南瓜韧皮液mRNA结合蛋白的纯化与CmRBP50核糖核蛋白复合体形成的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物韧皮部作为植物维管束重要的组成部分,不仅充当着同化碳水化合物的运输通道,更因其内含激素、活性氧、钙离子、RNA与蛋白等信息物质而充当着协调植物系统生长与发育的信息高速公路。植物维管系统对于植物响应环境逆境变化也起着举足轻重的作用,深入了解植物韧皮部长距离信号物质及其作用可提供提高农作物生产率的手段。南瓜因其维管束分明,容易采集韧皮液而成为研究维管束系统最好的模式植物之一。目前其韧皮液内RNA转录组与蛋白质组已获得,但是我们对其韧皮液内上千RNA与蛋白的研究还只是冰山一角,仍有很多问题尚待研究。本实验室此前研究发现了RNA结合蛋白CmRBP50在南瓜韧皮液内形成了一个核糖核蛋白(ribonucleoprotein, RNP)复合体,这是目前为止在植物中获得的第一个能进行长距离运输的核糖核蛋白复合体,但是关于此复合体的形成机制还不清楚。本文以南瓜(Cucurbita maxima cv Big Max)为材料,通过生物化学、分子生物学等手段研究了南瓜韧皮液内可能的mRNA结合蛋白及基于CmRBP50核糖核蛋白复合体的形成分子机理。取得主要结果如下:
     1.运用蛋白质组学手段研究了南瓜韧皮液内可能的mRNA结合蛋白。通过Poly (U)亲和柱结合液相串联质谱(LC-MS/MS)技术获得了南瓜韧皮液内29个潜在的mRNA结合蛋白。其功能包括与RNA代谢、翻译相关,与蛋白代谢、运输相关,与细胞结构、能量产生相关,与代谢相关及一些功能未知的蛋白。
     2.研究了CmRBP50的磷酸化位点及其对于CmRBP50RNP形成的重要性。首先通过蛋白overlay技术明确了磷酸化修饰对基于CmRBP50RNP形成的重要性,然后通过液相串联质谱鉴定获得了四个磷酸化位点丝氨酸223、438、440和444。通过点突变及小西葫芦黄化花叶病毒(Zucchini yellow mosaic virus, ZYMV)表达系统表达并纯化获得了CmRBP50及S223A(丝氨酸223突变为丙氨酸),STripleA(丝氨酸438、440、444分别突变为丙氨酸),SQuadA(丝氨酸223、438、440、444分别突变为丙氨酸)等点突变蛋白。蛋白overlay与免疫共沉淀技术证实了以上磷酸化位点对于此RNP形成的重要性,尤其是C端Ser438、440和444突变为丙氨酸后可充分剥离CmRBP50与其他蛋白间的互作。最后,我们克隆并表达了CmRBP50的潜在互作蛋白,运用体外pull down技术证实CmRBP50与CmPP16, GTPbP及PSPL可发生体外互作,且其C端的磷酸化修饰对其互作至关重要。
     3.研究了可能磷酸化CmRBP50的激酶。通过运用胶内磷酸化(In gel kinase assay)技术从维管束蛋白与韧皮液蛋白着手,鉴定了可能磷酸化CmRBP50的激酶。通过对可疑位点质谱鉴定我们得到核苷二磷酸激酶,丝/苏氨酸激酶,蛋白激酶adkl和蛋白激酶Csa000515及糖原合成酶激酶-3等可能的激酶,经论证推测最有可能的是糖原合成激酶-3。
     本文通过对韧皮液内mRNA结合蛋白的初步鉴定及对首个韧皮液内发现的能进行长距离运输的基于CmRBP50的RNP形成机制研究,将为揭开CmRBP50在韧皮液中介导的生理功能打下基础,同时为研究韧皮液内其他RNP提供依据。本研究最终不仅有助于我们揭示不同器官间的通讯机制或信号转导机制,丰富植物生理学、生态学和园艺学的知识,也可为我们利用植物的通讯机制来应用到农业生产,探索出一条提高蔬菜的抗性、产量及品质的新途径,这具有十分重要的科学与现实意义。
Phloem is an important part of plant vascular system, which not only plays key roles in translocating assimilated carbohydrates, but also serves an information superhighway in coordinating with plant growth and development as it is rich in signal moleculars such as hormones, redox oxygen species, Ca2+, RNAs and proteins. Plant vascular system is also important for plants in response to environmental changes, thus understanding phloem long-distance substances and their functions would help us in improving agricultural productivity. Pumpkin(Cucurbita maxima cv Big Max) is one of the best model plants to study vascular biology as it has distinct vascular system and is easy to collect phloem sap. At present, its phloem transcriptome and proteome have been investigated, but little is known about those thousands of RNAs and proteins, still many questions wait for further study. Our previous work identified a RNA binding protein CmRBP50 which formed a ribonucleoprotein (RNP) complex in pumpkin phleom sap. This is the first RNP identified in plants which can undergo long-distanced movement, however, the molecular mechanism remained to be characterized. In this paper, pumpkin was used as material, and molecular biology, biochemistry techniques were applied to study the putative mRNA binding proteins and the molecular mechanism of CmRBP50 based RNP formation. Results were obtained as follows:
     1. Proteomic analysis of putative mRNA binding proteins in pumpkin phloem sap. Poly(U) affinity column and LC-MS/MS analysis were applied and 29 putative mRNA binding proteins were identified from pumpkin phloem sap. They were RNA metabolism, translation or protein metabolism, transport or cell structure, energy production or metabolism as well as some unknown functions related.
     2. We examined the phosphorylation sites on CmRBP50 and the importance of phosphorylation to the formation of CmRBP50 based RNP complex. Firstly, protein overlay assay was applied to confirm the importance of phosphorylation to CmRBP50 based RNP complex formation, and then four phoshoserines 223,438,440 and 444 were mapped as in vivo phosphorylation sites on CmRBP50. Point mutations and Zucchini yellow mosaic virus (ZYMV) viral system were used to clone and purify CmRBP50 and its mutant proteins S223A (Serine 223 to Alanine), STripleA (Serine 438,440,444 to Alanine), SQuadA (Serine 223,438,440,444 to Alanine). Protein overlay assay and co-immunoprecipitation experiments confirmed that the above phosphorylation sites were essential for CmRBP50 based RNP complex formation, especially the three serines on C terminus. The replacement of these three serines to alanine abolished the binding to its phloem interaction partners efficiently. Finally, we cloned and expressed putative interacting proteins of CmRBP50, in vitro pull-down experiments confirmed the interaction between CmRBP50 and CmPP16, GTPbP as well as PSPL, and additionally the phosphorylation on C-terminus was essential for their binding.
     3. Protein kinases for CmRBP50 were analyzed and discussed. In gel kinase assay were applied to detect possible kinases for CmRBP50 from pumpkin vascular bundle proteins and phloem sap proteins. We found a nucleoside diphosphate kinase, a serine threonine kinase from vascule proteins and a protein kinase adkl, a protein kinase Csa000515 and a glycogen synthase kinase-3 from phloem sap analyzed by LC-MS/MS. Glycogen synthase kinase-3 was targeted as the candidate kinase for further study.
     By studying the mRNA binding proteins in pumpkin phloem sap and the molecular mechanism of the first identified long-distance translocatable CmRBP50 based RNP complex, this paper will help us to understand CmRBP50 mediated physiological functions in phloem sap, and to study the other RNPs in phloem sap. Eventually this paper will not only help us to reveal the mechanism of communication and signal transduction pathways between distal organs, to increase the knowledge of plant physiology, ecology and horticulture, but also provide us a useful tool to improve stress defense, quantity and quality of vegetables in agricultural production, which has significant scientific and applicable meaning.
引文
1. AJ, V.A.N.B., and Gaupels, F. (2004). Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5,495-504.
    2. Aki, T., Shigyo, M., Nakano, R., Yoneyama, T., and Yanagisawa, S. (2008). Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49,767-790.
    3. Aoki, K., Suzui, N., Fujimaki, S., Dohmae, N., Yonekura-Sakakibara, K., Fujiwara, T., Hayashi, H., Yamaya, T., and Sakakibara, H. (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17, 1801-1814.
    4. Atkins, C.A., and Smith, P.M. (2007). Translocation in legumes:assimilates, nutrients, and signaling molecules. Plant Physiol 144,550-561.
    5. Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15,2730-2741.
    6. Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141,1000-1011.
    7. Auweter, S.D., and Allain, F.H. (2008). Structure-function relationships of the polypyrimidine tract binding protein. Cell Mol Life Sci 65,516-527.
    8. Auweter, S.D., Oberstrass, F.C., and Allain, F.H. (2007). Solving the structure of PTB in complex with pyrimidine tracts:an NMR study of protein-RNA complexes of weak affinities. J Mol Biol 367,174-186.
    9. Balachandran, S., Xiang, Y., Schobert, C., Thompson, G.A., and Lucas, W.J. (1997). Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad SciUSA94,14150-14155.
    10. Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel, D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18,3443-3457.
    11. Banerjee, A.K., Lin, T., and Hannapel, D.J. (2009). Untranslated Regions of a Mobile Transcript Mediate RNA Metabolism. Plant Physiol 151,1831-1843.
    12. Bari, R., Datt Pant, B., Stitt, M., and Scheible, W.R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141,988-999.
    13. Benitez-Alfonso, Y., Cilia, M., San Roman, A., Thomas, C., Maule, A., Hearn, S., and Jackson, D. (2009). Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci U S A 106,3615-3620.
    14. Berggren, K.N., Schulenberg, B., Lopez, M.F., Steinberg, T.H., Bogdanova, A., Smejkal, G., Wang, A., and Patton, W.F. (2002). An improved formulation of SYPRO Ruby protein gel stain:Comparison with the original formulation and with a ruthenium Ⅱ tris (bathophenanthroline disulfonate) formulation. Proteomics 2,486-498.
    15. Besse, F., Lopez de Quinto, S., Marchand, V., Trucco, A., and Ephrussi, A. (2009). Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23,195-207.
    16. Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351-1362.
    17. Brunel, F., Zakin, M.M., Buc, H., and Buckle, M. (1996). The polypyrimidine tract binding (PTB) protein interacts with single-stranded DNA in a sequence-specific manner. Nucleic Acids Res 24,1608-1615.
    18. Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. (2010a). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10.
    19. Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. (2010b). Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10,64.
    20. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53,739-749.
    21. Chen, M.H., and Citovsky, V. (2003). Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35,386-392.
    22. Chen, M.H., Sheng, J., Hind, G., Handa, A.K., and Citovsky, V. (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19, 913-920.
    23. Cho, W.K., Chen, X.Y., Rim, Y., Chu, H., Kim, S., Kim, S.W., Park, Z.Y., and Kim, J.Y. (2010). Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology. J Plant Physiol 167,771-778.
    24. Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn, T.R., and Song, P.S. (1999). Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401,610-613.
    25. Choi, S.B., Wang, C., Muench, D.G., Ozawa, K., Franceschi, V.R., Wu, Y., and Okita, T.W. (2000). Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407,765-767.
    26. Christeller, J.T., Farley, P.C., Ramsay, R.J., Sullivan, P.A., and Laing, W.A. (1998). Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254,160-167.
    27. Chung, S.L., and Takizawa, P.A. (2010). Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae. J Cell Biol 189,755-767.
    28. Ciesla, J. (2006). Metabolic enzymes that bind RNA:yet another level of cellular regulatory network? Acta Biochim Pol 53,11-32.
    29. Citovsky, V., McLean, B.G., Zupan, J.R., and Zambryski, P. (1993) Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7, 904-910.
    30. Citovsky, V., and Zambryski, P. (2000). Systemic transport of RNA in plants. Trends Plant Sci 5,52-54.
    31. Corbesier, L., Vincent, C., Jang, S.H., Fornara, F., Fan, Q.Z., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316,1030-1033.
    32. Crafts, A.S. (1932).Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol 7,183-225.
    33. Crofts, A.J., Crofts, N., Whitelegge, J.P., and Okita, T.W. (2010). Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. Planta 231,1261-1276.
    34. Crofts, A.J., Washida, H., Okita, T.W., Ogawa, M., Kumamaru, T., and Satoh, H. (2004). Targeting of proteins to endoplasmic reticulum-derived compartments in plants. The importance of RNA localization. Plant Physiol 136,3414-3419.
    35. Deeken, R., Ache, P., Kajahn, I., Klinkenberg, J., Bringmann, G., and Hedrich, R. (2008). Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55,746-759.
    36. Dinant, S. (2008). Phloem, transport between organs and long-distance signalling. C R Biol 331,334-346.
    37. Ding, B., Haudenshield, J.S., Hull, R.J., Wolf, S., Beachy, R.N., and Lucas, W.J. (1992). Secondary Plasmodesmata Are Specific Sites of Localization of the Tobacco Mosaic-Virus Movement Protein in Transgenic Tobacco Plants. Plant Cell 4,915-928.
    38. Doering-Saad, C., Newbury, H.J., Bale, J.S., and Pritchard, J. (2002). Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53,631-637.
    39. Doroshenk, K.A., Crofts, A.J., Morris, R.T., Wyrick, J.J., and Okita, T.W. (2009). Proteomic Analysis of Cytoskeleton-Associated RNA Binding Proteins in Developing Rice Seed. J Proteome Res 8,4641-4653.
    40. Dunn, B.D., Sakamoto, T., Hong, M.S.S., Sellers, J.R., and Takizawa, P.A. (2007). Myo4p is a monomeric myosin with motility uniquely adapted to transport mRNA. J Cell Biol 178,1193-1206.
    41. Ehlers, K., Knoblauch, M., and van Bel, A.J.E. (2000). Ultrastructural features of well-preserved and injured sieve elements:minute clamps keep the phloem transport conduits free for mass flow. Protoplasma 214,80-92.
    42. Engel, M., Veron, M., Theisinger, B., Lacombe, M.L., Seib, T., Dooley, S., and Welter, C. (1995). A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. Eur J Biochem 234,200-207.
    43. Frame, S., and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359,1-16.
    44. Galindo, F.G., Sjoholm, I., Rasmusson, A.G., Widell, S., and Kaack, K. (2007). Plant stress physiology:Opportunities and challenges for the food industry. Crit Rev Food Sci Nutr 47,749-763.
    45. Gaupels, F., Buhtz, A., Knauer, T., Deshmukh, S., Waller, F., van Bel, A.J., Kogel, K.H., and Kehr, J. (2008). Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59,3297-3306.
    46. Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A., and Kehr, J. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics 6,896-909.
    47. Gojon, A., Nacry, P., and Davidian, J.C. (2009). Root uptake regulation:a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12,328-338.
    48. Golecki, B., Schulz, A., and Thompson, G.A. (1999). Translocation of structural P proteins in the phloem. Plant Cell 11,127-140.
    49. Gomez, G., and Pallas, V. (2004). A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol 78,10104-10110.
    50. Gomez, G., Torres, H., and Pallas, V. (2005). Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41,107-116.
    51. Gregio, A.P.B., Cano, V.P.S., Avaca, J.S., Valentini, S.R., and Zanelli, C.F. (2009). eIF5A has a function in the elongation step of translation in yeast. Biochem Biophys Res Commun 380,785-790.
    52. Haley, A., Hunter, T., Kiberstis, P., and Zimmern, D. (1995). Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplasts. Plant J 8,715-724.
    53. Ham, B.K., Brandom, J.L., Xoconostle-Cazares, B., Ringgold, V., Lough, T.J., and Lucas, W.J. (2009). A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21,197-215.
    54. Hart, C., Schulenberg, B., Steinberg, T.H., Leung, W.Y., and Patton, W.F. (2003). Detection of glycoproteins in polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base stain. Electrophoresis 24,588-598.
    55. Haupt, S., Cowan, G.H., Ziegler, A., Roberts, A.G., Oparka, K.J., and Torrance, L. (2005). Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17,164-181.
    56. Haywood, V., Yu, T.S., Huang, N.C., and Lucas, W.J. (2005). Phloem long-distance trafficking of Gibberellic acid-insensitive RNA regulates leaf development. Plant J 42,49-68.
    57. Heil, M., and Ton, J. (2008). Long-distance signalling in plant defence. Trends Plant Sci 13,264-272.
    58. Hepler, P.K. (2005). Calcium:a central regulator of plant growth and development. Plant Cell 17,2142-2155.
    59. Heuck, A., Fetka, I., Brewer, D.N., Huls, D., Munson, M., Jansen, R.P., and Niessing, D. (2010). The structure of the Myo4p globular tail and its function in ASH1 mRNA localization. J Cell Biol 189,497-510.
    60. Huang, N.C., and Yu, T.S. (2009). The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J 59,921-929.
    61. Huang, S.Li, R.Zhang, Z.Li, L.Gu, X.Fan, W.Lucas, W. J.Wang, X.Xie, B.Ni, P.Ren, Y.Zhu, H.Li, J.Lin, K.Jin, W.Fei, Z.Li, G.Staub, J.Kilian, A.van der Vossen, E. A.Wu, Y.Guo, J.He, J.Jia, Z.Tian, G.Lu, Y.Ruan, J.Qian, W.Wang, M.Huang, Q.Li, B.Xuan, Z.Cao, J.Asan,Wu, Z.Zhang, J.Cai, Q.Bai, Y.Zhao, B.Han, Y.Li, Y.Li, X.Wang, S.Shi, Q.Liu, S.Cho, W. K.Kim, J. Y.Xu, Y.Heller-Uszynska, K.Miao, H.Cheng, Z.Zhang, S.Wu, J.Yang, Y.Kang, H.Li, M.Liang, H.Ren, X.Shi, Z.Wen, M.Jian, M.Yang, H.Zhang, G.Yang, Z.Chen, R.Ma, L.Liu, H.Zhou, Y.Zhao, J. Fang, X.Fang, L.Liu, D.Zheng, H.Zhang, Y.Qin, N.Li, Z.Yang, G.Yang, S.Bolund, L.Kristiansen, K.Li, S.Zhang, X.Wang, J.Sun, R.Zhang, B.Jiang, S. Du, Y. (2009). The genome of the cucumber, Cucumis sativus L. Nat Genet 41,1275-1281.
    62. Imlau, A., Truernit, E., and Sauer, N. (1999). Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11,309-322.
    63. Ishiwatari, Y., Fujiwara, T., McFarland, K.C., Nemoto, K., Hayashi, H., Chino, M., and Lucas, W.J. (1998). Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205,12-22.
    64. Ishiwatari, Y., Honda, C., Kawashima, I., Nakamura, S., Hirano, H., Mori, S., Fujiwara, T., Hayashi, H., and Chino, M. (1995). Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195,456-463.
    65. Jonak, C., and Hirt, H. (2002). Glycogen synthase kinase 3/SHAGGY-like kinases in plants:an emerging family with novel functions. Trends Plant Sci 7, 457-461.
    66. Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell 14,787-799.
    67. Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19,2736-2748.
    68. Karakasiliotis, I., Vashist, S., Bailey, D., Abente, E.J., Green, K.Y., Roberts, L.O., Sosnovtsev, S.V., and Goodfellow, I.G. (2010). Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 5, e9562.
    69. Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., and Mullineaux, P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284,654-657.
    70. Karpova, O.V., Rodionova, N.P., Ivanov, K.I., Kozlovsky, S.V., Dorokhov, Y.L., and Atabekov, J.G. (1999). Phosphorylation of tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261,20-24.
    71. Kehr, J. (2006). Phloem sap proteins:their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57,767-774.
    72. Kehr, J. (2009). Long-distance transport of macromolecules through the phloem. F1000 Biol Rep 1.
    73. Kehr, J., and Buhtz, A. (2008). Long distance transport and movement of RNA through the phloem. J Exp Bot 59,85-92.
    74. Kennedy, J.S., and Mittler, T.E. (1953). A method of obtaining phleom sap via the mouth-parts of aphids. Nature 171,528-528.
    75. Kierszenbaum, A.L., Gil, M., Rivkin, E., and Tres, L.L. (2002). Ran, a GTP-binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis. Mol Reprod Dev 63,131-140.
    76. Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293,287-289.
    77. King, R.W., and Zeevaart, J.A. (1974). Enhancement of Phloem exudation from cut petioles by chelating agents. Plant Physiol 53,96-103.
    78. Knoblauch, M., Peters, W.S., Ehlers, K., and van Bel, A.J. (2001). Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13,1221-1230.
    79. Kobayashi, K., Otegui, M.S., Krishnakumar, S., Mindrinos, M., and Zambryski, P. (2007). INCREASED SIZE EXCLUSION LIMIT 2 encodes a putative DEVH box RNA helicase involved in plasmodesmata function during Arabidopsis embryogenesis. Plant Cell 19,1885-1897.
    80. Kuhn, C., Franceschi, V.R., Schulz, A., Lemoine, R., and Frommer, W.B. (1997). Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275,1298-1300.
    81. Kuroyanagi, N., Onogi, H., Wakabayashi, T., and Hagiwara, M. (1998). Novel SR-protein-specific kinase, SRPK2, disassembles nuclear speckles. Biochem Biophys Res Commun 242,357-364.
    82. Lake, J.A., Quick, W.P., Beerling, D.J., and Woodward, F.I. (2001). Plant development-Signals from mature to new leaves. Nature 411,154-154.
    83. Lascu, I., and Gonin, P. (2000). The catalytic mechanism of nucleoside diphosphate kinases. J Bioenerg Biomembr 32,237-246.
    84. Lee, J.Y., Taoka, K., Yoo, B.C., Ben-Nissan, G., Kim, D.J., and Lucas, W.J. (2005). Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17,2817-2831.
    85. Lee, J.Y., Yoo, B.C., Rojas, M.R., Gomez-Ospina, N., Staehelin, L.A., and Lucas, W.J. (2003). Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299,392-396.
    86. Li, C.H., Ohn, T., Ivanov, P., Tisdale, S., and Anderson, P. (2010). eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly. PLoS One 5.
    87. Li, X., Franceschi, V.R., and Okita, T.W. (1993). Segregation of storage protein mRNAs on the rough endoplasmic reticulum membranes of rice endosperm cells. Cell 72,869-879.
    88. Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensene, R.A., Phinney, B. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19,1488-1506.
    89. Lin, M.K., Lee, Y.J., Lough, T.J., Phinney, B.S., and Lucas, W.J. (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8,343-356.
    90. Lin, S.S., Hou, R.F., and Yeh, S.D. (2002). Construction of in vitro and in vivo infectious transcripts of a Taiwan strain of Zucchini yellow mosaic virus. Bot Bull Acad Sinica 43,261-269.
    91. Lisitsky, I., and Schuster, G. (1995). Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucleic Acids Res 23, 2506-2511.
    92. Liu, T.Y., Chang, C.Y., and Chiou, T.J. (2009). The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12,312-319.
    93. Lorkovic, Z.J. (2009). Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14,229-236.
    94. Lough, T.J., and Lucas, W.J. (2006). Integrative plant biology:Role of phloem long-distance macromolecular trafficking. Annual Review of Plant Biology 57, 203-232.
    95. Loza-Tavera, H., Vargas-Suarez, M., Diaz-Mireles, E., Torres-Marquez, M.E., de la Vara, L.E.G., Moreno-Sanchez, R., and Gruissem, W. (2006) Phosphorylation of the spinach chloroplast 24 kDa RNA-binding protein (24RNP) increases its binding to petD and psbA 3'untranslated regions. Biochimie 88,1217-1228.
    96. Lucas, W.J. (2006). Plant viral movement proteins:Agents for cell-to-cell trafficking of viral genomes. Virology 344,169-184.
    97. Lucas, W.J., and Gilbertson, R.L. (1994). Plasmodesmata in Relation to Viral Movement within Leaf Tissue. Annual Review of Phytopathology 32,387-411.
    98. Lucas, W.J., and Lee, J.Y. (2004). Plant cell biology-Plasmodesmata as a supracellular control network in plants. Nature Reviews Molecular Cell Biology 5,712-726.
    99. Lucas, W.J., Yoo, B.C., and Kragler, F. (2001). RNA as a long-distance information macromolecule in plants. Nature Reviews Molecular Cell Biology 2, 849-857.
    100.Ma, Y., Miura, E., Ham, B.K., Cheng, H.W., Lee, Y.J., and Lucas, W.J. (2010). Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system. Plant J 64,536-550.
    101.Martin, A., Adam, H., Diaz-Mendoza, M., Zurczak, M., Gonzalez-Schain, N.D., and Suarez-Lopez, P. (2009). Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136,2873-2881.
    102.Martin, K.C., and Ephrussi, A. (2009). mRNA localization:gene expression in the spatial dimension. Cell 136,719-730.
    103.Matsushita, Y., Yoshioka, K., Shigyo, T., Takahashi, H., and Nyunoy, H. (2002). Phosphorylation of the movement protein of cucumber mosaic virus in transgenic tobacco plants. Virus Genes 24,231-234.
    104.McCulloh, K.A., Sperry, J.S., and Adler, F.R. (2003). Water transport in plants obeys Murray's law. Nature 421,939-942.
    105.Milburn, J.A. (1970). Phloem exudation from castor bean-induction by maessage. Planta 95,272-&.
    106.Mitchell, S.A., Spriggs, K.A., Coldwell, M.J., Jackson, R.J., and Willis, A.E. (2003). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11,757-771.
    107.Mlotshwa, S., Voinnet, O., Mette, M.F., Matzke, M., Vaucheret, H., Ding, S.W., Pruss, G., and Vance, V.B. (2002). RNA silencing and the mobile silencing signal. Plant Cell 14 Suppl, S289-301.
    108.Moffatt, B.A., Wang, L., Allen, M.S., Stevens, Y.Y., Qin, W., Snider, J., and von Schwartzenberg, K. (2000). Adenosine kinase of Arabidopsis. Kinetic properties and gene expression. Plant Physiol 124,1775-1785.
    109.Moore, M.S., and Blobel, G. (1993). The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365,661-663.
    110.Murillo, I., Roca, R., Bortolotti, C., and Segundo, B.S. (2003). Engineering photoassimilate partitioning in tobacco plants improves growth and productivity and provides pathogen resistance. Plant J 36,330-341.
    111.Murray, C.D. (1926). The Physiological Principle of Minimum Work:I. The Vascular System and the Cost of Blood Volume. Proc Natl Acad Sci U S A 12, 207-214.
    112.Nagy, E., Henics, T., Eckert, M., Miseta, A., Lightowlers, R.N., and Kellermayer, M. (2000). Identification of the NAD (+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275,253-260.
    113.Nagy, E., and Rigby, W.F.C. (1994). Identification of glyceraldehyde-3-phosphate dehydrogenase as AU-rich RNA-binding protein in human-lymphocytes. Faseb J 8, A1337-A1337.
    114.Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., Toyooka, K., Matsuoka, K., Jinbo, T., and Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104,34-41.
    115.Notaguchi, M., Abe, M., Kimura, T., Daimon, Y., Kobayashi, T., Yamaguchi, A., Tomita, Y., Dohi, K., Mori, M., and Araki, T. (2008). Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant Cell Physiol 49,1645-1658.
    116.Okita, T.W., and Choi, S.B. (2002). mRNA localization in plants:targeting to the cell's cortical region and beyond. Curr Opin Plant Biol 5,553-559.
    117.Omid, A., Keilin, T., Glass, A., Leshkowitz, D., and Wolf, S. (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58,3645-3656.
    118.Orsatti, L., Forte, E., Tomei, L., Caterino, M., Pessi, A., and Talamo, F. (2009). 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining:A successful approach for the identification of kinase/phosphatase targets. Electrophoresis 30,2469-2476.
    119.Otto, J.J. (1986). Gel overlay methods for detecting specific protein interaction. Method Enzymol 134,555-560.
    120.Palauqui, J.C., Elmayan, T., Pollien, J.M., and Vaucheret, H. (1997). Systemic acquired silencing:transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16, 4738-4745.
    121.Papoutsopoulou, S., Nikolakaki, E., Chalepakis, G., Kruft, V., Chevaillier, P., and Giannakouros, T. (1999). SR protein-specific kinase 1 is highly expressed in testis and phosphorylates protamine 1. Nucleic Acids Res 27,2972-2980.
    122.Poliquin, K.A., Crofts, A.J., Morris, R.T., Wyrick, J.J., and Okita, T.W. (2008). Proteomic analysis of cytoskeletal-associated RNA-binding proteins in developing rice seed. Plant Biology (Rockville) 2008,201.
    123.Ruiz-Medrano, R., Xoconostle-Cazares, B., and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA:implications for supracellular regulation in plants. Development 126,4405-4419.
    124.Saini, P., Eyler, D.E., Green, R., and Dever, T.E. (2009). Hypusine-containing protein eIF5A promotes translation elongation. Nature 459,118-U129.
    125.Sano, H., and Ohashi, Y. (1995). Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci U S A 92,4138-4144.
    126.Sasaki, T., Chino, M., Hayashi, H., and Fujiwara, T. (1998). Detection of several mRNA species in rice phloem sap. Plant Cell Physiol 39,895-897.
    127.Sawicka, K., Bushell, M., Spriggs, K.A., and Willis, A.E. (2008) Polypyrimidine-tract-binding protein:a multifunctional RNA-binding protein. Biochemical Society transactions 36,641-647.
    128.Schlenstedt, G., Smirnova, E., Deane, R., Solsbacher, J., Kutay, U., Gorlich, D., Ponstingl, H., and Bischoff, F.R. (1997). Yrb4p, a yeast Ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. Embo J 16, 6237-6249.
    129.Schobert, C., Gottschalk, M., Kovar, D.R., Staiger, C.J., Yoo, B.C., and Lucas, W.J. (2000). Characterization of Ricinus communis phloem profilin, RcPRO1. Plant Mol Biol 42,719-730.
    130.Scholthof, H.B. (2005). Plant virus transport:motions of functional equivalence. Trends Plant Sci 10,376-382.
    131.Shah, J. (2009). Plants under attack:systemic signals in defence. Curr Opin Plant Biol 12,459-464.
    132.Sharkey, P.J., and Pate, J.S. (1976). Translocation from leaves to fruits of a legume, studied by a phloem bleeding technique- dinual changes and effects of continuous darkness. Planta 128,63-72.
    133.Shen, Y., Han, Y.J., Kim, J.I., and Song, P.S. (2008). Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein. BMB Rep 41, 645-650.
    134.Silva, B.V., Horta, B.A.C., de Alencastro, R.B., and Pinto, A.C. (2009). Kinase protein:structural features and chemical inhibitors. Quim Nova 32,453-462.
    135.Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A.J. (2009). An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell 21,581-594.
    136.Sims, D.A., Luo, Y., and Seemann, J.R. (1998). Importance of leaf versus whole plant CO2 environment for photosynthetic acclimation. Plant Cell Environ 21, 1189-1196.
    137.Song, Y.T., Tzima, E., Ochs, K., Bassili, G., Trusheim, H., Linder, M., Preissner, K.T., and Niepmann, M. (2005). Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. Rna-a Publication of the Rna Society 11,1809-1824.
    138.St Johnston, D. (2005). Moving messages:the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6,363-375.
    139.Stauffer, E., Westermann, A., Wagner, G., and Wachter, A. (2010) Polypyrimidine tract-binding protein homologues from Arabidopsis underlie regulatory circuits based on alternative splicing and downstream control. Plant J 64,243-255.
    140.Taoka, K., Ham, B.K., Xoconostle-Cazares, B., Rojas, M.R., and Lucas, W.J. (2007). Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19,1866-1884.
    141.Tarrant, M.K., and Cole, P.A. (2009). The Chemical Biology of Protein Phosphorylation. Annu Rev Biochem 78,797-825.
    142.Thomas, P.W., Woodward, F.I., and Quick, W.P. (2004). Systemic irradiance signalling in tobacco. New Phytol 161,193-198.
    143.Tournier, B., Tabler, M., and Kalantidis, K. (2006). Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47,383-394.
    144.Turgeon, R., and Wolf, S. (2009). Phloem transport:cellular pathways and molecular trafficking. Annu Rev Plant Biol 60,207-221.
    145.Ueki, S., and Citovsky, V. (2002). The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Biol 4, 478-486.
    146.Van Bel, A.J.E. (2003). The phloem, a miracle of ingenuity. Plant Cell Environ 26,125-149.
    147.Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., Sutherland, P., and MacDiarmid, R.M. (2010). Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biol 10, 159.
    148.Verma, D., Cheon, C.,3rd, and Hong, Z. (1994). Small GTP-Binding Proteins and Membrane Biogenesis in Plants. Plant Physiol 106,1-6.
    149.Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131,1191-1208.
    150.Voinnet,0., and Baulcombe, D.C. (1997). Systemic signalling in gene silencing. Nature 389,553.
    151.Voinnet,0., Rivas, S., Mestre, P., and Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33,949-956.
    152.Waigmann, E., Chen, M.H., Bachmaier, R., Ghoshroy, S., and Citovsky, V. (2000). Regulation of plasmodesmal transport by phosphorylation of tobacco mosaic virus cell-to-cell movement protein. EMBO J 19,4875-4884.
    153.Walz, C., Giavalisco, P., Schad, M., Juenger, M., Klose, J., and Kehr, J. (2004). Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65,1795-1804.
    154.Walz, C., Juenger, M., Schad, M., and Kehr, J. (2002). Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31,189-197.
    155.Wang, H.Y., Lin, W., Dyck, J.A., Yeakley, J.M., Songyang, Z., Cantley, L.C., and Fu, X.D. (1998). SRPK2:a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J Cell Biol 140,737-750.
    156.Wang, S., and Okamoto, T. (2009). Involvement of polypyrimidine tract-binding protein (PTB)-related proteins in pollen germination in Arabidopsis. Plant Cell Physiol 50,179-190.
    157.Wang, Y., Guo, W., Liang, L.Z., and Esselman, W.J. (1999). Phosphorylation of CD45 by casein kinase 2-Modulation of activity and mutational analysis. J Biol Chem 274,7454-7461.
    158.Webb, J.A., and Gorham, P.R. (1964). Translocation of photosynthetically assimilated 14C in straight-necked squash. Plant Physiol 39,663-672.
    159.Wilken, N., Senecal, J.L., Scheer, U., and Dabauvalle, M.C. (1995) Localization of the Ran-GTP binding protein RANBP2 at the cytoplasmic side of the nuclear-pore complex. Eur J Cell Biol 68,211-219.
    160.Wollerton, M.C., Gooding, C., Robinson, F., Brown, E.C., Jackson, R.J., and Smith, C.W. (2001). Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). Rna 7,819-832.
    161.Xie, J., Lee, J.A., Kress,T.L., Mowry, K.L., and Black, D.L. (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci U S A 100,8776-8781.
    162.Xoconostle-Cazares, B., Ruiz-Medrano, R., and Lucas, W.J. (2000). Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway. Plant Journal 24, 735-747.
    163.Xoconostle-Cazares, B., Yu, X., Ruiz-Medrano, R., Wang, H.L., Monzer, J., Yoo, B.C., McFarland, K.C., Franceschi, V.R., and Lucas, W.J. (1999). Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283,94-98.
    164.Yoo, B.C., Aoki, K., Xiang, Y., Campbell, L.R., Hull, R.J., Xoconostle-Cazares, B., Monzer, J., Lee, J.Y., Ullman, D.E., and Lucas, W.J. (2000) Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor. J Biol Chem 275,35122-35128.
    165.Yoo, B.C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J., and Lucas, W.J. (2004). A systemic small RNA signaling system in plants. Plant Cell 16,1979-2000.
    166.Yoo, B.C., Lee, J.Y., and Lucas, W.J. (2002). Analysis of the complexity of protein kinases within the phloem sieve tube system-Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1. Journal of Biological Chemistry 277,15325-15332.
    167.Yuksel, B., and Memon, A.R'. (2009). Legume small GTPases and their role in the establishment of symbiotic associations with Rhizobium spp. Plant Signal Behav 4,257-260.
    168.Zhu, Y., Green, L., Woo, Y.M., Owens, R., and Ding, B. (2001). Cellular basis of potato spindle tuber viroid systemic movement. Virology 279,69-77.
    169.Zhu, Y., Qi, Y., Xun, Y., Owens, R., and Ding, B. (2002). Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol 130,138-146.