漆树产漆组织的结构、发育及其与生漆关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆树为我国重要的特产经济树种,所产生漆是从其树干次生韧皮部采割而来。本文应用植物解剖学、植物化学以及透射电子显微镜技术,对陕西产大红袍、高八尺以及宁陕等漆树品种的茎干树皮的结构、发育及其超微结构变化进行了研究,并对漆树各器官中乳汁道的发生、发育以及乳汁道拟侵填体的结构与发育进行了研究,在此基础上研究探讨了漆树韧皮部组成分子的结构与生漆产量及漆酚同系物含量之间的关系。
     结果表明陕西产三个漆树品种(大红袍、高八尺以及宁陕漆树)茎干树皮的基本结构相似,均由维管形成层、次生韧皮部和周皮组成,维管形成层由纺锤状原始细胞和射线原始细胞组成。次生韧皮部由垂直系统的筛管、伴胞、韧皮薄壁细胞、石细胞、乳汁道以及水平(径向)系统的韧皮射线组成。周皮由栓内层、木栓形成层、木栓层及其木栓层外颓废的组织构成。漆树茎干维管形成层的活动有明显的季节性,冬季休眠,春、夏季细胞分裂活动。在当年产生的具功能韧皮部中的筛管发育成熟,具输导功能,而韧皮薄壁组织和射线尚处于幼嫩期,乳汁道也在分化发育中。其外侧为往年产生的无功能韧皮部,其筛管萎缩,失去输导功能;而且无功能韧皮部中的乳汁道发育成熟,大量分泌生漆,韧皮薄壁体积增大,韧皮射线可增至3-5列细胞。此外,在无功能韧皮部中由部分薄壁细胞分化形成石细胞群,并有部分乳汁道腔内形成拟侵填体堵塞乳汁道。在上述次生韧皮部结构发育过程中,其组成分子的超微结构发生相应的变化。
     漆树乳汁道是由上皮细胞围绕着腔道构成,其外侧又由鞘细胞环绕。漆树各器官中除雄蕊和种子外均有乳汁道的分布,乳汁道主要分布在各器官维管束的韧皮部内,以裂生方式形成,茎的髓部薄壁组织也有少量乳汁道,但其直径较小。其中茎初生韧皮部中乳汁道存在二次发育的现象,雌蕊的柱头中乳汁道还存在裂溶生现象,漆树果实的果皮内的乳汁道结构特殊,其乳汁道鞘细胞发达,而分泌细胞萎缩。
     漆树茎干次生韧皮部的部分乳汁道腔中拟侵填体,由乳汁道上皮细胞增殖形成,其上皮细胞通过平周分裂的方式形成拟侵填体细胞并堵塞乳汁道腔,后期拟侵填体细胞解体,醌类物质聚合成团块状堵塞乳汁道腔。漆树树皮中乳汁道的侵填还存在季节性变化,拟侵填体细胞一般发生在每年秋季,其醌类物质对乳汁道的堵塞发生在拟侵填体细胞解体后并持续到第二年春,第二年春季末期堵塞乳汁道的醌类物质自溶,多数乳汁道腔逐渐恢复畅通;夏季除靠近周皮处得乳汁道被醌类物质堵塞外大部分乳汁道均保持畅通。拟侵填体细胞都发生在漆树无功能韧皮部的乳汁道中,在有功能韧皮部中未见分布,在不同漆树品种的树皮中乳汁道的拟侵填体细胞的形成过程相似,但在形成时间上存在差异。分泌道中产生拟侵填体在裸子植物中已有报道,但在被子植物的分泌道中产生拟侵填体是首次发现。
     不同漆树品种的树皮结构的研究结果表明,其基本结构相同,但在组成分子的大小、数量等方面存在品种间差异;不同漆树品种的生漆产量及生漆中漆酚同系物相对含量也存在差异。对构成漆树次生韧皮部的主要组成分子筛管直径,乳汁道数量、乳汁道平均直径、石细胞群数量、射线数量、树皮平均厚度等指标与生漆产量和漆酚同系物含量进行相关性分析发现,乳汁道数量、乳汁道平均直径和树皮平均厚度与生漆产量和漆酚同系物中的三烯漆酚均呈显著正相关,与二烯漆酚和单烯漆酚相关性不显著,与尚未鉴定的漆酚成分呈负相关,其中,生漆产量与三烯漆酚间呈正相关,而与其它同系物间呈负相关。从而表明,漆树树皮的结构特征、生漆产量和漆酚同系物含量可以作为区分漆树品种的指标之一,并表明漆树的树皮结构与其生漆产量及漆酚成分、三烯漆酚含量具有相关性。
     漆树是我国特有的经济树种,生漆的采割和应用在我国有着悠久的历史。前人对漆树的分布、种质资源、栽培管理、内部结构以及生漆化学等方面已有许多研究,为我国生漆的生产、加工和漆树品种的选育奠定了基础,本项研究是在前人研究基础上,系统研究漆树各器官中乳汁道的结构和发育、茎干韧皮部的结构和发育以及其乳汁道的发生、发育和拟侵填体的发生、分布规律,不同漆树品种主干树皮的结构特点与其生漆产量和漆酚组成的关系,研究结果可为提高生漆产量和质量提供科学依据。并为探讨植物的结构、发育与其次生代谢产物的关系提供新的资料。
Toxicodendron vernicifluum (Stokes) F. A. Barkley is a kind of special economic tree in China, raw lacquer (also known as oriental lacquer) is the sap obtained by tapping lacquer trees. In this study, the bark structure and seasonal development and its ultrastructural changesof different lacquer trees varieties were characterized with the anatomical technique. Laticiferous canals development in different organs and tylosoids dynamic were also researched in this study. At the basis of those study, comparative studies of bark structure, lacquer yield and urushiel content were carried out with different cultivated T. vernicifluum varieties.
     The results showed that, the3varieties (Dahongpao, Gaobachi and Ningshan) had roughly similar bark structures, the bark was composed by vascular cambium, secondary phloem and periderm. The vertical system of secondary phloem consists of sieve tubes, companion cells, parenchyma cells, stone cells and secretory ducts, and radial system were composed with the phloem rays. Cambium activity has obvious seasonal variations, vascular cambium dormant in the winter and active in spring and summer. In the newly formed secondary phloem, sieve tube has been developed and mature with transporting function, parenchyma and phloem rays were still in the tender period, the secretion ducts were also in the differentiation period, this part of phloem known as the functional phloem. Outside of the functional phloem secondary phloem is the formation of in previous years, sieve tubes becomes atrophic and loss of transporting function, this part of phloem known as the non-functional phloem and occupied most of the area of bark; in non-functional phloem, the size of parenchyma cells gradually increased and squeezed sieve tubes, Secretory ducts development of mature and secreted a large number of lacquer in the canals, phloem rays can be increased to3-5rows. Moreover, part of the parenchyma cells formed into stone cells cluster in non-functional phloem. Corresponding changes of phloem were also found at ultrastructure level.
     The mature lumina were surrounded by a layer of secretory cells, which also had two to three layers of surrounding sheath cells. The T. vernicifluum laticiferous canals were mainly distributed in the vascular bundle and produced by the vascular cambium in the functional phloem through schizogenesis. Laticiferous canals distributed in almost all of the organs except the stamens and seeds. Laticiferous canals distributed in pith parenchyma, but it has smaller diameter. Secondary development of laticiferous canals were observed in primary phloem, Schizo-lysigenous of laticiferous canalswere also observed in the stigma of the pistil. Laticiferous canals which distributed in the lacquer tree fructification has special structure, the sheath cells of those laticiferous canals were evolutive but the secretory cells were shrinking.
     Tylosoids in the lumina oflaticiferous canals originated from epithelia through periclinal division. In the later dovelopment stages, the tylosoid cells disaggregated and the laticiferous canals were blocked by quinone conglomerations. Laticiferous canal invasions varied seasonally, at the beginning of traditional raw lacquer-tapping season, the quinone conglomerations dissolved, laticiferous canal function was renewed and epithelia secreted raw lacquer; at the end of the traditional raw lacquer-tapping season, tylosoids formed and blocked the laticiferous canals by quinone conglomerations until the next raw lacquer-tapping season. The irreversible invasion was mainly distributed in the nonfunctional phloem region near the periderm. These results suggest that the seasonal changes of tylosoids might provide insights into the defense mechanism of laticiferous canals against the invasion of other substances when cavity pressure decreases at the end of the tapping season.
     The bark structure and major chemical composition of raw lacquer in four cultivated varieties of the lacquer tree, T. vernicifluum, were characterized using the paraffin section technique and high-performance liquid chromatography, respectively. The four varieties had roughly similar bark structures; however, they differed in bark thickness, raw lacquer yields and urushiol homologue content. Laticiferous canal diameter and bark thickness were positively correlated with raw lacquer yields and triene-urushiol content. Our data suggest that bark structure, raw lacquer yield and urushiol homologue content are useful indicators for distinguishing among these four varieties.
     Raw (oriental) lacquer is the sap obtained by tapping lacquer trees, it has long been used as a coating and painting material because of its excellent waterproofing and antioxidative abilities and corrosion resistance. During past decades, most studies on T. vernicifluum have focused on the morpho-genesis and development of laticiferous canals and the chemical composition of raw lacquer, laid the foundation of lacquer production, processing and lacquer tree varieties bred. This study was carried out on the basis of previous studies, the bark structure and seasonal development and its ultrastructural changes and laticiferous canals development in different organs and tylosoids dynamic were systematicresearched in this study. At the basis of those study, comparative studies of bark structure, lacquer yield and urushiol content were carried out with different cultivated T. vernicifluum varieties. The results can provide a scientific basis to improve the yield and quality of raw lacquer, also can provide new datafor the relationship among the plant structure and development and secondary metabolites production.
引文
[1]中国植物志编辑委员会.中国植物志(第四十五卷,第一分册)[M],1980
    [2]张飞龙,张武桥,魏朔南.中国漆树资源研究及精细化应用[J].中国生漆,2007,(2):36-50
    [3]Beaman J. H. Allergenic Asian Anacardiaceae[J]. Clinics in Dermatology,1986, 4(2):191-203
    [4]Hong D. H.,Han S. B.,Lee C. W., et al. Cytotoxicity of urushiols isolated from sap of Korean lacquer tree (Rhus vernicifera Stokes)[J]. Archives of Pharmacal Research,1999,22(6):638-641
    [5]Vogl O. Oriental lacquer, poison ivy, and drying oils[J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(24):4327-4335
    [6]Webb M. Lacquer:technology and conservation:a comprehensive guide to the technology and conservation of Asian and European lacquer[M], Butterworth-Heinemann,2000
    [7]张飞龙.中国漆文化历史渊源研究[J].中国生漆,2006,25(1):6-20
    [8]胡正海,王秦生.漆树乳汁道的研究[J].科学通报,1979,(17):809-812
    [9]赵桂仿,胡正海.漆树乳汁道周围组织的亚显微结构及其与生漆产生关系的研究[J].林业科学,1990,(1):17-21
    [10]赵桂仿,胡正海.漆树乳汁道分泌细胞的超微结构及其与生漆产生和分泌关系的研究[J].植物学报,1991,(1):26-30
    [11]Yamauchi Y., Oshima R. and Kumanotani J. Configuration of the olefinic bonds in the heteroolefinic side-chains of japanese lacquer urushiol:separation and identification of components of dimethylurushiol by means of reductive ozonolysis and high-performance liquid chromatography[J]. Journal of Chromatography A,1982,243(1):71-84
    [12]Kim H. S.,Yeum J. H.,Choi S. W., et al. Urushiol/polyurethane-urea dispersions and their film properties[J]. Progress in Organic Coatings,2009,65(3):341-347
    [13]王秦生,胡正海.选育漆树优良品种的解剖学指标的初步研究[J].林业科学,1981,17(2):217-220
    [14]肖育檀.我国漆树的分布中心和可能的起源地[J].中国生漆,1982,1:22-24
    [15]冯志坚.漆树品种分类初探[J].中国生漆,1984,3(3):1-5
    [16]张继明.三十五年来我国漆树研究的回顾及展望[J].中国生漆,1984,3(4):7-14
    [17]龙斯曼.四川省漆树品种资源调查报告[J].经济林研究,1984,1:11-13
    [18]傅淑颖,魏朔南和胡正海.漆树生物学的研究进展[J].中国野生植物资源,2005,24(5):12-16
    [19]傅淑颖,魏朔南,胡正海.漆树各器官中乳汁道的分布与结构特征研究[J].西北植物学报,2007,(4):4651-4656
    [20]胡正海,赵桂仿.漆树乳汁道的结构规律及应用[J].Yushania,1992,9:145-164
    [21]赵桂仿,胡正海.漆树茎次生韧皮部超微结构的研究[J].西北植物研究,1985,(1):77-82
    [22]Ho K. D.,Chol J. O.,Yang J. S., et al. Analysis of urushiols by liquid chromatography/atmospheric pressure chemical ionization-ion trap mass spectrometry[M]. Colchester, ROYAUME-UNI:Taylor & Francis,2003
    [23]赵喜萍,魏朔南.中国生漆化学成分研究[J].中国野生植物资源,2007a,(6):1-4
    [24]张飞龙,张瑞琴.生漆的品质及其检验技术[J].中国生漆,2008,26(2):51-60
    [25]Kim D. H.,Choi J. O.,Yang J. S., et al. Analysis of Urushiols by Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Ion Trap Mass Spectrometry[J]. Journal of liquid chromatography & related technologies,2003, 26(1):17-28
    [26]Honda T.,Lu R.,Sakai R., et al. Characterization and comparison of Asian lacquer saps[J]. Progress in Organic Coatings,2008,61(1):68-75
    [27]陈振峰.泌漆植物及其漆酚类物质[J].中国生漆,1994,13:24-37
    [28]周光龙.漆酚类化合物及其应用展望[J].中国生漆,2004,(2):38-43
    [29]雷福厚,蓝虹云,安鑫南.多酚氧化酶催化漆酚的氧化聚合反应研究[J].林产化学与工业,2003,23(3):53-55
    [30]Elsohly M. A.,Adawadkar P. D.,Ma C. Y., et al. Separation and characterization of poison ivy and poison oak urushiol components[J]. Journal of Natural Products,1982,45(5):532-538
    [31]Sunthankar S. and Dawson C. R. The Structural Identification of the Olefinic Components of Japanese Lac Urushiol 1[J]. Journal of the American Chemical Society,1954,76(20):5070-5074
    [32]Ma C. Y., Elsohly M. A. and Baker J. K. High-performance liquid chromatographic separation of urushiol congeners in poison ivy and poison oak[J]. Journal of Chromatography A,1980,200:163-169
    [33]但悠梦,雷福厚.漆酚柱层析分离初探[J].湖北民族学院学报:自然科学版,1998,16(6):42-44
    [34]李润兰.生漆化学成分的测定方法[J].中国生漆,1984,2:41-43
    [35]雒礼润.谈分光光度法测定漆酚总量[J].中国生漆,1990,9(3):34-36
    [36]毛蕾蕾.生漆中漆酚的测定方法研究[J].中国涂料,2008,23(12):56-58
    [37]吴采樱,曾昭睿,张小平,等.薄层法分析研究中国生漆中的漆酚组成[J].中国生漆,1983,2
    [38]达世禄.生漆中漆酚的气相色谱测定[J].武汉大学学报(理学版),1979,4:44-52
    [39]Baer H.,Hooton M.,Fales H., et al. Catecholic and other constituents of the leaves of Toxicodendron radicans and variation of urushiol concentrations within one plant[J]. Phytochemistry,1980,19(5):799-802
    [40]Du Y., Oshima R. and Kumanotani J. Reversed-phase liquid chromatographic separation and identification of constituents of uroshiol in the sap of the lac tree, Rhus vernicifera[J]. Journal of Chromatography A,1984,284:463-473
    [41]Draper W. M.,Wijekoon D.,Mckinney M., et al. Atmospheric Pressure Ionization LC-MS-MS Determination of Urushiol Congeners[J]. Journal of agricultural and food chemistry,2002,50(7):1852-1858
    [42]李林,魏朔南.生漆漆酚类化合物的HPLC-ESI-MS分析[J].中草药,2008,39(12):1786-1787
    [43]Wolfender J. L. HPLC in natural product analysis:the detection issue[J]. Planta Medic,2009,75(07):719-734
    [44]张飞龙.中国漆文化起源问题研究[J].中国生漆,2005,(1):1-6+40
    [45]黄鑫,唐功麒.钛酸酯改性漆酚防腐涂料性能研究[J].中国生漆,1995,(1):21-27
    [46]潘恩霆,黄载福.稀土饱和漆酚冠醚配合物的合成及镧(Ⅲ)离子选择电极的研究[J].应用化学,1994,11(1):20-23
    [47]唐洁渊,章文贡.电化学聚合漆酚及其钬配合物研究[J].分子科学学报:中英文版,2002,18(2):90-97
    [48]黄载福,喻宗源,束家有.饱和漆酚冠醚的研究进展[J].有机化学,1985,6:497-502
    [49]车鸿钧.干漆的药用价值[J].中国生漆,1984,(3):45-48
    [50]周光龙.干漆的药用[J].中国生漆,1990,(2):48
    [51]赵猛,魏朔南,胡正海.生干漆及煅干漆的生药学研究[J].中草药,2010a,(12):2089-2092
    [52]赵猛,魏朔南,胡正海.干漆及其原植物漆树的研究概况[J].中草药,2010b,(3):510-512
    [53]周易勇.漆酶的分布[J].中国生漆,1992,11(3):26-27
    [54]季立才,胡培植.漆酶的结构,功能及其应用[J].氨基酸和生物资源,1996,18(1):25-29
    [55]季立才,胡培植.漆酶催化氧化反应研究进展[J].林产化学与工业,1997,17(1):79-84
    [56]裴继诚,于秀玲,张方东.漆酶/对羟基苯甲酸丁酯处理未漂浆提高抗菌性能的研究[J].中国造纸,2011,30(9):11-14
    [57]郭明高,郭庆宇.漆酶的提纯[J].中国生漆,1992,11(2):7-9
    [58]韦建学,张飞龙,魏朔南.漆树漆酶同功酶研究[J].中国生漆,2000,19(4):4-7
    [59]万云洋,杜予民,杨建红,等.漆树漆酶两种同工酶分离纯化与特性研究[J].武汉大学学报(理学版),2003,49(2):201-204
    [60]曹治云,郑腾,谢必峰,等.漆酶工业应用的研究进展[J].生物技术通讯,2004,15(4):414-416
    [61]王海磊,李宗义.三种重要木质素降解酶研究进展[J].生物学杂志,2003,20(5):9-11
    [62]秦文娟,余惠生.利用漆酶降解有机污染物[J].中国造纸,2001,20(5):58-62
    [63]陈辉,张剑波,刘小鹏,等.漆酶催化降解氯酚类有机污染物[J].北京大学学报:自然科学版,2005,41(4):605-611
    [64]张学才,徐美红,李丽,等.白腐真菌漆酶处理几种有毒环境污染物的研究[J].化学与生物工程,2006,23(9):40-42
    [65]陈永忠,谭晓风.木质素生物合成及其基因调控研究综述[J].江西农业大学学报,2003,25(4):613-617
    [66]胡平平,付时雨.漆酶催化活性中心结构及其特性研究进展[J].林产化学与工业,2001,21(3):69-75
    [67]张晓昱,黄慧艳.漆酶在食品工业中的研究与应用进展[J].食品科技,2003,4:4-7
    [68]单丽君,郑晓冬.漆酶在食品工业的应用进展[J].食品科学,2004,25(1):188-192
    [69]张寒飞,杨婉身,黄乾明.磁性固定化漆酶在苹果汁除酚中的应用研究[J].四川食品与发酵,2005,41(2):11-15
    [70]张春晖,张军翔.白葡萄酒的马德拉化与酶处理[J].酿酒科技,2001,3:55-57
    [71]堵国成,赵政,陈坚.真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[J].江南大学学报:自然科学版,2003,2(1):83-86
    [72]姜标,徐向亚,李祖义.用于生物氧化的蓝色漆酶[J].有机化学,2008,28(10):1715-1723
    [73]钞亚鹏,钱世钧.真菌漆酶及其应用[J].生物工程进展,2001,21(5):23-28
    [74]方伟,朱业香.免疫电化学传感器概况[J].国外分析仪器技术与应用,1993,(4):1-5
    [75]杜予民,孔振武,李海萍.生漆多糖的分离与结构研究[J].高分子学报,1994,3:301-306
    [76]杜予民,杨建红,孔振武,等.野生和人工栽培漆树液多糖的分子结构与生物活性[J].高等学校化学学报,1999,20(3):399-402
    [77]富天玲,杜予民.生漆多糖对免疫功能的影响[J].上海免疫学杂志,1994,14(1):55-55
    [78]王樱华,黄文龙,张惠斌.化学修饰硫酸酯化多糖抗HIV活性研究进展[J].药物生物技术,2007,14(5):372-375
    [79]Baker D. A. Long-distance vascular transport of endogenous hormones in plants and their role in source:sink regulation[J]. Israel Journal of Plant Sciences,2000, 48(3):199-204
    [80]Madey E., Nowack L. M. and Thompson J. E. Isolation and characterization of lipid in phloem sap of canola[J]. Planta,2002,214(4):625-634
    [81]Lough T. J. and Lucas W. J. Integrative plant biology:role of phloem long-distance macromolecular trafficking[J]. Annual Review of Plant Biology, 2006,57:203-232
    [82]Dinant S. and Lemoine R. The phloem pathway:New issues and old debates[J]. Comptes Rendus Biologies,2010,333(4):307-319
    [83]郝秉中,吴继林,云翠英.巴西橡胶树有输导功能的韧皮部与采胶的关系[J].植物学报,1980a,(3):227-231
    [84]张振珏.,林锦仪.,陈忠仁.,等.四种单宁植物形成层的活动周期和次生韧皮部的季节变化[J].云南植物研究,1997,(3):271-274
    [85]Samanani N.,Alcantara J.,Bourgault R., et al. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy[3]. The Plant Journal,2006,47(4):547-563
    [86]Evert R. F. and Esau K. Esau's Plant anatomy:meristems, cells, and tissues of the plant body:their structure, function, and development[M], Wiley-Liss,2006
    [87]Behnke H. D. and Sjolund R. D. Sieve elements. Comparative structure, induction and development[M]. Berlin, etc.:Springer-Verlag,1990
    [88]王海洋,胡玉熹.裸子植物筛胞的结构和发育[J].植物学通报,1992,9(3):23-26
    [89]刘捷平.筛分子的细微结构和发生[J].生物学通报,1993,7:1-3
    [90]郝秉中,吴继林.次生韧皮部的超微结构[J].植物学通报,1993.63-69
    [91]尹增芳,樊汝汶.美洲黑杨次生韧皮部筛管发育过程中原生质组分选择性自溶现象[J].北京林业大学学报,2007,29(3):1-7
    [92]Evert R. F. The cambium and seasonal development of the phloem in Pyrus malus[J]. American Journal of Botany,1963,50(2):149-159
    [93]Derr W. F. and Evert R. F. The cambium and seasonal development of the phloem in Robinia pseudoacacia[J]. American Journal of Botany,1967:147-153
    [94]Esau K. Phloem structure in the grapevine and its seasonal changes[J]. Hilgardia, 1948,18(5):217-296
    [95]张振珏.多年生植物韧皮部发育的季节变化和筛分子寿命[J].植物学通报,1991,8(4):21-25
    [96]Lerchl J.,Geigenberger P.,Stitt M., et al. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants[J]. The Plant Cell Online,1995,7(3):259-270
    [97]Van Bel A. The phloem, a miracle of ingenuity[J]. Plant, Cell & Environment, 2003,26(1):125-149
    [98]华振基,陶维海.大麻茎初生维管组织和初生韧皮纤维发生规律的解剖学研究[J].中国麻作,1991,(2):10-12
    [99]Sterling C. Sclereid development and the texture of Bartlett pears[J]. Journal of Food Science,1954,19(1-6):433-443
    [100]金延明,李胜华,蔡少青.植物性中药材石细胞类型与特征鉴别[J].中国中药杂志,1994,19(2):73-75
    [101]严启新,潘明顺.39种中药石细胞特征的研究及分析[J].时珍国药研究,1998,9(2):141-142
    [102]Tao S.,Khanizadeh S.,Zhang H., et al. Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species[J]. Plant Science,2009,176(3): 413-419
    [103]Zhong R., Ripperger A. and Ye Z. H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants[J]. Plant physiology,2000,123(1):59-70
    [104]Fahn A. and Werker E. Seasonal cambial activity[M]. The vascular cambium. Research Studies Press:Taunton (UK),1990:139-157
    [105]Alfieri F. and Evert R. Seasonal phloem development in Pinus strobus[J]. American Journal of Botany,1965,52:626-627
    [106]Ewers F. W. and Aloni R. Seasonal secondary growth in needle leaves of Pinus strobus and Pinus brutia[J]. American Journal of Botany,1987,74(7):980-987
    [107]Tucker C. M. and Evert R. F. Seasonal development of the secondary phloem in Acer negundo[J]. American Journal of Botany,1969,56(3):275-284
    [108]Wimmer R. and Grabner M. Effects of climate on vertical resin duct density and radial growth of Norway spruce [Picea abies (L.) Karst.][J]. Trees-Structure and Function,1997,11(5):271-276
    [109]张英伯,郑槐明,龙瑞芝,等.八种华北树木形成层季节活动及韧皮部与木质部形成的研究[J].林业科学,1982,(4):366-379
    [110]吴继林,郝秉中.海南岛若干落叶树木有功能韧皮部的季节变化[J].云南植物研究,1992,(2):157-163+232
    [11 1]张振珏,陈忠仁,张永田.黄檀属两种树木形成层的活动周期和次生韧皮部的季节变化[J].植物学报,1994,(4):300-304+332
    [112]张振珏,林锦仪,张永田.女贞和白蜡树的树皮结构及次生韧皮部发育的季节变化[J].热带亚热带植物学报,1994,(3):28-33
    [113]Fahn A. Secretory tissues in plants[M], Academic Press.,1979
    [114]Mahlberg P. G. Laticifers:an historical perspective[J]. The Botanical Review, 1993,59(1):1-23
    [115]张永清.植物次生物质的抗虫作用[J].生物学通报,1991,(5):8-9
    [116]Dussourd D. E. Entrapment of aphids and whiteflies in lettuce latex[J]. Annals of the Entomological Society of America,1995,88(2):163-172
    [117]Dussourd D. E. Behavioral sabotage of plant defense:Do vein cuts and trenches reduce insect exposure to exudate?[J]. Journal of Insect Behavior,1999,12(4): 501-515
    [118]Konno K.,Ono H.,Nakamura M., et al. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(5): 1337-1347
    [119]Lewinsohn T. M. The geographical distribution of plant latex[J]. Chemoecology, 1991,2(1):64-68
    [120]French J. Systematic occurrence of anastomosing laticifers in Araceae[J]. Botanical gazette,1988:71-81
    [121]Farrell B. D., Dussourd D. E. and Mitter C. Escalation of plant defense:Do latex and resin canals spur plant diversification?[J]. American Naturalist,1991: 881-900
    [122]Vega A. S., Castro M. A. and Anderson W. R. Occurrence and phylogenetic significance of latex in the Malpighiaceae[J]. American Journal of Botany,2002, 89(11):1725
    [123]Monacelli B.,Valletta A.,Rascio N., et al. Laticifers in Camptotheca acuminata Decne:distribution and structure[J]. Protoplasma,2005,226(3):155-161
    [124]Helmus M. R. and Dussourd D. E. Glues or poisons:which triggers vein cutting by monarch caterpillars?[J]. Chemoecology,2005,15(1):45-49
    [125]Lev-Yadun S. Intrusive growth-the plant analog of dendrite and axon growth in animals[J]. New Phytologist,2001,150(3):508-512
    [126]Pickard W. F. Laticifers and secretory ducts:two other tube systems in plants[J]. New Phytologist,2008,177(4):877-888
    [127]Mahlberg P. G. and Sabharwal P. S. Origin and early development of nonarticulated laticifers in embryos of Euphorbia marginata[J]. American Journal of Botany,1968:375-381
    [128]Lee K. and Mahlberg P. Ultrastructure and development of nonarticulated laticifers in seedlings of Euphorbia maculata L[J]. Journal of Plant Biology, 1999,42(1):57-62
    [129]Nessler C. L. and Mahlberg P. G. Cell wall perforation in laticifers of Papaver somniferum L[J]. Botanical gazette,1977:402-408
    [130]Wang X. Y.,Guo G. Q.,Nie X. W., et al. Cytochemical localization of cellulase activity in pollen mother cells of david lily during meiotic prophase I and its relation to secondary formation of plasmodesmata[J]. Protoplasma,1998,204(3): 128-138
    [131]Pilatzke-Wunderlich I. and Nessler C. L. Expression and activity of cell-wall-degrading enzymes in the latex of opium poppy, Papaver somniferum L[J]. Plant Molecular Biology,2001,45(5):567-576
    [132]Fahn A. Secretory tissues in vascular plants[J]. New Phytologist,1988:229-257
    [133]Monteiro W.,Fahn A.,Caldera W., et al. Ultrastructural observations on the foliar secretory cavities of Porophyllum lanceolatum DC.(Asteraceae)[J]. Flora,1999, 194:113-126
    [134]Raatikainen O.,Taipale H.,Pelttari A., et al. An electron microscope study of resin production and secretion by the glands of seedlings of Betula pendula Roth[J]. New Phytologist,2006,122(3):537-543
    [135]Del Fueyo G M. Ontogenia de las glandulas foliares e involucrales de Tagetes minuta (Compositae)[J]. Bulletin of the Botanical Society of Argentina,1986,24: 403-410
    [136]Monteiro W. R.,Castro M. D. M.,Fahn A., et al. Observations on the development of the foliar secretory cavities of Porophyllum lanceolatum (Asteraceae)[J]. Nordic Journal of Botany,1995,15(1):69-76
    [137]Machado S. R. and Carmello-Guerreiro S. M. Estrutura e desenvolvimento de canais secretores em frutos de Schinus terebinthifolius Raddi (Anacardiaceae)[J]. Acta Botanica Brasilica,2001,15
    [138]Nair M. Some notes on gum and resin ducts and cavities in angiosperms[J]. The cambial derivatives,1995:317-340
    [139]Milburn J. A. and Ranasinghe M. S. A comparison of methods for studying pressure and solute potentials in xylem and also in phloem laticifers of Hevea brasiliensis[J]. Journal of Experimental Botany,1996,47(1):135-143
    [140]Carter C. A.,Forney R. W.,Gray E. A., et al. Toxicarioside A. A new cardenolide isolated from Antiaris toxicaria latex-derived dart poison. Assignment of the 1H-and 13C-NMR shifts for an antiarigenin aglycone[J]. Tetrahedron,1997, 53(40):13557-13566
    [141]Mckey D. The distribution of secondary compounds within plants. Herbivores: Their Interaction with Secondary Plant Metabolites[M]. Academic Press Inc., New York,1979:55-133
    [142]Yagami T.,Sato M.,Nakamura A., et al. Plant defense-related enzymes as latex antigens[J]. Journal of allergy and clinical immunology,1998,101(3):379-385
    [143]E1 Moussaoui A.,Nijs M.,Paul C, et al. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism[J]. Cellular and Molecular Life Sciences,2001,58(4): 556-570
    [144]Domsalla A. and Melzig M. F. Occurrence and properties of proteases in plant latices[J]. Planta medica,2008,74(7):699-711
    [145]Dussourd D. E. and Eisner T. Vein-cutting behavior:insect counterploy to the latex defense of plants[J]. Science,1987,237(4817):898-701
    [146]Dussourd D. E. and Denno R. F. Deactivation of plant defense:correspondence between insect behavior and secretory canal architecture[J]. Ecology,1991: 1383-1396
    [147]Saitoh T., Ohtani J. and Fukazawa K. The occurrence and morphology of tyloses and gums in the vessels of Japanese hardwoods[J]. IAWA J,1993,14:359-371
    [148]Bonsen K. J. M. and Kucera L. Vessel occlusions in plants:morphological, functional and evolutionary aspects[J]. IAWA Bull, ns,1990,11:393-399
    [149]Stevenson J. F.,Matthews M. A.,Greve L. C, et al. Grapevine susceptibility to Pierce's disease Ⅱ:Progression of anatomical symptoms [J]. American journal of enology and viticulture,2004,55(3):238-245
    [150]Schmitt U., Richter H. G and Muche C. TEM study of wound-induced vessel occlusions in European ash (Fraxinus excelsior L.)[J]. Iawa Journal,1997,18: 401-404
    [151]Sun Q., Rost T. L. and Matthews M. A. Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae)[J]. American Journal of Botany,2006,93(11):1567-1576
    [152]Delvaux C.,Sinsin B.,Van Damme P., et al. Wound reaction after bark harvesting: microscopic and macroscopic phenomena in ten medicinal tree species (Benin)[J]. Trees-Structure and Function,2010:1-11
    [153]Schmitt U. and Liese W. Response of xylem parenchyma by suberization in some hardwoods after mechanical injury[J]. Trees-Structure and Function,1993, 8(1):23-30
    [154]Cochard H. and Tyree M. T. Xylem dysfunction in Quercus:vessel sizes, tyloses, cavitation and seasonal changes in embolism[J]. Tree Physiology,1990,6(4): 393-407
    [155]Sun Q., Rost T. L. and Matthews M. A. Wound-induced vascular occlusions in Vitis vinifera (Vitaceae):Tyloses in summer and gels in winter[J]. American Journal of Botany,2008,95(12):1498-1505
    [156]Esau K. Anatomy and cytology of Vitis phloem[J]. Hilgardia,1965,37:17-72
    [157]Ervin. E. L. and Evert R. F. Aspects of sieve element ontogeny and structure in Smilax rotundifolia[J]. Botanical Gazette,1967,128(2):138-144
    [158]Liese W. (1980). Anatomy of bamboo, IDRC, Ottawa, ON, CA.
    [159]Deshpande B. and Rajendrababu T. Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia, a deciduous tree from India[J]. Annals of Botany,1985,56(1):61-72
    [160]Baas P., Schmid R. and Van Heuven B. J. Wood anatomy of Pinus longaeva (Bristlecone pine) and the sustained length-on-age increase of its tracheids[J]. IAWA Bull. ns,1986,7:221-228
    [161]Kuroda K. Defense systems of Pinus densiflora cultivars selected as resistant to pine wilt disease[J]. Pine Wilt Disease:A Worldwide Threat to Forest Ecosystems,2008:313-320
    [162]Lawton J. R. and Lawton J. R. S. Seasonal variations in the secondary phloem of some forest trees form Nigeria[J]. New Phytolgist,1971,(70):187-196
    [163]Lapasha C. and Wheeler E. Resin canals in Pinus taeda. Longitudinal canal lengths and interconnect-ions between longitudinal and radial canals[J]. IAWA Bull.(NS),1990,11:227-238
    [164]Bamber R. Properties of the cell walls of the resin canal tissue of the sapwood and heartwood of Pinus lambertiana and Pinus radiata[J]. Journal of the Institute of Wood Science,1972,6(1):32-35
    [165]李和平.植物显微技术[J].科学出版社,2008:9-47
    [166]Pierpoint W. The enzymic oxidation of chlorogenic acid and some reactions of the quinone produced[J]. Biochemical Journal,1966,98(2):567
    [167]Venning F. D. The ontogeny of the laticiferous canals in the Anacardiaceae[J]. American Journal of Botany,1948:637-644
    [168]马淑英,胡正海.西北地区漆树科四属植物分泌道的解剖学研究[J].西北植物学报,1992,(3):180-187
    [169]Wilson K. J., Nessler C. L. and Mahlberg P. G Pectinase in Asclepias latex and its possible role in laticifer growth and development[J]. American Journal of Botany,1976:1140-1144
    [170]Hagel J. M, Yeung E. C. and Facchini P. J. Got milk? The secret life of laticifers[J]. Trends in Plant Science,2008,13(12):631-639
    [171]李爱民,王玉荣,吴鸿.果胶酶的细胞化学定位:马尾松树脂道发生的细胞化学证据[J].植物学报:英文版,2004,46(4):443-450
    [172]王国栋,陈晓亚.漆酶的性质,功能,催化机理和应用[J].植物学通报,2003,20(4):469-475
    [173]Harada M. Investigation on the development of resin canals and the formation of latex in the mesocarp of fruits of the Rhus plants found in Japan[J]. Bull. Sci. Tak. Teskultura Kyusu Imp. Univ,1939,8:179-191
    [174]Fahn A. and Joel D. Development of primary secretory ducts in the stem of Mangifera indica (Anacardiaceae) [J]. Gardens'Bulletin,1976,29:161-164
    [175]Liu W. Z.,Zhou Y. F.,Wang X., et al. Programmed cell death during pigment gland formation in Gossypium hirsutum leaves[J]. Plant Biology,2010,12(6): 895-902
    [176]Zhou Y. F. and Liu W. Z. Laticiferous canal formation in fruits of Decaisnea fargesii:a programmed cell death process?[J]. Protoplasma,2010:1-12
    [177]余江帆,谢碧霞,胡亿明,等.漆树果实性状研究(Ⅱ)——漆籽的含油率[J].中南林业科技大学学报,2009,(01):10-14
    [178]郝秉中,吴继林,云翠英.巴西橡胶树有输导功能的韧皮部与采胶的关系[J].植物学报,1980b,(3):227-231
    [179]汪明正,刘宏.生漆采割技术[J].陕西农业科学,2008,(2):223-224
    [180]Rodrigues T. M. The oleoresin secretory system in seedlings and adult plants of copaba (Copaifera langsdorffii Desf., Leguminosae-Caesalpinioideae)[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2011,
    [181]Turner G.,Gershenzon J.,Nielson E. E., et al. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells[J]. Plant Physiology,1999,120(3): 879-886
    [182]Young P. M., Hutchins A. S. and Canfield M. L. Use of antibiotics to control bacteria in shoot cultures of woody plants[J]. Plant Science Letters,1984, 34(1-2):203-209
    [183]Daum M.,Peintner I.,Linnenbrink A., et al. Organisation of the biosynthetic gene cluster and tailoring enzymes in the biosynthesis of the tetracyclic quinone glycoside antibiotic polyketomycin[J]. ChemBioChem,2009,10(6):1073-1083
    [184]Nicole M.,Thouvenel J. C.,Giannotti J., et al. The histology of Hevea brasiliensis phloem necrosis [J]. European Journal of Forest Pathology,1991, 21(1):27-35
    [185]Nicole M., Geiger J. P. and Nandris D. Ultrastructure of Laticifers Modifications in Hevea brasiliensis Infected with Root Rot Fungi[J]. Journal of Phytopathology, 1986,116(3):259-268
    [186]赵喜萍,魏朔南.漆树品种的AFLP分析及评价(简报)[J].分子细胞生物学报,2007b,(4):262-266
    [187]刘彩琴,赵猛,魏朔南,等.陕西4个漆树品种外部形态及次生韧皮部结构的比较[J].西北植物学报,2010,(2):269-274
    [188]尚宗燕,李汝娟,张继祖,等.三倍体漆树的细胞学研究[J].植物学报,1989,(4):253-258
    [189]Wendel J. F. Genome evolution in polyploids[J]. Plant Molecular Biology,2000, 42(1):225-249
    [190]陈元生,解玉林,卢衡,等.史前漆膜的分析鉴定技术研究[J].文物保护与考古科学,1995,(2):12-20
    [191]Donaldson L. A. Mechanical constraints on lignin deposition during lignification[J]. Wood Science and Technology,1994,28(2):111-118
    [192]罗道文.漆树石细胞的电镜初步观察[J].贵州林业科技,1986,(4):59-61
    [193]Hatada K.,Kitayama T.,Nishiura T., et al. Structural analysis of the components of Chinese lacquer "Kuro-urushi"[J]. Macromolecular Chemistry and Physics, 1994,195(5):1865-1870
    [194]赵一庆,薄颖生.生漆及漆树文献综述[J].陕西林业科技,2003,1:55-62
    [195]张飞龙,李钢.生漆的组成结构及其性能的关系研究[J].中国生漆,2000,19(3):31-37
    [196]魏朔南,赵喜萍,田敏爵,等.应用植物形态学和AFLP分子标记鉴别陕西漆树品种[J].西北植物学报,2010,(4):665-671