 278,40612-40620.
    Marschner, H., Romheld, V., and Kissel, M. (1986). Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition 9, 695-713.
    Masucci, J.D., and Schiefelbein, J.W. (1994). The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin-and ethylene-associated process. Plant Physiology 106,1335-1346.
    Maurer, F., Miiller, S., and Bauer, P. (2011). Suppression of Fe deficiency gene expression by jasmonate. Plant Physiology and Biochemistry 49,530-536.
    Meiser, J., Lingam, S., and Bauer, P. (2011). Posttranslational regulation of the iron deficiency basic Helix-Loop-Helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiology 157,2154-2166.
    Menand, B., Yi, K., Jouannic, S., Hoffmann, L., Ryan, E., Linstead, P., Schaefer, D.G., and Dolan, L. (2007). An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316,1477-1480.
    Mori, S. (1999). Iron acquisition by plants. Current Opinion in Plant Biology 2, 250-253.
    Morrissey, J., Baxter, I.R., Lee, J., Li, L., Lahner, B., Grotz, N., Kaplan, J., Salt, D.E., and Guerinot, M.L. (2009). The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell 21, 3326-3338.
    Muckenthaler, M.U., Galy, B., and Hentze, M.W. (2008). Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annual Reviews Nutrition 28,197-213.
    Mukherjee, I., Campbell, N., Ash, J., and Connolly, E. (2006). Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223,1178-1190.
    Napier, I., Ponka, P., and Richardson, D.R. (2005). Iron trafficking in the mitochondrion:novel pathways revealed by disease. Blood 105,1867-1874.
    Narsai, R., Castleden, I., and Whelan, J. (2010). Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biology 10,262.
    Narsai, R., Law, S.R., Carrie, C., Xu, L., and Whelan, J. (2011). In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiology 157,1342-1362.
    Narsai, R., Howell, K.A., Carroll, A., Ivanova, A., Millar, A.H., and Whelan, J. (2009). Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiology 151, 306-322.
    Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., and Nishizawa, N.K. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry 286,5446-5454.
    Ogo, Y., Itai, R., Kobayashi, T., Aung, M., Nakanishi, H., and Nishizawa, N. (2011). OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Molecular Biology75,593-605.
    Ogo, Y., Itai, R.N., Nakanishi, H., Kobayashi, T., Takahashi, M., Mori, S., and Nishizawa, N.K. (2007). The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. The Plant Journal 51,366-377.
    Ogo, Y., Itai, R.N., Nakanishi, H., Inoue, H., Kobayashi, T., Suzuki, M., Takahashi, M., Mori, S., and Nishizawa, N.K. (2006). Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. Journal of Experimental Botany 57,2867-2878.
    Ogo, Y., Kobayashi, T., Itai, R.N., Nakanishi, H., kakei, Y., Takahashi, M., Toki, S., Mori, S., and Nishizawa, N.K. (2008). A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. The Journal of Biological Chemistry 283,13407-13417.
    Pires, N., and Dolan, L. (2010). Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology Evolution 27,862-874.
    Qi, Y., Wang, S., Shen, C., Zhang, S., Chen, Y., Xu, Y., Liu, Y., Wu, Y., and Jiang, D. (2012). OsARF12, a transcription activator on auxin response gene, regulates root elongation and affects iron accumulation in rice (Oryza sativa). New Phytologist 193,109-120.
    Robinson, N.J., Procter, C.M., Connolly, E.L., and Guerinot, M.L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature 397,694-697.
    Romera, F.J., and Alcantara, E. (1994). Iron-deficiency stress responses in Cucumber (Cucumis sativus L.) roots (a possible role for ethylene?). Plant Physiology 105,1133-1138.
    Romera, F.J., Alcantara, E., and De la Guardia, M.D. (1999). Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Annals of Botany83,51-55.
    Seguela, M., Briat, J.F., Vert, G., and Curie, C. (2008). Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. The Plant Journal 55,289-300.
    Santi, S., and Schmidt, W. (2009). Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist 183,1072-1084.
    Sivitz, A.B., Hermand, V., Curie, C., and Vert, G. (2012). Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS ONE7,e44843.
    Stacey, M.G., Patel, A., McClain, W.E., Mathieu, M., Remley, M., Rogers, E.E., Gassmann, W., Blevins, D.G., and Stacey, G. (2008). The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology 146,589-601.
    Stephan, U., Schmidke, I., Stephan, V., and Scholz, G. (1996). The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9,84-90.
    Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K., and Mori, S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnology 19, 466-469.
    Tan, Y.F., O'Toole, N., Taylor, N.L., and Millar, A.H. (2010). Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiology 152,747-761.
    Thomine, S., Lelievre, F., Debarbieux, E., Schroeder, J.I., and Barbier-Brygoo, H. (2003). AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal 34,685-695.
    Toledo, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis basic/Helix-Loop-Helix transcription factor family. The Plant Cell 15, 1749-1770.
    Tsuchisaka, A., and Theologis, A. (2004). Heterodimeric interactions among the 1-amino-cyclopropane-l-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. PNAS 101,2275-2280.
    Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Blasing, O., Redestig, H., Sreenivasulu, N., Krall, L., Hannah, M., Poree, F., Fernie, A., and Stitt, M. (2006). PageMan:an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7, 535.
    Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., and Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. The Plant Journal 31, 589-599.
    Vert, G., Barberon, M., Zelazny, E., Seguela, M., Briat, J.F., and Curie, C. (2009). Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229,1171-1179.
    Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., and Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14,1223-1233.
    Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., Yuan, Y., Wu, H., and Ling, H.Q. (2012). Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Molecular Plant Online.
    Waters, B.M., Chu, H.H., DiDonato, R.J., Roberts, L.A., Eisley, R.B., Lahner, B., Salt, D.E., and Walker, E.L. (2006). Mutations in Arabidopsis yellow stripe-like 1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology 141,1446-1458.
    Waters, B.M., Lucena, C., Romera, F.J., Jester, G.G., Wynn, A.N., Rojas, C.L., Alcantara, E., and Perez-Vicente, R. (2007). Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants. Plant Physiology and Biochemistry 45,293-301.
    Wu, J.J., Wang, C.A., Zheng, L.Q., Wang, L., Chen, Y.L., Whelan, J., and Shou, H.X. (2011). Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. Journal of Experimental Botany 62,667-674.
    Yamagami, T., Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. (2003). Biochemical diversity among the 1-amino-cyclopropane-l-carboxylate synthase isozymes encoded by the Arabidopsis gene family. Journal of Biology Chemistry 278,49102-49112.
    Yang, J.L., Chen, W.W., Chen, L.Q., Qin, C., Jin, C.W., Shi, Y.Z., and Zheng, S.J. (2013). The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytologist 197,815-824.
    Yi, K., Menand, B., Bell, E., and Dolan, L. (2010). A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics 42,264-267.
    Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., and Ma, J.F. (2009). OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiology 149,297-305.
    Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1976). Laboratory manual for physiological studies of rice. Manila, the Philippines:the international rice research institute.
    Yoshino, M., and Murakami, K. (1998). Interaction of Iron with polyphenolic compounds:application to antioxidant characterization. Analytical Biochemistry 257,40-44.
    Yuan, Y.X., Zhang, J., Wang, D.W., and Ling, H.Q. (2005). AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in 'controlling iron acquisition in strategy I plants. Cell Research 15,613-621.
    Yuan, Y.X., Wu, H.L., Wang, N., Li, J., Zhao, W.N., Du, J., Wang, D.W., and Ling, H.Q. (2008). FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research 18, 385-397.
    Zhang, Y., Xu, Y.H., Yi, H.Y., and Gong, J.M. (2012). Vacuolar membrane transporters OsVITl and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. The Plant Journal 72,400-410.
    Zheng, L.Q., Ying, Y.H., Wang, L., Wang, E, Whelan, J., and Shou, H.X. (2010). Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biology 10,1-9.
    Zheng, L.Q., Huang, F.L., Narsai, R., Wu, J.J., Giraud, E., He, F., Cheng, L., Wang, F., Wu, P., Whelan, J., and Shou, H.X. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology 151,262-274.