带有可调通道的纳米药物载体的制备及其控制释放性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米药物载体具有提高难溶性药物的溶解度、稳定性、改善药物在体内分布特征、延长药物循环时间等优点,但是其综合性能有待进一步提高。例如:通过物理吸附在纳米载体上的药物在控制释放中存在“突释”现象,介孔硅材料要求药物尺寸和孔隙尺寸匹配,这使纳米粒子在药物负载和控制释放方面的应用受到限制。因此,制备具有特殊结构和功能的纳米药物载体以克服上述问题具有重要理论意义和应用价值。本文将聚合物胶束和生物膜通道的性质结合起来,制备了结构新颖的具有通道结构的核-壳-冠三层胶束,研究了其对药物的负载和控制释放行为,胶束疏水的壳层可避免药物的“突释”和防止生物酶对内核的降解;利用通道结构控制了药物释放的速率;另外,以温度敏感的复合胶束为模板,制备了带有通道结构的空心杂化纳米粒子。
     利用可逆加成裂解链转移自由基聚合(RAFT)方法合成了分子量窄分布的带有梳状结构的聚乙二醇-b-聚(甲基丙烯酸羟基乙酯-g-聚乳酸)-b-聚异丙基丙烯酰胺(PEG45-b-P(HEMA-g-PLA10)11-b-PNIPAM430)。常温下,嵌段聚合物在水溶液中自组装形成以PLA为核,PEG和PNIPAM为混合壳的胶束,透射电镜表明胶束呈球形结构,光散射表征粒径为140 nm左右。升高温度,PNIPAM链段由亲水变为疏水并塌缩在PLA核表面,胶束由核壳结构转变为核-壳-冠结构,PEG链穿过疏水的PNIPAM层形成通道,并对聚合物胶束起到稳定作用。以抗癌药物阿霉素(DOX)为模型药物,研究了嵌段聚合物胶束对DOX的控制释放行为。结果表明:在37℃时,含有通道结构的PEG-b-P(HEMA-g-PLA)-b-PNIPAM胶束能够很好的控制药物DOX释放。
     利用RAFT和开环聚合(ROP)方法合成了分子量窄分布的嵌段聚合物PLA-b-PNIPAM;利用ROP合成了生物可降解的嵌段聚合物PEG-b-PLA。在常温下,PEG45-b-PLA100和PLA125-b-PNIPAM180在水溶液中自组装形成以PLA为核,以PEG和PNIPAM为混合壳的复合胶束;升高温度,混合壳层中的PNIPAM链段塌缩在PLA核表面,胶束转变成核-壳-冠结构,PEG链段穿过疏水的PNIPAM层形成通道,并对胶束起到稳定作用。实验研究表明:亲水性PEG通道可以使小分子(如水分子和小分子药物)穿过,而大分子物质(如生物酶等)很难穿过,从而可以保护胶束结构在体内循环中的稳定存在;通过改变两种嵌段聚合物的比例可以很容易地调节胶束表面的PEG通道数量和密度,从而达到控制释放目的。
     利用具有温度响应性的复合胶束为模板,制备了带有通道结构的空心杂化纳米粒子。首先利用原子转移自由基聚合方法(ATRP)合成了分子量窄分布的嵌段聚合物聚乙二醇-b-聚异丙基丙烯酰胺(PEG-b-PNIPAM)和聚异丙基丙烯酰胺-b-聚4-乙烯基吡啶(PNIPAM-b-P4VP)。常温下,将两种嵌段聚合物溶解在酸水中(pH 4.0),升高溶液温度至45℃,嵌段聚合物形成以PNIPAM为核、以PEG和P4VP为混合壳的复合胶束。1,2-二(碘乙氧基)乙烷(BIEE)交联P4VP后,四乙氧基硅烷(TEOS)选择性沉积在P4VP链段上并发生溶胶凝胶反应,形成以PNIPAM为核,以P4VP/Silica为混合壳,PEG为冠的核-壳-冠三层结构的杂化纳米粒子。降低溶液温度,PNIPAM发生溶胀直至溶解,由于PEG与Silica之间的作用力比较弱以及PNIPAM的溶胀作用,嵌段聚合物PEG-b-PNIPAM会从杂化纳米粒子中逃逸出来,形成内部含有I(?)NIPAM、P4VP/Silica层带有通道结构的杂化空心纳米粒子,通道有利于杂化纳米粒子内外物质发生交换。
     制备了具有多层结构的多功能的磁性纳米药物载体,该载体的内核是Fe304纳米粒子,Si02包裹在Fe304上能够保护其不被腐蚀氧化;中间层是生物相容性的聚天冬氨酸(PAsp)载药层;最外层是亲水的聚乙二醇(PEG)稳定层。磁性纳米复合粒子各层都是生物相容的,利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中,通过PAsp的pH响应调节了DOX的释放速率。
Nanoparticles have attracted enormous attention in controlled drug release because they could improve the solubility and stability of drugs. Polymeric micelles and mesoporous silica are the most studied materials for controlled drug release. Block copolymer can self-assemble into core-shell structure in aqueous solution. Hydrophobic drugs can be loaded into micellar core to lower their toxicity in human body. However, polymeric micelles are easily to be biodegraded and disaggregated in the blood. As far as silica is concerned, size-matching between drugs and mesopore is usally necessary for efficient loading and controlled release of drugs, which in fact restrict the application of mesoporous silica as drug carrier. Thus, it is desirable to prepare nanoparticles with novel structures and multi-functions for controlled drug release. Inspired by protein channels in biomembranes, polymeric micelles with tunable channels are constructed and used for controlled drug release, and polymer/silica hybrid hollow nanoparticles with tunable channels are prepared using complex micelles as a template.
     A novel and well-defined triblock copolymer, poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG45-b-P(HEMA-g-PLA10)11-b-PNIPAM430), containing a biodegradable PLA block and a thermo-sensitive PNIPAM block, was synthesized by a combination of ring opening polymerization (ROP) and reversible addition-fragmentation chain transfer polymerization (RAFT). In aqueous solution, the copolymer could self-assemble into core-shell micelle with the inner hydrophobic PLA block as the biodegradable core and outer bis-hydrophilic PEG/PNIPAM block as the mixed shell at room temperature. Increasing the temperature above the lower critical solution temperature (LCST) of PNIPAM, the micelle converted into a core-shell-corona (CSC) structure due to the collapsed of PNIPAM block. The soluble PEG chains could stretch out the PNIPAM shell forming hydrophilic PEG channels. Doxorubicin (Dox), an anticancer drug, was used as a model drug for controlled release experiments. The DOX-drug loaded micelle with PEG channels displayed well controlled release behaviors.
     Two well-defined diblock copolymers of PLA-b-PNIPAM and PEG-b-PLA were synthesized by a combination of ROP and RAFT, In aqueous solution, comicellization of these two diblock copolymers at room temperature resulted in complex micelles with a biodegradable hydrophobic PLA core and a mixed hydrophilic PEG/PNIPAM shell. Above the LCST of PNIPAM, complex micelles could be converted into a core-shell-corona structure composed of a PLA core, a collapsed PNIPAM shell, and a soluble PEG corona. The PEG chains acted as channels in the PNIPAM shell for the exchange of substance between the core and external environment, through which small molecule such as drug could pass and macromolecules such as enzyme could not. The release of a model small molecule drug, ibuprofen, loaded in the micellar core was investigated. The release rate depended on the composition of the mixed shell. Higher content of PNIPAM in the mixed shell led to slower release of ibuprofen. Compared with core-shell micelles, complex micelles with the core-shell-corona structure avoided burst release of ibuprofen and inhibited degradation of PLA by lipase, a macromolecular enzyme.
     It is an efficient method to synthesize the hybrid hollow nanoparticles with tunable channels using thermo-responsive complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) as a template. Two well-defined diblock copolymers, poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP), were first synthesized by atom transfer radical polymerization (ATRP). With increasing the temperature (45℃) of their mixed aqueous solution, the complex micelles formed with the PNIPAM block as the core and the mixed soluble PEG/P4VP blocks as the shell at pH 4.0. Shell cross-linking of the complex micelles was achieved using 1,2-bis(2-iodoethoxy)ethane (BIEE) as a bifunctional agent. Silica was selectively well deposited on the P4VP block of the complex micelles forming a core-shell-corona structure with PNIPAM as the core, P4VP/silica as the hybrid shell, and PEG as the corona. The soluble PEG chains penetrated the hybrid shell as the corona to avoid the hybrid nanoparticle further aggregates. The PEG channels through which H2O molecule could pass formed due to the phase separation between the silica shell and the PEG chains. Decreasing the temperature to 4℃, the PNIPAM block became swollen and further soluble, the PEG-b-PNIPAM block copolymer escaped from the nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica within the pH range of 2.0-7.0. Thus hollow nanoparticles formed. It should be noted that in situ channels were obtained simultaneously in the silica shell due to the escape of PEG chains. These channels, which connected the inner space and the outer milieu, were promising for substance exchange.
     A new type of multifunctional nanoparticles containing magnetic Fe3O4@SiO2 sphere and biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate acid) (PEG-b-PAsp) was prepared. Silica coated on the superparamaagnetic core was able to not only achieve a magnetic dispersivity, but also protect Fe3O4 against oxidation and acid corrosion. The PAsp block was grafted onto the surface of the Fe3O4@SiO2 nanoparticles by amido bonds, and the PEG block formed the outermost shell. The anticancer agent doxorubicin (DOX) was loaded into the hybrid nanoparticles via electrostatic interaction between DOX and PAsp. The release rate of DOX could be adjusted by manipulating the pH value.
引文
[1]张阳德.纳米生物技术学-北京:科学出版社,2009
    [2]平其能.纳米药物和纳米载体系统.中国新药杂志,2002,11:42-46.
    [3]Allen T M, Culis P R. Drug delivery systems:entering the mainstream. Science,2004,303: 1818-1822.
    [4]Lambert G, Fattal E, Couvreur P. Nanopartieles systems for the drug delivery antisense oligonucleotides. Adv Durg Deliv Rev,2001,47:99-112
    [5]Muller R H, Jacob C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we expect for the future. Adv Drug Delivery Rev,2001,47:3-19.
    [6]Takeuchi H, Yamamoto H. Mocoadhesive nanoparticles systems for peptide drug. Adv Drug Delivery Rev,2001,47:39-45.
    [7]Leong K W, Mao H Q, Truong-Le V L,et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Controlled Release,1998,53:183-193.
    [8]Mao H Q, Roy K, Truong-Le V L, et al. Chitosen-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Controlled Release,2001,70: 399-421.
    [9]Black C T, Murray C B, Sandstrom R L. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science,2000,290:1131-1134.
    [10]Higgins A M, Jones R. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature,2000,404:476-478.
    [11]Whitsides G M, Mathias J P. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures. Science,1991,404:746-748.
    [12]Jones M C, Leroux J C. Polymeric micelles-a new generation of colloidal drug carriers. Eur J Pharm Biopharm,1999,48:101-111.
    [13]Rosier A, Vandermeulen G W M, Klok H A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Delivery Rev,2001,53: 95-108.
    [14]Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B:Biointerf,1999,16:3-27.
    [15]Adams M L, Lavasanifar A, Kwon G S. Amphiphilic block copolymers for drug delivery. J Pharm Sci,2003,92:1343-1355.
    [16]Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Delivery Rev,2005,55:403-419.
    [17]Kortesuo P, Ahola M, Kangas M, et al. In vitro release of dexmedetomidine from silica xerogel monoliths:effect of sol-gel synthesis parameters. Int J Pharm,2001,221:107-114.
    [18]Ahola M S, Sailynoja E S, Raitavuo M H, et al. In vitro release of heparin from silica xerogels. Biomaterials,2001,22:2163-2170.
    [19]Vallet-Regi M, Doadrio J C, Doadrio A L, et al. Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics,2004,172: 435-439.
    [20]Charnary C, Begu S, Tourne-Peteilh C, et al. Inclusion of ibuprofen in mesoporous templated silica:drug loading and release property. Eur J Pharm Biopharm,2004,57: 533-540.
    [21]Horcajada P. Ramila A, Perez-Pariente J, et al. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater,2004,68:105-109.
    [22]Doadrio A L, Sousa E M B, Doadrio J C, et al. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release,2004,97:125-132.
    [23]Slowing I I, Vivero-Escoto J L, Lin V S Y, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Delivery Rev. 2008.60:1278-1288.
    [24]Doadrio J C, Sousa E M B, Doadrio A L, et al. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J Mater Chem. 2006,16:462-466.
    [25]Balas F, Manzano M, Horcajada P, et al. Confined and controlled release of bisphosphonates on ordered meosoporous silica-based materials. J Am Chem,2006,128: 8116-8117.
    [26]Vallet-Regi M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem-Eur J,2006,12:5934-5943.
    [27]杨祥良.纳米药物,清华大学出版社,2007.
    [28]Guo X J, Ping Q N, Chen Y. Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm,2000,194:201-207.
    [29]Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf,1993,16:3-27.
    [30]Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science,1996,272:1777-1779.
    [31]Zhang L, Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly (acrylic acid) block copolymers. Science,1995,268:1728-1731.
    [32]Allen C, Yu Y S, Maysinger D, et al. Polycaprolactone-b-poly(ethylene Oxide) block copolymer micelles as a novel drug delivery vehicle forneurotrophic agents FK506 and L-685,818. Bioconjugate Chem.1998,9:564-572.
    [33]La S B, Okano T, Kataoka K J. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl-Laspartate) block copolymer micelles. Pharm Sci,1996,85: 85-90.
    [34]Sant V P, Smith D, Leroux J C. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release,2004,97:301-312.
    [35]Wu Z, Joo H, Ahn I S, et al. Design of doped hybrid xerogels for a controlled release of brilliant blue FCF. J Non-Cryst solids,2004,342:46-53.
    [36]Wu Z, Joo H, Lee T G, et al. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J Controlled Release,2005,104:497-505.
    [37]Xie Z G, Hu X L, Chen X S, et al. A biodegradable diblcok copolymer poly(ethyleneglycol)-block-poly(L-lactide-co-2-methyl-2-carboxylpropylene carbonate): docetaxel and RGD conjugation. J Applied Polym Sci,2008,110:2961-2970.
    [38]Guan H L, Xie Z G, Zhang P B, et al. Synthesis and characterization of biodegradable amphiphilic triblock copolymers containing L-glutamic acid units. Biomacromolecules, 2005,6:1954-1960.
    [39]Xie Z G, Hu X L, Chen X S. et al. Synthesis and characterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups. Biomacromolecules,2008,9: 376-380.
    [40]Simone E A., Dziubla T D, Colon-Gonzalez F, et al. Effect of polymer amphiphilicity on loading of a therapeutic enzyme into protective filamentous and spherical polymer nanocarriers. Biomacromolecules,2007,8:3914-3921.
    [41]Mccarron P A, Woolfson A D, Keating S M. Sustained release of 5-fluorouracil from polymeric nanoparticles. J Pharm Pharmacol,2000,52:1451-1459.
    [42]Chen L, Xie Z G, Chen X S, et al. Enantionmeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nano Res,2007,9:777-785.
    [43]Kumar M N. Nano and microparticles as controlled drug delivery devices, J Pharm Pharmaceut Sci,2000,3:234-258.
    [44]Song CX, Labhasetwar V, Murphy H, et al. Formation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Controlled Release, 1997,43:197-212.
    [45]Kwon G, Suwa S, Yokoyama M. et al. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release,1994,29:17-23.
    [46]Li Y, Kwon G S. Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-L-aspartamide). part I. effects of the level of methotrexate conjugation on the stability of micelles and on drug release. Pharm Res,2000,17:607-611.
    [47]Lavasanifar A, Samuel J, Kwon G S. Micelles self assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) through a solvent evaporation method: Effect on solubilization and heamolytic activity of amphotericin B. J Control Release, 2001,77:155-160.
    [48]Allen C, Han J N, Yu Y S, et al. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J Control Release,2000,63: 275-286.
    [49]Lee E S, Shin H J, Na K, et al. Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release,2003,90:363-374.
    [50]Lee E S, Na K, Bae Y H. Super pH-sensitive multifunctional polymeric micelle. Nano Lett,2005,5:325-329.
    [51]Bae Y, Fukushima S, Kataoka K, et al. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed,2003,42:4640-4643.
    [52]Kano M R, Bae Y, Iwata C, Morishita Y, et al. Improvement of cancer-targeting therapy. using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci USA,2007,104:3460-3465.
    [53]Lee Y, Park S Y, Mok H,et al. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjugate Chem,2008,19:525-531.
    [54]Sethuraman V A, Na K, Bae Y H. pH-Responsive sulfonamide/PEI system for tumor specific gene delivery:an in vitro study. Biomacromolecules,2006,7:64-70.
    [55]Wei H, Zhang X Z, Zhou Y, et al. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials,2006,27:2028-2034.
    [56]Chang C, Wei H, Quan C Y, et al. Fabrication of thermosensetive PCL-b-PNIPAM-PCL triblock copolymeric micelles for drug delivery. J Polymer Sci, Part A:Polym Chem.2008, 46:3048-3057.
    [57]Li Y Y, Cheng H, Zhang Z G, et al. Cellular internalization and in vivo tracking of thermosensitive luminescent micelles based on luminescent lanthanide chelate. Acs Nano. 2008,2:125-133.
    [58]Kohori F, Sakai K, Aoyagi T, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf B:Biointerf,1999,16:195-205.
    [59]Liu S Q, Tong Y W, Yang Y Y. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials,2005,26:5064-5074.
    [60]Kim B S, Qiu J M, Wang J P, et.al. Magnetomicelles:composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett,2005,5: 1987-1991.
    [61]Park J H, Ruoslahti E, Bhatia S N, et al. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed,2008,47: 7284-7288.
    [62]Chen F H, Gao Q, Ni J Z. The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core-shell structure nanoparticles via an acid cleaving amide bond:the potential for magnetic targeting drug delivery. Nanotechnology,2008,19:165103.
    [63]Guo J, Yang W L, Wang C C, Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small,2005,1:737-743.
    [64]Yang X Q, Deng W J, Fu L W, et al. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A,2007,86:48-60.
    [65]Kim S H, Jeong J H, Mok H, et al. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol Prog,2007,23:232-237.
    [66]Nasongkla N, Shuai X T, Ai H, et al. cRGD-Functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Edit,2004,116:6483-6487.
    [67]Deng C, Chen X S, Sun J, et al. RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic acid)-b-poly(L-lactide)-b-poly(glutamic acid):synthesis and self-Assembly. J Polymer Sci, Part A:Polym Chem,2007,45:3218-3230.
    [68]Nagasaki Y, Yasugi K, Yamamoto Y, et al. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules,2001, 2:1067-1070.
    [69]Yasugi K, Nakamura T, Nagasaki Y, et al. Sugar-installed polymer micelles:synthesis and micellization of poly(ethylene glycol)-poly(D,L-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules,1999,32:8024-8032.
    [70]Schild H G. Poly(N-isopropylacrylamide)-experiment, theory and application. Prog Polym Sci,1992,17:163-249.
    [71]Zhang X Z, Zhuo R X. Dynamic properties of temperature-sensitive poly(N-isopropylacrylamide) gel cross-linked through siloxane linkage. Langmuir,2001, 17:12-16.
    [72]Rijcken C J, Snel C J, Hennink W E, et al. Hydrolysable core-crosslinked thermosensitive polymeric micelles:synthesis, characterisation and in vivo studies. Biomaterials,2007,28: 5581-5593.
    [73]Hu X L, Chen X S, Jing X B, et al. Core crosslinking of biodegradable block copolymer micelles based on poly(ester carbonate). Macromol Biosci,2009,9:456-463.
    [74]Hong S W, Kim K H, Huh J, et al. Drug release behavior of poly(epsilon-caprolactone)-b-poly(acrylic acid) shell crosslinked micelles below the critical micelle concentration. Macromol Res,2005,13:397-402.
    [75]Wei H, Cheng C, Chang C, et al. Synthesis and applications of shell cross-linked thermoresponsive hybrid micelles based on poly(N-isopropylacrylamide-co-3-(trimethoxysilyl) propyl methacrylate)-b-poly(methyl methacrylate). Langmuir,2008,24:4564-4570.
    [76]Wei H, Wu D Q, Li Q, et al. Preparation of shell cross-linked thermoresponsive micelles as well as hollow spheres based on P(NIPAAm-co-HMAAm-co-MPMA)-b-PCL. J Phys Chem C,2008,112:15329-15334.
    [77]Kataoka A V, Togawa H, Harada A, et al. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules,1996,29:8556-8557.
    [78]Li J, He W, He N, et al. Synthesis of PEG-PNIPAM-PLys hetero-arm star polymer and its variation of thermo-responsibility after the formation of polyelectrolyte complex micelles with PAA. J Polym Sci Part A:Polym Chem,2009,47:1450-1462.
    [79]Dufresne M H, Elasbahy M, Leroux J C, et al. Charaterization of polyion complex micelles designed to address the challenge of olligonucleotide delivery. Pharm Res,2008, 25:2083-2093.
    [80]Zhang W Q, Shi L Q, Gao L C, et al. Comicellization of poly(ethyelene glycol)-block-poly(acrylic acid) and poly(4-vinylpyridine) in ethanol. Macromolecules, 2005,38:899-903.
    [81]Jiang M, Duan H W, Chen D Y. Macromolecular assembely:from irregular aggregates to regular nanostructure. Macromol Symp,2003,195:8697-8702.
    [82]Zhang Y, Jiang M, Zhao J, et al. Hollow spheres from shell cross-linked, nanocovalently connected micelles of carboxyl-terminated polybuadiene and poly(vinyl alcohol) in water. Macromolecules,2004,37:1537-1543.
    [83]Ilhan F, Calow T H, Gray M, et al. Giant vesicle formation through self-assembly of complementary random copolymers. J Am Chem Soc,2000,122:5895-5896.
    [84]Thibault R J, Hotchkiss P J, Gray M, et al. Thermally reversible formation of microspheres through non-covalent polymer cross-linking. J Am Chem Soc,2003,125: 11249-11252.
    [85]Li G Y, Shi L Q, Ma R J, et al. Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymer. Angew Chem Int Edit,2006,45: 4959-4962.
    [86]Lin J, Zhu J, Chen T, et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials,2009,30:108-117.
    [87]Luo Y L, Wang A R, Yuan J F, et al. Preparation, characterization and drug release behavior of polyion complex micelles. Intern J Pharm,2009,374:139-144.
    [88]杨宝峰.离子通道药理学,人民卫生出版社,2005.
    [89]Nallani M, Benito S, Onaca O, et al. A nanocompartment system (Synthosome) designed for biotechnological applications. J Biotechnol,2006,123:50-59.
    [90]Graff A, Winterhalter M, Meier W. Nanoreactors from polymer stabilized liposomes. Langmuir,2001,17:919-923.
    [91]Nardin C, Widmer J, Winterhalter M, et al. Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E,2001,4:403-410.
    [92]Broz P, Driamov S, Ziegler J, et al. Toward intelligent nanosize bioreactors:a pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett,2006,6: 2349-2353.
    [93]Li G Y, Guo L, Ma S M, et al. Complex micelles formed from two diblock copolymers for applications in controlled drug release. J Polym Sci Part A:Polym Chem,2009,47: 1804-1810.
    [94]Xiong D A, AN Y L, Shi L Q, et al. Nanometer-Scaled Hollow Spherical Micelles with Hydrophilic Channels and the Controlled Release of Ibuprofen. Macromol Rapid Commun, 2008,29:1895-1901.
    [95]Deng Y H, Deng C H, Zhao D Y, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc,2008,130:28-29.
    [96]Riechemann K, Schneider S W, Luger T A, et al. Nanomedicine-challenge and perspective. Angew Chem Int Ed,2009,48:872-897.
    [97]Park J W. Liposome-based drug delivery in breast cancer. Breast Cancer Res,2002,4: 95-99.
    [98]Romberg B, Hennink W E, Strom G. Sheddable coatings for long-circulating nanoparticles. Pharm Res,2008,25:55-71.
    [99]Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs,1997,54:15-21.
    [100]Harris J M, Chess R B. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discovery,2003,2:214-221.
    [101]Rapoport N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int J Pharm,2004,277:155-162.
    [102]Ferrari M. The mathematical engines of nanomedicine. Small,2008,4:20-25.
    [103]Decuzzi P, Ferrari M. Design Maps for Nanoparticles Targeting the Diseased Microvasculature. Biomaterials,2008,29:377-384.
    [104]Decuzzi P, Gentile F, Ferrari M, et al. Flow chamber analysis of size effects in the adhesion of spherical particles. Int J Nanomed,2007,2:689-696.
    [105]Decuzzi P, Lee S, Bhushan B, et al. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng,2005,33:179-190.
    [1]Rosler A, Vandermeulen G W M, Klok H A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Delivery Rev,2001,53: 95-108.
    [2]Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Delivery Rev,2002,54:203-222.
    [3]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv Drug Delivery Rev,2001,47:113-131.
    [4]Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Delivery Rev,2003,55:403-419.
    [5]Adams M L, Lavasanifar A, Kwon G S. Amphiphilic block copolymers for drug delivery. J Pharm Sci,2003,92:1343-1355.
    [6]Schild H G. Poly(N-isopropylacrylamide):experiment, theory and application. Prog Polym Sci,1992,17:163-249.
    [7]Maeda T, Takenouchi M, Yamamoto K, et al. Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-hydroxyisopropylacrylamide. Biomacromelecules,2006,7: 2230-2236.
    [8]Chang C, Wei H, Quan C Y, et al. Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polymer Sci, Part A:Polym Chem,2008, 46:3048-3057.
    [9]Zhu J L, Zhang X Z, Cheng H, et al. Synthesis and characterization of well-defined, amphiphilic poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-poly(ε-caprolactone)]n graft copolymers by RAFT polymerization and macromonomer method. J Polymer Sci, Part A:Polym Chem,2007,45:5354-5364.
    [10]Walther A, Millard P E, Goldmann A S, et al. Bis-hydrophilic block terpolymers via RAFT polymerization:toward dynamic micelles with tunable corona properties. Macromolecules,2008,41:8608-8619.
    [11]Bai R K, You Y Z, Pan C Y. Study on controlled free-radical polymerization in the presence of dithiobenzoic acid (DTBA). Polym Int,2000,49:898-902.
    [12]Zhang J Y, Jiang X, Zhang Y F, et al. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability. Macromolecules,2007,40:9125-9132.
    [13]Lim D W, Choi S H, Park T G. A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun,2000,21:464-471.
    [14]Schilli C, Lanzendorfer M G, Muller A. Benzyl and cumyl dithiocarbamates as chain transfer agents in the RAFT polymerization of N-isopropylacrylamide. in situ FT-NIR and MALDI-TOF MS investigation. Macromolecules,2002,35:6819-6827.
    [15]Duan Q, Miura Y, Narumi A, et al. Synthesis and thermoresponsive property of end-functionalized poly(N-isopropylacrylamide) with pyrenyl group. J Polymer Sci, Part A: Polym Chem,2006,44:1117-1124.
    [16]Le H M, Lefay C, Davis T P, et al. Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. J Polymer Sci, Part A:Polym Chem,2008,46: 3058-3067.
    [17]Wang A R, Zhu S. Modeling the Reversible Addition-Fragmentation Transfer Polymerization Process, J Polymer Sci Part A:Polym Chem,2003,41:1553-1556.
    [18]Teodorescu M, Matyjaszewski K. Atom transfer radical polymerization of (meth) acrylamides. Macromolecules,1999,32:4826-4831.
    [19]Albertsson A C, Varma I K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules,2003,4:1466-1486.
    [20]Yusa S, Shimada Y, Mitsukami Y, et al. Heat-induced association and dissociation behavior of amphiphilic diblock copolymers synthesized via reversible addition-fragmentation chain transfer radical polymerization. Macromolecules,2004,37: 7507-7513.
    [21]Voets I K, Moll P M, Aqil A, et al. Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona. J Phys Chem B,2008,112:10833-10840.
    [22]Lavasanifar A, Samuel J, Kwon G S. Polyethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Delivery Rev,2002,54:169-190.
    [23]Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly (ethylene glycol)-poly-(β-benzyl-L-aspartate) copolymer micelles:their pharmaceutical characteristics and biological significance. J Controlled Release,2000,64:143-153.
    [1]Soussan E, Cassel S, Blanzat M, et al. Drug delivery by soft matter:matrix and vesicular carriers. Angew Chem Int Ed,2009,48:274-288.
    [2]Chang C, Wei H, Quan C Y, et al. Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci, Part A:Polym. Chem,2008, 46:3048-3057.
    [3]Sun T M, Du J Z, Yan L F, et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials,2008,29: 4348-4355.
    [4]Yuan X D, Li L, Rathinavelu A, et al. SiRNA drug delivery by biodegrad-able polymeric nanoparticles. Nanotechnology,2006,6:2821-2828.
    [5]Haag R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed,2004,43:278-282.
    [6]Riehemann K, Schneider S W, Luger T A, et al. Nanomedicine-challenge and perspectives. Angew Chem, Int Ed,2009,48:872-892.
    [7]Rosler A, Vandermeulen G W M, Klok H A, et al. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Delivery Rev,2001,53:95-108.
    [8]Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discovery,2003,2: 347-360.
    [9]Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Delivery Rev,2003,55:403-419.
    [10]Tsuji H. Poly(lactide) stereocomplexes:formation, structure, properties, degradation, and applications. Macromol Biosci,2005,5:569-597.
    [11]Chen L, Xie Z G, Zhuang X L, et al. Controlled release of urea encapsulated by starch-g-poly(L-lactide). Carbohyd Polym,2008,72:342-348.
    [12]Nasongkla N, Shuai X, Ai H, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem, Int Ed,2004,43:6323-6327.
    [13]Xiong X B, Mahmud A, Uludag H, et al. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res,2008.25: 2555-2566.
    [14]Khanal A, Inoue Y, Yada M, et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J Am Chem Soc,2007,129:1534-1535.
    [15]Kim S H, Tan J P K, Nederberg F, et al. Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers. Macromolecules. 2009,42:25-29.
    [16]Li G Y, Shi L Q, Ma R J, et al. Formation of complex micelles with double-responsive channels from self-Assembly of two diblock copolymers. Angew Chem, Int Ed,2006,45: 4959-4962.
    [17]Gohy J F, Willet N, Varshney S, et al. Core-shell-corona micelles with a responsive shell. Angew Chem, Int Ed,2001,40:3214-3216.
    [18]Chen X, An Y L, Zhao D Y, et al. Core-shell-corona Au-micelle composites with a tunable smart hybrid shell. Langmuir,2008,24:8198-8204.
    [19]Lin J P, Zhu J Q, Chen T, et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials,2009,30:108-117.
    [20]Voets I K, Moll P M, Aqil A, et al. Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona. J Phy Chem B,2008,112:10833-10840.
    [21]Hui T R, Chen D Y, Jiang M, A one-step approach to the highly efficient preparation of core-stabilized polymeric micelles with a mixed shell formed by two incompatible polymers. Macromolecules,2005,38:5834-5837.
    [22]Hales M, Barner-Kowollik C, Davis T P, et al. Shell-cross-linked vesicles synthesized from block copolymers of poly(D,L-lactide) and poly(N-isopropyl acrylamide) as thermoresponsive nanocontainers. Langmuir,2004,20:10809-10817.
    [23]Wang C H, Li H, Zhao X, Ring opening polymerization of L-lactide initiated by creatinine. Biomaterials,2004,25:5797-5801.
    [24]Li H, Wang C H, Bai F, et al. Living ring-opening polymerization of L-lactide catalyzed by Red-Al. Organometallics,2004,23:1411-1415.
    [25]Riley T, Stolnik S, Heald C R, et al. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir,2001,17:3168-3174.
    [26]Convertine A J, Ayres N, Scales C W, et al. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules,2004,5:1177-1180.
    [27]Stenzel M H, Barner-Kowollik C, Davis T P, Amphiphilic Block Copolymers Based on Poly(2-acryloyloxyethyl phosphorylcholine) Prepared via RAFT Polymerisation as Biocompatible Nanocontainers. Macromol Biosci,2004,4:445-453.
    [28]Luo Y L, Yao X J, Yuan J F, et al. Preparation and drug controlled-release of polyion complex micelles as drug delivery systems. Colloids Surf, B:Biointerfaces,2009,68: 218-224.
    [29]吕娟,安英丽,黄楠等.带有可调通道的嵌段共聚物胶束对药物的控制释放.高等化学学报,2007,28:982-986.
    [30]Zhuang Y, Lin J P, Wang L Q, et al. Self-assembly behavior of AB/AC diblock copolymer mixtures in dilute solution. J Phys Chem B,2009,113:1906-1913.
    [31]Li Z, Xiong D, Xu B, et al. Fabrication of an asymmetric hollow particle with a thermo-sensitive PNIPAM inside corona. Polymer,2009,50:825-831.
    [32]Schild H G, Poly(N-isopropylacrylamide):experiment, theory and application. Prog Polym Sci,1992,17:163-249.
    [33]Liu S Q, Tong Y W, Yang Y Y, Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials,2005,26: 5064-5074.
    [34]Govender T, Stolnik S, Xiong C D, et al. Drug-polyionic block copolymer interactions for micelle formation:physicochemical characterisation. J Controlled Release,2001,75: 249-258.
    [35]Li S M, Molina 1, Martinez M B, et al. Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers. J Materials Science:Materials in Medicine,2002,13:81-86.
    [36]Gan Z H, Yu D H, Zhong Z Y, et al. Enzymatic degradation of poly(-caprolactone)/poly(DL-lactide) blends in phosphate buffer solution. Polymer,1999,40: 2859-2862.
    [1]Chen D, Li L L, Tang F Q, et al. Facile and scalable synthesis of tailored silica"nanorattle" structures. Adv Mater,2009,21:3804-3807.
    [2]Zhang L X, Li P C, Liu X H, et al. The effect of template phase on the structures of As-synthesized silica nanoparticles with fragile didodecyldimethylammonium bromide vesicles as templates. Adv Mater,2007,19:4279-4283.
    [3]Caruso F. Nanoengineering of particle surfaces. Adv Mater,2001,13:11-22.
    [4]Li G L, Liu G, Kang E T, et al. pH-Responsive hollow polymeric microspheres and concentric hollow silica microspheres from silica@polymer core-shell microspheres. Langmuir,2008, 24:9050-9055.
    [5]Yeo K M, Shin J, lee I S. Reductive dissolution of Fe3O4 facilitated by the Au domain of a Fe3O4/Au hybrid nanocrystal:formation of a nanorattle structure composed of a hollow porous silica nanoshell and entrapped Au nanocrystal. Chem Commun,2010,46:64-66.
    [6]Yan E Y, Ding Y, Chen C J, et al. Polymer/silica hybrid hollow nanospheres with pH-sensitive drug release in physiological and intracellular environments. Chem Commun,2009,19: 2718-2720.
    [7]Corma A, Diaz U, Arrica M, et al. Organic-inorganic nanospheres with responsive molecular gates for drug storage and release. Angew Chem Int Ed,2009,48:6247-6250.
    [8]Yang J, Lee J, Kang J Y, et al. Hollow silica nanocontainers as drug delivery vehicles. Langmuir,2008,24:3417-3421.
    [9]Walsh D, Hopwood J D, Mann S. Crystal tectonics:construction of reticulated calcium phosphate frameworks in bicontinuous reverse microemulsions. Science,1994,264: 1576-1578.
    [10]Yamaguchi A, Kaneda H, Fu W S, et al. Structural control of surfactant-templated mesoporous silica formed inside columnar alumina pores. Adv Mater,2008,20:1034-1037.
    [11]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279:548-552.
    [12]Khanal A, Inoue Y, Yada M, et al. Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. J Am Chem Soc,2007,129:1534-1535.
    [13]Schmidt H T, Ostafin A E. Liposome directed growth of calcium phosphate nanoshells. Adv Mater,2002,14:532-535.
    [14]Rana R K, Mastai Y, Gedanken A. Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Adv Mater,2002,14:1414-1418.
    [15]Li Y S, Shi J L, Hua Z L, et al. Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Lett, 2003,3:609-612.
    [16]Schacht S, Huo Q, Voigt-Martin I G, et al. Oil-water interface templating of mesoporous macroscale structures. Science,1996,273:768-771.
    [17]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc,2008,130:28-29.
    [18]Tan B, Lehmler H, Vyas S M, et al. Fluorinated-surfactant-templated synthesis of hollow silica particles with a single layer of mesopores in their shells. Adv Mater,2005.17: 2368-2371.
    [19]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc,1992,114:10834-10843.
    [20]Chen Y L, Li Y, Chen Y X, et al. Preparation of hollow silica spheres with holes on the shells. Chem Commun,2009,34:5177-5179.
    [21]Xia J H, Zhang X, Matyjaszewski K. Atom transfer radical polymerization of 4-vinylpyridine. Macromolecules,1999,32:3531-3533.
    [22]Ciampolini M, Nardi N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and cooper with tri(2-dimethylaminoethyl)amine. Inorg Chem,1966,5:41-44.
    [23]Zhang W Q, Shi L Q, Wu K, et al. Thermoresponsive micellization of Poly(ethyleneglycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules,2005,38: 5743-5747.
    [24]Xu Y L, Shi L Q, Ma R J, et al. Synthesis and micellization of thermo-and pH-responsive block copolymer of poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine). Polymer,2007, 48:1711-1717.
    [25]Li G Y, Shi L Q, Ma R J, et al. Formation of complex micelles with double-responsive channels from self-Assembly of two diblock copolymers. Angew Chem Int Ed,2006,45: 4959-4962.
    [26]Lin J P, Zhu J, Chen T, et al. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials,2009,30:108-117.
    [27]Zhuang Y, Lin J P, Wang L Q, et al. Self-assembly behavior of AB/AC diblock copolymers mixtures in dilute solution. J Phys Chem B,2009,113:1906-1913.
    [28]Sidorov S N, Bronstein L M, Kabachii Y A, et al. Influence of metalation on the morphologies of Poly(ethylene oxide)-block-poly(4-vinylpyridine) block copolymer micelles. Langmuir,2004,20:3543-3550.
    [29]Tu Y F, Wan X H, Zhang D, et al. Self-assembled nanostructure of a novel coil-rod diblock copolymer in dilute solution. J Am Chem Soc,2000,122:10201-10205.
    [1]Perez J M, O'Loughin T, Simeone F J, et al. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc,2002,124:2856-2857.
    [2]Kinsella J M, Ivanisevic A. Enzymatic clipping of DNA wires coated with magnetic nanoparticles. J Am Chem Soc,2005,127:3276-3277.
    [3]Xu C J, Xu K M, Gu H W, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc,2004,126: 9938-9939.
    [4]Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc,2006,128:688-689
    [5]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application. Angew Chem Int Ed,2007,46:1222-1244.
    [6]Yang X Q, Chen Y H, Yuan R X, et al. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer,2008,48:3477-3485.
    [7]Chang Y, Bai Y P, Teng B, et al. A new drug carrier:magnetite nanoparticles coated with amphiphilic block copolymer. Chin Sci Bull,2009,54:1190-1196.
    [8]Hu F X. Neoh K G, Kang E T. Synthesis of folic acid functionalized PLLA-b-PPEGMA nanoparticles for cancer cell targeting. Macromol Rapid Commun,2009,30:609-614.
    [9]Ren J, Jia M H, Ren T B, et al. Preparation and characterization of PNIPAAm-b-PLA/Fe3O4 thermo-responsive and magnetic composite micelles. Mater Lett,2008,62:4425-4427.
    [10]Guo M, Yan Y, Zhang H k,et al. Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery. J Mater Chem,2008,18:5104-5112.
    [11]Lu J, Ma S, Sun J Y, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials,2009,30:2919-2928.
    [12]Thunemann A F, Schutt D, Kaufner L,et al. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir, 2006,22:2351-2357.
    [13]Chen F H, Gao Q, Ni J Z. The grafting and release behavior of doxorubicin from Fe3O4@SiO2 core-shell structure nanoparticles via an acid cleaving amide bond:the potential for magnetic targeting drug delivery. Nanotechnology,2008,19:165103.
    [14]Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion:the effect of nonionic surfactants. Langmuir, 2001,17:2900-2906.
    [15]王孝杰,孙建平,李效东.氨基化单甲氧基聚乙二醇的合成研究.精细化工中间体,2006,36:40-42.
    [16]马建标,张国林,吴秋华.AB型两亲聚L-谷氨酸-苄酯-聚乙二醇嵌段共聚物的合成与表征.高分子学报,2004,2:223-227.
    [17]Lu Y, Yin Y D, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett,2002,2:183-186.
    [18]Wormuth K. Superparamagnetic latex via inverse emulsion polymerization. J Colloid Interface Sci,2001,241:366-377.
    [19]Tu Y F, Wang X H, Zhang D, et al. Self-assembled nanostructure of a novel coil-rod diblock copolymer in dilute Solution. J Am Chem Soc,2000,122:10201-10205.
    [20]Sturgeon R J, Schulman S G. Electronic absorption spectra and protolytic equilibria of doxorubicin:direct spectrophotometric determination of microconstants. J Pharm Sci,1977, 66:958-961.
    [21]Fu F X, Neoh K G, Kang E T. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials,2006,27: 5725-5733.