新型功能聚合金属配合物的合成及其光伏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池是可能替代化石能源而最具发展潜力的可再生与清洁能源之一,而染料敏化剂(简称染料)是影响染料敏化太阳能电池光伏性能的最关键活性组成部分,承担着吸收太阳光以产生电子并传输电子的最重要功能,因此研究合成高光伏性能、低成本、高稳定性、强形体适应性的染料敏化剂具有重大的理论和实际应用意义。本论文课题研究合成不同于现有研究的钌等金属配合物染料、金属卟啉和酞氰染料以及有机染料等三大类染料,而研究与设计合成新型的将无机、有机和高分子组分融合为一体的聚合金属配合物用作染料。研究合成了两个系列新型的吸光性能较优良、载流子传输性能好、高稳定性与低成本的聚合金属配合物染料,并研究了其组成与结构对其光伏性能的影响规律,探索了合成新型优良染料的制备方法与应用,内容如下:
     (1)设计合成了系列以邻菲咯啉类锌(II)或铜(II)金属配合物为受体(A)、对苯二撑、咔唑或芴等衍生物为给体(D)、噻吩乙烯基为π桥的D-A与D-π-A型12个聚合金属配合物N1-N12染料敏化剂、分析表征并测试分析了它们作为染料的光伏性能。结果表明:a,D-π-A型结构的聚合金属配合物N7-N12的光电转化效率(PCE)比相应D-A型结构的N1-N6要高(PCE高1.2-2.5%);b,聚合铜(II)配合物比聚合锌(II)配合物的光电效率高(PCE高0.2-0.8%);c,以咔唑衍生物为给体的聚合金属配合物染料的光电转化效率比相应对苯二撑和芴的高(PCE高0.2-0.6%);d,其中光电转化效率最高的为D-π-A型聚合铜配合物N10,达3.18%。
     (2)设计合成了系列以8-羟基喹啉类锌(II)或铜(II)金属配合物为受体(A)、对苯二撑或咔唑或芴衍生物或芴与对苯二撑和咔唑混连的衍生物为给体(D)、乙烯基或噻吩乙烯基为π桥的D-π-A型10个聚合金属配合物Q1-Q10染料敏化剂,分析表征并测试分析了它们用作染料的光伏性能,结果表明:a,具有给电性较好的混连给体(D)的聚合金属配合物染料Q7-Q10比只有单一苯乙撑或咔唑或芴给体的聚合金属配合物Q1-Q6的光电转换效率高(PCE高1.0-2.6%);b,聚合铜(II)金属配合物比聚合锌(II)配合物的光电转换效率高(PCE高0.2-0.6%);c,其中光电转化效率(PCE)最高的为聚合铜(II)配合物Q10,达3.78%。
     结果表明,两个系列聚合金属配合物染料都有较优良的光伏性能和高的热稳定性,是染料敏化剂发展的一个重要的新方向。
Dye-sensitized solar cells (DSSCs) have become one of the most promising renewableand clean energy sources with the potential to be an alternative of fossil energy. Thedye-sensitizer (dye) which bears the most important function of absorbing sunlight to generateand transfer electrons is the most crucial component in affecting the photovoltaic performanceof dye-sensitized solar cells. It has great theoretical and practical significance to synthesize anew dye with high photovoltaic performance, low-cost and high stability. The subject of thisthesis is different from the existed ruthenium metal complex dyes, metal porphyrin and phthalocyaninedyes as well as the organic dyes, we are aim to design and synthesize new polymeric metal complexesdyes that integrate inorganic, organic and macromolecule components into a whole. We have synthesizeda series of new polymeric metal complexes dyes with excellent light absorption performance, high carriertransfer properties, high stability and low cost, the influences of their composition and structure on thephotovoltaic performances were investigated, and the preparation methods and applications of these newexcellent synthesized dyes were explored,.The details are as follows:
     (1) A series of D-A and D-π-A type polymeric metal complexes dyes N1-N12have been designedand synthesized by used zinc (II) or copper (II) phenanthroline metal complexes as the acceptor (A),p-phenylenevinylene, carbazole or fluorene derivatives as the donor (D), thienyl vinyl as π bridge, and theirphotovoltaic performances were characterized and analyzed. The results show that: a, D-π-A typepolymeric metal complexes N7-N12exhibit higher photo-electron power conversion efficiency(PCE) thancorresponding D-A type N1-N6(PCE above1.0-2.5%); b, copper (II) polymeric complexes exhibit higherphoto-electron power conversion efficiency than zinc (II) polymeric complexes (PCE above0.2-0.5%); c,polymeric metal complexes with fluorene derivatives as donor exhibit higher photo-electron powerconversion efficiency than corresponding polymeric metal complexes with p-phenylenevinylene andcarbazole derivatives as donor (PCE above0.2-0.6%); d, In N1-N12, D-π-A type copper (II) polymericcomplexes N10exhibit the highest photo-electron power conversion efficiency,up to3.18%.
     (2) A series of D-π-A type polymeric metal complexes dyes Q1-Q10have been designed andsynthesized by used zinc (II) or copper (II)8-hydroxyquinoline metal complexes as the acceptor (A),p-phenylenevinylene, carbazole or fluorene derivatives, or a mixed derivative connected by them as thedonor (D), a vinyl group or thienyl vinyl as π bridge, and their photovoltaic performances werecharacterized and analyzed, the result show that: a, polymeric metal complexes dyes Q7-Q10with mixedconnection derivatives as donor (D) which show excellent electron-donating ability exhibit higherphoto-electron power conversion efficiency than the polymeric metal complexes dyes Q1~Q6with onlyp-phenylenevinylene, carbazole or fluorene derivatives as donor (PCE above1.0-2.5%); b, copper (II) polymeric metal complexes exhibit higher photo-electron power conversion efficiency than zinc (II)polymeric metal complexes (PCE above0.2-0.6%); c, copper (II) polymeric complexes Q10exhibit thehighest photo-electron power conversion efficiency,up to3.78%.
     The results showed that the two series of polymeric metal complexes dyes have excellentphotovoltaic performance and high thermal stability; these give us a new important direction of dyesensitizers’development.
引文
[1] Lior, N. Energy resources and use: The present situation and possible pathsto the future.Energy,2008,33:842.
    [2] Penner, S. S.; Haraden, J.. Long-term global energy supplies with acceptable environmentalimpacts.Mates, S. Energy,1992,17:883.
    [3] Hasan A A, Goswami D Y. Exergy analysis of a combined power and refrigeration thermodynamiccycle driven by a solar heat source[J]. Journal of solar energy engineering,2003,125(1):55-60.
    [4] Service, R. F. Is it time to shoot for the sun? Science.2005,309:548-551.
    [5] Potocnik, J..Renewable Energy Sources and the Realities of Setting an Energy Agenda.Science,2007,315:810.
    [6] Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O. Electricity without carbon.Nature,2008,454:816.
    [7] Smee A. Elements of electro-biology, or the voltaic mechanism of man; ofelectro-pathology, especiallyof the nervous system; and of electro-therapeutics[M]. Longman, Brown, Green&Longmans:1849.
    [8] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version35)[J]. Progress inPhotovoltaics: Research andApplications.2010,18(2):144-150.
    [9] Bessho T, Constable E C, Graetzel M, et al. An element of surprise—efficient copper-functionalizeddye-sensitized solar cells[J]. Chemical Communications,2008(32):3717-3719.
    [10] Lammi R K, Wagner R W, Ambroise A, et al. Mechanisms of excited-state energy-transfer gating inlinear versus branched multiporphyrin arrays[J].The Journal of Physical Chemistry B,2001,105(22):5341-5352.
    [11] Ardo S, Meyer G J. Photodriven heterogeneous charge transfer with transition-metal compoundsanchored to TiO2semiconductor surfaces[J]. Chemical Society Reviews,2009,38(1):115-164.
    [12] Nazeeruddin M K, Pechy P, Gr tzel M. Efficient panchromatic sensitization of nanocrystalline TiO2films by a black dye based on a trithiocyanato–ruthenium complex[J]. Chemical Communications,1997(18):1705-1706.
    [13] Rawling T, Austin C, Buchholz F, et al. Ruthenium phthalocyanine-bipyridyl dyads as sensitizers fordye-sensitized solar cells: dye coverage versus molecular efficiency[J]. Inorganic chemistry,2009,48(7):3215-3227.
    [14] Tian H, Yang X, Cong J, et al. Tuning of phenoxazine chromophores for efficient organicdye-sensitized solar cells[J]. Chemical Communications,2009(41):6288-6290.
    [15] W. Lin, O. R. Evans, R. G. Xiong. et al. Supramolecular engineering of chiral and a centric2dnetwork. Synthesis, structures and second-order nonlinear optical properties ofbis{3-[2-(4-pyridyl)ethenyl] benzoatee}cadmium [J]. J. Am. Chem. Soc.,1998,120(50):13272-13273.
    [16] S.J. Miller, A.J Epstein. Organic and organometallic molecular magnetic materials-designer magnets[J].Angew. Chem. Int. Ed. Engl.,1994,33(4):385-415.
    [17] M. Fujita, Y.J. Kwon, W. Satoru, et al. Preparation, clathration ability, and catalysis of atwo-dimensional square network material composed of cadmium(II) and4,4'-bipyridine [J]. J. Am.Chem. Soc.,1994,116:1151-1152.
    [18]徐筱杰.超分子建筑-从分子到材料[M].北京:科学技术文献出版社,2000:1-17.
    [19][A] G. Wang, F. Liang, Z. Xie, G. Su, et al. Novel bis(8-hydroxyquinoline)phenol-llato–aluminum complexes for organic light-emitting diodes.Synthetic Metals,2002,131:1-5.
    [20] M.M. Miller, D.C. Sherrington. Alkene epoxidations catalyzed by Mo(Ⅵ) supported onimidazole-containing polymers [J]. J. Catal.,1995,152:377-383.
    [21] L.R. Nathaniel, E. Juergen, E. Mohamed, et al. Hydrogen storage in microporous metalorganicframeworks. Science,2003,300:1127-1129.
    [22] E. Mohamed, K. Jaheon, L.R. Nathaniel,et al. Systematic design of pore size and functionality inisoreticular MOFS and their application in methane Storage [J]. Science,2002,295:469-451.
    [23] Z. Shi, S.H. Feng, L.R. Zhang, et al. Hydrothermal syntheses and x-ray crystal structure of threeinoganiic-organic hybrid materials in a copper vanadiun phosphate Family:CuL(VO2)(PO4)(L=4,4'-bipy,1,10-phen,2,2'-bipy)[J]. Chem. Mater.,2000,12:2930-2935.
    [24] Y.J. Qi, Y.H. Wang, C.W. Hu, et al. A new type of single-helix coordination polymer with mixedligands [M2(phen)2(e,acis-1,4-chdc)2-(H2O)2]n(M)Co and Ni(phen)1,10-phenanthroline cyclohexanedicar boxylate [J]. Inorg. Chem.,2003,42:8519-8523.
    [25] Chaofan Zhong, Rongfang Guo, Qian Wu, Hailiang zhang.Design and syntheses of blue luminescentCu(II) and Zn(II) polymeric complexes with2-(2'-pyridyl)benzimidazole derivative ligand. Reactive&Functional Polymers,67(2007):408–415
    [26] Chaofan Zhong, Rongfang Guo, Qian Wu, Hailiang zhang. Design and syntheses of blue luminescentCu(II) and Zn(II) polymeric complexes with2-(2'-pyridyl)benzimidazole derivative ligand. Reactive&Functional Polymers,69(2009):618-625.
    [27] Chaofan Zhong, Qian Wu, Rongfang Guo, Hailiang Zhang. Synthesis and luminescence properties ofpolymeric complexes of Cu(II), Zn(II) and Al(III) with functionalized polybenzimidazole containing8-hydroxyquinoline side group.Optical Materials30(2008):870–875.
    [28] Yuan Liu, Qian Xiu, Lifen Xia o, Hui Huang, Lihui Guo, Lirong Zhang,Hailiang Zhang, Songting Tanand Chaofa n Zhong.Two novel branched chain polymeric metal complexes based on Cd(II), Zn(II)with fluorene, thiophene,8-hydrox yquinoline, and1,10-phenathroline ligand: synthesis, characterization, photovoltaic proper ties, and their application in DSSCs. Polym. Adv. Technol.2011,22:2583–2591.
    [29] A. L. Santana, L. K. Noda, A. T. N. Pires, J. R. Bertolino. Poly (4-vinylpyridine)/cupric saltcomplexes: spectroscopic and thermal properties [J]. Polymer Testing,2004,23(7):839-845.
    [30] Song R, Kim K M, Sohn Y S. New Heterometallic Coordination Polymers Self-Assembled fromCopper (II) Nitrate and (Diamine) PtII (pyridinecarboxylates)2[J]. Inorganic chemistry,2003,42(3):821-826.
    [31] P. Baldrian, T. Cajthaml, V. Merhautová, et al. Degradation of polycyclic aromatic hydrocarbons byhydrogen peroxide catalyzed by heterogeneous polymeric metal chelates [J]. Applied Catalysis B:Environmental,2005,59(3-4):267-274.
    [32] M. A. El-Gahami, E. M. Abdalla. Synthetic and Spectroscopic Studies of Polymeric Metal ComplexesInvolving1,4-[5-Disulphonyl-8-Hydroxyquinoline] piperazine [J]. Journal of Inorganic andOrganometllic Polymers,2003,13:41-48.
    [33]傅德刚,徐兵,王国雄.[(dien)Cu(H2O)im-Co(NH3)4im-(H2O)Cu(dien)](NO3)5的结构和磁性研究[J].中国科学:B辑,1994,24(3):328-331.
    [34] L. P. Wu, Y. Yarnagiwa, T. Kuroda-Sowa, et a1. Synthesis and structure of a three-dimensionalcopper(II) coordination polymer with1,2-bis(imidazol-1’-yl) ethane [J]. Inorganica Chimica Acta,1997,256:151-161.
    [35] T. Miyajima, H. Nishimura, H. Kodama, S. I. Ishiguro. On the complexation of Ag(I) and Cu(II) ionswith poly(N-vinylimidazole)[J]. Reactive&Functional Polymers,1998,38(2-3):183-195.
    [36] M. Ohba, N. Maruono, H. Okawa, T. Enokl, J. M. Clathration Ability, and Catalysis of a DimensionalMaterial Composed of Cadmium(II) and Latour.Prepartion, Square Network4,4'-bipydine [J]. Journalof theAmerical Chemical Society,1994,116(3):1151-1152.
    [37] M. Ohba, H. Okawa, N. Fukita, Y. Hashimoto, Quantum Mech anical Analysis of anα-Carboxylate-substituted Oxocarbenium Ion Isotope Effects for Formation of the Sialyl Cation andthe Origin of an Unusually La rge Secondary14C Isotope Effect [J]. Journal of the Americal ChemicalSociety,1997,119(5):1011-1107.
    [38] Z. Y. Wang, R. Xiong, B. M. Foxman, W. Lin, Nanoporous. Interpenetrated Metal-OrganicDiamondoid Networks [J]. Inorganic Chemistry,1999,38(12):2969-2973.
    [39] R. Owen, Evans, R. Xiong, Z. Wang, K. George,Wong, W. Lin. Crystal Engineering of AcentricDiamondoid Metal-Organic Coordination Networks[J]. Angewandte Chemie International Edition,1999,38:536-538.
    [40] G. Yang, H. Zhu, B. Liang, X. Chen. Syntheses and crystal structures of four metal-organic coordination networks constructed from cadmium(11) thiocyanate and nicotin is acid derivative withhydrogen bonds [J]. Journal of the Chemical Society, Dalton Tansactions,2001:580-585.
    [41] R. H. Grids, L. R Groenman, Macgillivaray. Design and Self-Assembly of Cavity-ContainingRectangular [J]. Journal of the Americal Chemical Society,1998,120(11):2676-2677.
    [42] R. Owen, Evans, R. Xiong, Z. Wang, K. George, W. Lin, Crystal Engineering of Acentric DiamondoidMetal-Organic Coordination Networks [J]. Angewandte Chemie International Edition,1999,38:536-538.
    [43] W. Lin, O. R. Evans, G. T. Yee. A Pillared Three-Dimensional Manganese(II) Coordination NetworkContaining Rectangular Channels: Synthesis, X-Ray Structure, and Magnetic Properties[J]. Journal ofSolid State Chemistry,2000,152(1):152-158.
    [44] O. R. Evans, W-B Lin, Pillared.3D Metal-Organic Frameworks with RectangularCarboxylates[J]. Inorganic Chemistry,2000,39(10):2189-2198.
    [45] K. Geetha, S. K. Tiwary, A. R. Chakravarty, G. A. akrishna. Synthesis, crystal structure and magneticproperties of a poly merit copper(II) Schiff base complex having binuclear units covalently linked byisonicotinate ligands[J]. Journal of the Chemical Society, Dalton Trans,1999:4463-4467.
    [46] M. Oh, G. B. Carpenter, D. A. Sweigart. Supramolecular Metal-Organometallic CoordinationNetworks Based on Quinonoid π-Complexes[J].Accounts of Chemical Research,2004,37:1-11.
    [47] W. Sun, L. Jiang, J. Weng. A novel bithiazole–tetrathiapentalene polymer and its metal complexes[J].Reactive&Functional Polymers,2003,55(3):249-254.
    [48]仇武林,李灿,曾文祥.新型金属元素二胺的合成与表征[J].无机化学学报,1994,10(4):384-386.
    [49] P. F. Brandt, T. B. Rauchfuss. Polyferrocenylene persulfides[J]. Journal of the Americal ChemicalSociety,1992,114(5):1926-1927.
    [50]唐洁渊.电化学聚合漆酚钴配合物的合成及表征[J].福建师范大学学报(自然科学版),2001,17(2):66-69.
    [51] C. G. Francis, P. L. Timms. The metal vapor-fluid matrix technique for the formation of polymersupported molybdenum and molybdenum/titanium cluster species [J]. Journal of the Chemical Society,Dalton Transactions,1980,19:1401-1417.
    [52] W. Sun, L. Jiang, J. Weng, etc. Bithiazole based polymer and its ferro complex containinghexacyanoferrate(III) group:synthesis and ferromagnetic property [J]. Materials Chemistry andPhysics,2003,78(3):676-682.
    [53] P. Baldrian, T. Cajthaml, V. Merhautová. Degradation of polycyclic aromatic hydrocarbons byhydrogen peroxide catalyzed by heterogeneous polymeric metal chelates[J]. Applied Catalysis B:Environmental,2005,59(3-4):267-274.
    [54]肖猛,路建美,张正彪.聚乙烯醇-铜(Ⅱ)络合物的催化性能[J].高分子材料科学与工程,2004,20(4):103-106.
    [55] G. Barbarella, M. Melucci, G. Sotgiu. The Versatile Thiophene: An Overview of Recent Research onThiophene-Based Materials[J].Advanced Materials,2005,17(13):1581-1593.
    [56] H. Zhang, X. Wang, K. Zhang and B. K. Teo, Functional Crystals: Search Criteria and DesignPrinciples[J]. Journal of Solid State Chemistry,2000,152(1):191-198.
    [57] Smalley R. Energy&nanotechnology conference[J]. Rice University, Houston, USA,2003:3.
    [58]2005-2006年中国太阳能利用产业分析及投资咨询报告.
    [59] Gladwell M. The Tipping Point: How little things make can make a big difference.2000[J]. New York:Little Brown.
    [60]梁宗存,沈辉,李戬洪.太阳能电池及材料研究.材料导报.2000,14(8):38-40.
    [61] W.Shockley and H.J.Queisser.Detaied balance limit of efficiency of PN junction solar cells. J. Appl.Phys.1961,32:510.
    [62]刘科恩等.光电池及其应用.北京:科学出版社,1991.
    [63]郝春云,杨明辉,杨海涛,等.叠层太阳能电池的研究与发展.化工新型材料,2004,32(12):19-22.
    [64]剑鸣.玻璃窗式太阳能电池.水利水电快报,2004,2(14):27.
    [65] Gregg BA,Excitonic Solar Cells.J.Phys.Chem.B,2003,107(20):4688
    [66] L Zeng,Y Yi,C Hong,et al.Efficiency enhancement in Si solar cells by textured photonic crystal backreflector.Applied Physics Letters.2006,89:1111.
    [67] X Wu,J Zhou,A.Duda,et al.Phase control of CuxTe film and its effects on CdS/CdTe solar cell.ThinSolid Films.2007,515:5798–5803.
    [68] Brabec, Christoph Joseph, et al.. Organic photovoltaics: concepts and realization[M]. Springer,2003.
    [69] U. Scherf et al..Organic Photovoltaics. Materials, Device Physics, and Manufacturing Technologies(Wiley-VCH, Weinheim,2008)
    [70] Ameri T, Dennler G, Waldauf C, et al. Realization, characterization, and optical modeling of invertedbulk-heterojunction organic solar cells[J]. Journal ofApplied Physics,2008,103(8):084506,1-6.
    [71] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells[J]. ChemSusChem,2008,1(11):880-891.
    [72] Tang C W. Two-layer organic photovoltaic cell[J].Applied Physics Letters,1986,48(2):183-185.
    [73] Hiramoto M, Fujiwara H, Yokoyama M. p-i-n like behavior in three-layered organic solar cells havinga co-deposited interlayer of pigments[J]. Journal of applied physics,1992,72(8):3781-3787.
    [74] Taima T, Chikamatsu M, Yoshida Y, et al. Effects of intrinsic layer thickness on solar cell parametersof organic pin heterojunction photovoltaic cells[J]. Applied physics letters,2004,85(26):6412-6414.
    [75] Forrest S R. The limits to organic photovoltaic cell efficiency[J]. MRS bulletin,2005,30(1):28-32.
    [76] Peumans P, Bulovic V, Forrest S R. Efficient photon harvesting at high optical intensities in ultrathinorganic double-heterostructure photovoltaic diodes[J]. Applied Physics Letters,2000,76(19):2650-2652.
    [77] Xue J, Rand B P, Uchida S, et al. Mixed donor-acceptor molecular heterojunctions for photovoltaicapplications. II. Device performance[J]. Journal of applied physics,2005,98(12):124903-124903-9.
    [78] http://www.heliatek.com/en/page/index.php.
    [79] Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymer-buckminsterfullereneheterojunctions: Diodes, photodiodes, and photovoltaic cells[J]. Applied physics letters,1993,62(6):585-587.
    [80] Sariciftci N S, Smilowitz L B, Zhang C, et al. Photoinduced electron transfer from conductingpolymers onto Buckminsterfullerene[C]//Society of Photo-Optical Instrumentation Engineers (SPIE)Conference Series.1993,1852:297-307.
    [81] Morita S, Lee S B, Zakhidov A A, et al. Spectral Characteristics of C60-Conducting PolymerJunctions: Various Molecular DA Type Photocells[J]. Molecular Crystals and Liquid Crystals,1994,256(1):839-846.
    [82] Sariciftci N S, Hebger A J. Reversible, metastable, ultrafast photoinduced electron transfer fromsemiconducting polymers to buckminsterfullerene and in the corresponding donor/acceptorheterojunctions[J]. International Journal of Modern Physics B,1994,8(03):237-274.
    [83] Yu G, Pakbaz K, Zhang C, et al. Photosensitivity of MEH-PPV Sandwich Devices and Its Implicationto Polymer Electronic Structure[J]. Molecular Crystals and Liquid Crystals,1994,256(1):543-548.
    [84] Lee S B, Khabibullaev P K, Zakhidov A A, et al. Photovoltaic properties of C60PPP heterojunction:molecular DA photocell[J]. Synthetic Metals,1995,71(1):2247-2248.
    [85] Tada K, Morita S, Kawai T, et al. Effects of C60 on conducting polymer with small bandgap[J]. Synthetic Metals,1995,70(1):1347-1348.
    [86] Yu G, Heeger A J. Charge separation and photovoltaic conversion in polymer composites with internaldonor/acceptor heterojunctions[J]. Journal ofApplied Physics,1995,78(7):4510-4515.
    [87] Park S H, Roy A, Beaupre S, et al. Nat Photonics2009,3,297–302[J]. CrossRef, CAS, Web ofScience Times Cited,126.
    [88] Liang Y, Feng D, Wu Y, et al. Highly efficient solar cell polymers developed via fine-tuning ofstructural and electronic properties[J]. J.Am. Chem. Soc,2009,131(22):7792-7799.
    [89] Chen H Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage andefficiency[J]. Nature Photonics,2009,3(11):649-653.
    [90] http://www.solarmer.com/newsevents.php.
    [91] Cao Y, Yu G, Zhang C, et al. Polymer light-emitting diodes with polyethylenedioxythiophene–polystyrene sulfonate as the transparent anode[J]. Synthetic Metals,1997,87(2):171-174.
    [92] Heywang, G.; Jonas, F.AdV. Mater.1992,4:116.
    [93] Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of11.1%[J].Japanese Journal ofApplied Physics Part2Letters,2006,45(24/28):638.
    [94] Snaith H J, Moule A J, Klein C, et al. Efficiency enhancements in solid-state hybrid solar cells viareduced charge recombination and increased light capture[J]. Nano letters,2007,7(11):3372-3376.
    [95] Bandara J, Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector[J].Solar energy materials and solar cells,2005,85(3):385-390.
    [96] Vera F, Schrebler R, Munoz E, et al. Preparation and characterization of Eosin B-and ErythrosinJ-sensitized nanostructured NiO thin film photocathodes[J]. Thin Solid Films,2005,490(2):182-188.
    [97] Yum J H, Chen P, Gr tzel M, et al. Recent Developments in Solid-State Dye-Sensitized Solar Cells[J].ChemSusChem,2008,1(8-9):699-707.
    [98] Ardo S, Meyer G J. Photodriven heterogeneous charge transfer with transition-metal compoundsanchored to TiO2semiconductor surfaces[J]. Chemical Society Reviews,2009,38(1):115-164.
    [99] Kuang D, Klein C, Ito S, et al. High‐Efficiency and Stable Mesoscopic Dye‐Sensitized Solar CellsBased on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte[J].Advanced Materials,2007,19(8):1133-1137.
    [100] Chen K S, Liu W H, Wang Y H, et al. New Family of Ruthenium‐Dye‐Sensitized NanocrystallineTiO2Solar Cells with a High Solar‐Energy‐Conversion Efficiency[J]. Advanced FunctionalMaterials,2007,17(15):2964-2974.
    [101] Faiz J, Philippopoulos A I, Kontos A G, et al. Functional supramolecular ruthenium cyclodextrin dyesfor nanocrystalline solar cells[J].Advanced Functional Materials,2007,17(1):54-58.
    [102] Jung I, Choi H, Lee J K, et al. New ruthenium sensitizers containing styryl and antenna fragments[J].Inorganica chimica acta,2007,360(11):3518-3524.
    [103] Karthikeyan C S, Wietasch H, Thelakkat M. Highly Efficient Solid‐State Dye‐Sensitized TiO2Solar Cells Using Donor‐Antenna Dyes Capable of Multistep Charge‐Transfer Cascades[J].Advanced Materials,2007,19(8):1091-1095.
    [104] Wadman S H, Kroon J M, Bakker K, et al. Cyclometalated ruthenium complexes for sensitizingnanocrystalline TiO2solar cells[J]. Chemical Communications,2007(19):1907-1909.
    [105] Chen C Y, Chen J G, Wu S J, et al. Multifunctionalized Ruthenium‐Based Supersensitizers forHighly Efficient Dye‐Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2008,47(38):7342-7345.
    [106] Reynal A, Forneli A, Martinez‐Ferrero E, et al. A Phenanthroline Heteroleptic Ruthenium Complexand Its Application to Dye‐Sensitised Solar Cells[J]. European Journal of Inorganic Chemistry,2008,2008(12):1955-1958.
    [107] Arakawa, H.; Yamaguchi, T.; Agatsuma, S.; Takanori, S.; Koishi,Y. Proceedings of the23rd EuropeanPhotoVoltaic Solar EnergyConference, Valencia, Spain;2008.
    [108] Gao F, Cheng Y, Yu Q, et al. Conjugation of selenophene with bipyridine for a high molar extinctioncoefficient sensitizer in dye-sensitized solar cells[J]. Inorganic chemistry,2009,48(6):2664-2669.
    [109] Jang S R, Yum J H, Klein C, et al. High molar extinction coefficient ruthenium sensitizers for thinfilm dye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2009,113(5):1998-2003.
    [110] Jin Z, Masuda H, Yamanaka N, et al. Efficient electron transfer ruthenium sensitizers fordye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2009,113(6):2618-2623.
    [111] Jin Z, Masuda H, Yamanaka N, et al. A Highly Efficient Dye-sensitized Solar Cell Based on aTriarylamine-functionalized Ruthenium Dye[J]. Chemistry Letters,2009,38(1):44-45.
    [112] Yum J H, Jung I, Baik C, et al. High efficient donor–acceptor ruthenium complex for dye-sensitizedsolar cell applications[J]. Energy&Environmental Science,2009,2(1):100-102.
    [113] Bessho T, Yoneda E, Yum J H, et al. New paradigm in molecular engineering of sensitizers for solarcell applications[J]. Journal of theAmerican Chemical Society,2009,131(16):5930-5934.
    [114] Jiang K J, Manseki K, Yu Y H, et al. Photovoltaics Based on Hybridization of EffectiveDye‐Sensitized Titanium Oxide and Hole‐Conductive Polymer P3HT[J]. Advanced FunctionalMaterials,2009,19(15):2481-2485.
    [115] Desilvestro J, Graetzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide[J].Journal of theAmerican Chemical Society,1985,107(10):2988-2990.
    [116] O’regan B, Gr tzeli M. A low-cost, high-efficiency solar cell based on dye-sensitized[J]. nature,1991,353:24.
    [117] Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers fornanocrystalline TiO2-based solar cells[J]. Journal of the American Chemical Society,2001,123(8):1613-1624.
    [118] Nazeeruddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers fornanocrystalline TiO2-based solar cells[J]. Journal of the American Chemical Society,2001,123(8):1613-1624.
    [119] Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker R, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation oncharge-transfer sensitization of nanocrystalline titania[J]. Inorganic Chemistry,1999,38(26):6298-6305.
    [120] Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5electrodesensitized by a ruthenium dye[J]. Chemistry of Materials,1998,10(12):3825-3832.
    [121] Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cellsbased on ionic liquid polymer gel electrolyte[J]. Chemical Communications,2002(24):2972-2973.
    [122] Wang P, Zakeeruddin S M, Moser J E, et al. Stable New Sensitizer with Improved Light Harvestingfor Nanocrystalline Dye‐Sensitized Solar Cells[J]. Advanced Materials,2004,16(20):1806-1811.
    [123] Shi D, Pootrakulchote N, Li R, et al. New efficiency records for stable dye-sensitized solar cells withlow-volatility and ionic liquid electrolytes[J]. The Journal of Physical Chemistry C,2008,112(44):17046-17050.
    [124] Wang P, Klein C, Humphry-Baker R, et al. A high molar extinction coefficient sensitizer for stabledye-sensitized solar cells[J]. Journal of theAmerican Chemical Society,2005,127(3):808-809.
    [125] Kuang D, Klein C, Ito S, et al. High‐Efficiency and Stable Mesoscopic Dye‐Sensitized Solar CellsBased on a High Molar Extinction Coefficient Ruthenium Sensitizer and Nonvolatile Electrolyte[J].Advanced Materials,2007,19(8):1133-1137.
    [126] Kuciauskas D, Monat J E, Villahermosa R, et al. Transient absorption spectroscopy of ruthenium andosmium polypyridyl complexes adsorbed onto nanocrystalline TiO2photoelectrodes[J]. The Journalof Physical Chemistry B,2002,106(36):9347-9358.
    [127] Hasselmann G M, Meyer G J. Diffusion-limited interfacial electron transfer with large apparentdriving forces[J]. The Journal of Physical Chemistry B,1999,103(36):7671-7675.
    [128] Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversibleproduction of UV-induced surface states in nanoporous TiO2[J]. The Journal of Physical ChemistryB,2003,107(13):3019-3029.
    [129] Ellingson R J, Asbury J B, Ferrere S, et al. Dynamics of Electron Injection in NanocrystallineTitanium Dioxide Films Sensitized with [Ru (4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] by InfraredTransientAbsorption[J]. The Journal of Physical Chemistry B,1998,102(34):6455-6458.
    [130] Yu P, Zhu K, Norman A G, et al. Nanocrystalline TiO2solar cells sensitized with InAs quantumdots[J]. The Journal of Physical Chemistry B,2006,110(50):25451-25454.
    [131] Rodas A M, Ferrer S, Pardo I.16S-ARDRA, a tool for identification of lactic acid bacteria isolatedfrom grape must and wine[J]. Systematic andApplied Microbiology,2003,26(3):412-422.
    [132] Islam A, Sugihara H, Hara K, et al. Dye sensitization of nanocrystalline titanium dioxide with squareplanar platinum (II) diimine dithiolate complexes[J]. Inorganic Chemistry,2001,40(21):5371-5380.
    [133] Geary E A M, Yellowlees L J, Jack L A, et al. Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with3,3'-,4,4'-, and5,5'-disubstituted bipyridyl: Applications indye-sensitized solar cells[J]. Inorganic chemistry,2005,44(2):242-250.
    [134] Alonso-Vante N, Nierengarten J F, Sauvage J P. Spectral sensitization of large-band-gapsemiconductors (thin films and ceramics) by a carboxylated bis (1,10-phenanthroline) copper (I)complex[J]. Journal of the Chemical Society, Dalton Transactions,1994(11):1649-1654.
    [135] Constable E C, Redondo A H, Housecroft C E, et al. Copper (i) complexes of6,6′-disubstituted2,2′-bipyridine dicarboxylic acids: new complexes for incorporation into copper-based dye sensitizedsolar cells (DSCs)[J]. Dalton Transactions,2009(33):6634-6644.
    [136] Ambroise A, Wagner R W, Rao P D, et al. Design and synthesis of porphyrin-based optoelectronicgates[J]. Chemistry of materials,2001,13(3):1023-1034.
    [137] Cherian S, Wamser C C. Adsorption and Photoactivity of Tetra (4-carboxyphenyl) porphyrin (TCPP)on Nanoparticulate TiO2[J]. The Journal of Physical Chemistry B,2000,104(15):3624-3629.
    [138] Tachibana Y, Haque S A, Mercer I P, et al. Modulation of the rate of electron injection indye-sensitized nanocrystalline TiO2films by externally applied bias[J]. The Journal of PhysicalChemistry B,2001,105(31):7424-7431.
    [139] Ma T, Inoue K, Yao K, et al. Photoelectrochemical properties of TiO2 electrodessensitized by porphyrin derivatives with different numbers of carboxyl groups[J]. Journal ofElectroanalytical Chemistry,2002,537(1):31-38.
    [140] Koehorst R B M, Boschloo G K, Savenije T J, et al. Spectral sensitization of TiO2substrates bymonolayers of porphyrin heterodimers[J]. The Journal of Physical Chemistry B,2000,104(10):2371-2377.
    [141] Jasieniak J, Johnston M, Waclawik E R. Characterization of a Porphyrin-containing dye-sensitizedsolar cell[J]. The Journal of Physical Chemistry B,2004,108(34):12962-12971.
    [142] Giribabu L, Kumar C V, Reddy P Y. Porphyrin-rhodanine dyads for dye sensitized solar cells[J].Journal of Porphyrins and Phthalocyanines,2006,10(08):1007-1016.
    [143] Eu S, Hayashi S, Umeyama T, et al. Quinoxaline-fused porphyrins for dye-sensitized solar cells[J].The Journal of Physical Chemistry C,2008,112(11):4396-4405.
    [144] Jovine E, Smerieri E, Mulas M M, et al. Muscle psoas metastasis from uterine squamous cellcarcinoma[J].ANZ journal of surgery,2008,78(3):213-214.
    [145] Tan H, Ramirez C M, Miljkovic N, et al. Thermosensitive injectable hyaluronic acid hydrogel foradipose tissue engineering[J]. Biomaterials,2009,30(36):6844-6853.
    [146] Nazeeruddin M K, Humphry-Baker R, Gr tzel M, et al. Efficient near IR sensitization ofnanocrystalline TiO2films by ruthenium phthalocyanines[J]. Chemical Communications,1998(6):719-720.
    [147] Aranyos V, Hjelm J, Hagfeldt A, et al. Free-base tetra-arylphthalocyanines for dye-sensitisednanostructured solar cell applications[J]. Journal of Porphyrins and Phthalocyanines,2001,5(08):609-616.
    [148] He J, Benk G, Korodi F, et al. Modified phthalocyanines for efficient near-IR sensitization ofnanostructured TiO2electrode[J]. Journal of the American Chemical Society,2002,124(17):4922-4932.
    [149] Reddy P Y, Giribabu L, Lyness C, et al. Efficient Sensitization of Nanocrystalline TiO2Films by aNear‐IR‐Absorbing Unsymmetrical Zinc Phthalocyanine[J]. Angewandte Chemie InternationalEdition,2007,46(3):373-376.
    [150] Eu S, Katoh T, Umeyama T, et al. Synthesis of sterically hindered phthalocyanines and theirapplications to dye-sensitized solar cells[J]. Dalton Transactions,2008(40):5476-5483.
    [151] Palomares E, Martínez-Díaz M V, Haque S A, et al. State selective electron injection innon-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2films[J]. Chemicalcommunications,2004(18):2112-2113.
    [152] Ooyama Y, Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye‐Sensitized SolarCells[J]. European Journal of Organic Chemistry,2009,2009(18):2903-2934.
    [153] Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistanceassociated with both lipoatrophy and obesity[J]. Nature medicine,2001,7(8):941-946.
    [154] Zhu W, Wu Y, Wang S, et al. Organic D‐A‐π‐A Solar Cell Sensitizers with Improved Stabilityand Spectral Response[J].Advanced Functional Materials,2011,21(4):756-763.
    [155] Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cells based onmetal-free indoline dyes[J]. Journal of theAmerican Chemical Society,2004,126(39):12218-12219.
    [156] Howie W H, Claeyssens F, Miura H, et al. Characterization of solid-state dye-sensitized solar cellsutilizing high absorption coefficient metal-free organic dyes[J]. Journal of the American ChemicalSociety,2008,130(4):1367-1375.
    [157] Chen R, Yang X, Tian H, et al. Effect of tetrahydroquinoline dyes structure on the performance oforganic dye-sensitized solar cells[J]. Chemistry of materials,2007,19(16):4007-4015.
    [158] Hao Y, Yang X, Cong J, et al. Efficient near infrared D–π–A sensitizers with lateral anchoring groupfor dye-sensitized solar cells[J]. Chemical Communications,2009(27):4031-4033.
    [159] Kitamura T, Ikeda M, Shigaki K, et al. Phenyl-conjugated oligoene sensitizers for TiO2solar cells[J].Chemistry of materials,2004,16(9):1806-1812.
    [160] Thomas K R J, Lin J T, Hsu Y C, et al. Organic dyes containing thienylfluorene conjugation for solarcells[J]. Chemical communications,2005(32):4098-4100.
    [161] Hagberg D P, Edvinsson T, Marinado T, et al. A novel organic chromophore for dye-sensitizednanostructured solar cells[J]. Chemical Communications,2006(21):2245-2247..
    [162] Hagberg D P, Marinado T, Karlsson K M, et al. Tuning the HOMO and LUMO energy levels oforganic chromophores for dye sensitized solar cells[J]. The Journal of organic chemistry,2007,72(25):9550-9556.
    [163] Amenomori M, Bi X J, Chen D, et al. The all-particle spectrum of primary cosmic rays in the wideenergy range from1014to1017ev observed with the tibet-iii air-shower array[J]. The AstrophysicalJournal,2008,678(2):1165.
    [164] Kim S, Lee J K, Kang S O, et al. Molecular engineering of organic sensitizers for solar cellapplications[J]. Journal of theAmerican Chemical Society,2006,128(51):16701-16707.
    [165] Choi H, Kim S, Kang S O, et al. Stepwise Cosensitization of Nanocrystalline TiO2Films UtilizingAl2O3Layers in Dye‐Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2008,47(43):8259-8263.
    [166] Pei J, Peng S, Shi J, et al. Triphenylamine-based organic dye containing the diphenylvinyl andrhodanine-3-acetic acid moieties for efficient dye-sensitized solar cells[J]. Journal of Power Sources,2009,187(2):620-626.
    [167] Xu J, Schubert M F, Noemaun A N, et al. Reduction in efficiency droop, forward voltage, idealityfactor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-welllight-emitting diodes[J].Applied Physics Letters,2009,94(1):011113-011113-3.
    [168] Zhou J L, Zhang Z L, Banks E, et al. Pharmaceutical residues in wastewater treatment workseffluents and their impact on receiving river water[J]. Journal of Hazardous Materials,2009,166(2):655-661.
    [169] Li G, Zhou Y F, Cao X B, et al. Novel TPD-based organic D–π–A dyes for dye-sensitized solarcells[J]. Chemical Communications,2009(16):2201-2203.
    [170] Zhou G, Pschirer N, Sch neboom J C, et al. Ladder-type pentaphenylene dyes for dye-sensitizedsolar cells[J]. Chemistry of Materials,2008,20(5):1808-1815.
    [171] Ning Z, Zhang Q, Wu W, et al. Starburst triarylamine based dyes for efficient dye-sensitized solarcells[J]. The Journal of Organic Chemistry,2008,73(10):3791-3797.
    [172] Wang Z S, Cui Y, Dan-oh Y, et al. Molecular design of coumarin dyes for stable and efficient organicdye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2008,112(43):17011-17017.
    [173] Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containingRSO3-group through treating TiO2films with hydrochloric acid[J]. The Journal of PhysicalChemistry B,2001,105(38):9210-9217.
    [174] Wang Z S, Li F Y, Huang C H. Highly efficient sensitization of nanocrystalline TiO2films with styrylbenzothiazolium propylsulfonate[J]. Chemical Communications,2000(20):2063-2064.
    [175] Stathatos E, Lianos P, Laschewsky A, et al. Synthesis of a hemicyanine dye bearing two carboxylicgroups and its use as a photosensitizer in dye-sensitized photoelectrochemical cells[J]. Chemistry ofmaterials,2001,13(11):3888-3892.
    [176] Khazraji A C, Hotchandani S, Das S, et al. Controlling dye (merocyanine-540) aggregation onnanostructured TiO2films. An organized assembly approach for enhancing the efficiency ofphotosensitization[J]. The Journal of Physical Chemistry B,1999,103(22):4693-4700.
    [177] Sayama K, Tsukagoshi S, Hara K, et al. Photoelectrochemical properties of J aggregates ofbenzothiazole merocyanine dyes on a nanostructured TiO2film[J]. The Journal of Physical ChemistryB,2002,106(6):1363-1371.
    [178] Xie P H, Hou Y J, Zhang B W, et al. Spectroscopic and electrochemical properties of ruthenium (II)polypyridyl complexes[J]. J. Chem. Soc., Dalton Trans.,1999(23):4217-4221.
    [179] Alex S, Santhosh U, Das S. Dye sensitization of nanocrystalline TiO2: enhanced efficiency ofunsymmetrical versus symmetrical squaraine dyes[J]. Journal of Photochemistry and PhotobiologyA: Chemistry,2005,172(1):63-71.
    [180] Burke A, Schmidt-Mende L, Ito S, et al. A novel blue dye for near-IR ‘dye-sensitised’solar cellapplications[J]. Chemical Communications,2007(3):234-236.
    [181] Tatay S, Haque S A, O'Regan B, et al. Kinetic competition in liquid electrolyte and solid-statecyanine dye sensitized solar cells[J]. J. Mater. Chem.,2007,17(29):3037-3044.
    [182] Yum J H, Chen P, Gr tzel M, et al. Recent Developments in Solid‐State Dye‐Sensitized SolarCells[J]. ChemSusChem,2008,1(8‐9):699-707.
    [183] Ferrere S, Gregg B A. New perylenes for dye sensitization of TiO2[J]. New journal of chemistry,2002,26(9):1155-1160.
    [184] Ferrere S, Gregg B A. New perylenes for dye sensitization of TiO2[J]. New journal of chemistry,2002,26(9):1155-1160.
    [185] Edvinsson T, Li C, Pschirer N, et al. Intramolecular charge-transfer tuning of perylenes:spectroscopic features and performance in dye-sensitized solar cells[J]. The Journal of PhysicalChemistry C,2007,111(42):15137-15140.
    [186] Shibano Y, Umeyama T, Matano Y, et al. Electron-donating perylene tetracarboxylic acids fordye-sensitized solar cells[J]. Organic Letters,2007,9(10):1971-1974.
    [187] Choi H, Kim S, Kang S O, et al. Stepwise Cosensitization of Nanocrystalline TiO2Films UtilizingAl2O3Layers in Dye‐Sensitized Solar Cells[J]. Angewandte Chemie International Edition,2008,47(43):8259-8263.
    [188] Hardin B E, Yum J H, Hoke E T, et al. High excitation transfer efficiency from energy relay dyes indye-sensitized solar cells[J]. Nano letters,2010,10(8):3077-3083.
    [189] Yum J H, Hardin B E, Moon S J, et al. Panchromatic Response in Solid‐State Dye‐SensitizedSolar Cells Containing Phosphorescent Energy Relay Dyes[J]. Angewandte Chemie InternationalEdition,2009,48(49):9277-9280.
    [190] Tatay S, Haque S A, O'Regan B, et al. Kinetic competition in liquid electrolyte and solid-statecyanine dye sensitized solar cells[J]. J. Mater. Chem.,2007,17(29):3037-3044.
    [191] Yum J H, Walter P, Huber S, et al. Efficient far red sensitization of nanocrystalline TiO2films by anunsymmetrical squaraine dye[J]. Journal of the American Chemical Society,2007,129(34):10320-10321.
    [192] Burke A, Ito S, Snaith H, et al. The function of a TiO2compact layer in dye-sensitized solar cellsincorporating “Planar” organic dyes[J]. Nano letters,2008,8(4):977-981.
    [193] Yum J H, Chen P, Gr tzel M, et al. Recent Developments in Solid‐State Dye‐Sensitized SolarCells[J]. ChemSusChem,2008,1(8‐9):699-707.
    [194] Rocca D, Gebauer R, De Angelis F, et al. Time-dependent density functional theory study ofsquaraine dye-sensitized solar cells[J]. Chemical Physics Letters,2009,475(1):49-53.
    [195] Ferrere S, Gregg B A. New perylenes for dye sensitization of TiO2[J]. New journal of chemistry,2002,26(9):1155-1160.
    [196] Li C, Liu Z, Sch neboom J, et al. Perylenes as sensitizers in hybrid solar cells: how molecular sizeinfluences performance[J]. Journal of Materials Chemistry,2009,19(30):5405-5415.
    [197] Cappel U B, Karlsson M H, Pschirer N G, et al. A broadly absorbing perylene dye for solid-statedye-sensitized solar cells[J]. The Journal of Physical Chemistry C,2009,113(33):14595-14597.
    [198] Shibano Y, Umeyama T, Matano Y, et al. Electron-donating perylene tetracarboxylic acids fordye-sensitized solar cells[J]. Organic Letters,2007,9(10):1971-1974.