可拉伸超级电容器电极用聚吡咯涂层织物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纺织技术与信息技术、电子技术及纳米技术等的结合,赋予纺织品更多的附加功能,使得纺织品朝着智能化的方向发展,成为“智能纺织品”。智能纺织品包含传感、驱动、计算及提供能源等功能,其植入设备可以进行多功能交互设计,进一步提高了人们的生活品质,并在生物医学、运动、军用、娱乐及时尚等等领域具有广泛的应用。智能纺织品上所有的传感器、驱动器等电子元件等都需要有电源的提供,然而传统的电源皆为刚性结构,非柔性的电源装置使得整个系统的可穿戴性受到极大的挑战。若要实现理想的可穿戴,就需要发展柔性、轻质、便携的能源转换或存储装置。另外,为了与服装结合良好,且不影响人体的运动,对于可穿戴的电源装置也要求其具有良好的可拉伸性能,即在拉伸的状态下不会发生性能的衰减,理想的技术措施是将其制备成可拉伸的织物结构。超级电容器是一种新兴的能量储存装置,具有高功率密度、短充电时间、高循环性能和节约能源等特点,在轻薄、柔性的可穿戴电源领域得到广泛的关注,但目前研究较多的柔性超级电容器,虽具备一定的柔性,但基本不具备可拉伸性,即不能在小应力下实现与纺织品类似的大变形。
     课题选择聚吡咯(PPy)涂层织物作为研究对象,探讨其作为超级电容器电极材料的可行性,并针对其拉伸过程中及拉伸前后的电化学性能及性能改善来开展探索工作。课题的内容包括:
     (1)利用普通的棉织物,通过原位化学聚合(CP)、气相沉积聚合(CVD)及界面聚合(P),制备聚吡咯涂层织物,探索不同聚合方式对涂层织物性能的影响。气相沉积及界面聚合得到的PPy涂层棉织物的表面电阻分别为310Ω/□和1200Ω/(?)。CP、CVD织物与IP织物同样显示出了一定的电化学性能,且CVD和CP织物优于IP织物。
     利用原位化学聚合制备PPy涂层锦纶/氨纶织物,探讨实验条件对结果的影响。掺杂剂和聚合时间的不同会影响涂层织物的导电性能,最佳聚合时间为2h,在最佳聚合时间下,pTS(对甲苯磺酸,p-toluenesulfonic acid)掺杂的织物表面电阻最高,为32,500Ω/(?); Na2NDS(吡咯,2,6-萘二磺酸二钠盐,naphthalene-2,6-disulfonic acid disodium salt)最低,其电阻为149Ω/□。聚合后,由于聚吡咯涂层的影响,锦纶/氨纶织物拉伸拉伸应力稍微增大,但绝对数值不大,基本保持织物原有的拉伸性能。循环伏安测试时,不同电解液也会对测试结果造成影响,采用1M的NaCl溶液时,PPy涂层锦纶/氨纶织物的电化学性能最好,在扫速为10mV s-1时最高比容量达123.3Fg-1。当扫速进一步增大时,由于溶剂化离子迁移时的弛豫时间影响,比容量逐渐减小。
     (2)选择原位化学聚合得到的PPy涂层锦纶/氨纶织物为对象,探讨其拉伸时及拉伸前后电学性能和电化学性能的变化。聚吡咯与织物结合紧密,并呈现出良好的拉伸性能。在纵向拉伸过程中,聚毗咯涂层织物的电阻随着拉伸量的增加而减小。在反复拉伸1,000次后,织物的电阻变大。拉伸应变越大,电阻的增幅越大。但是,在反复高强度拉伸后,聚吡咯涂层织物依然能保持较高的电化学性能,如:1,000次100%的拉伸后,织物比容量的减少不到10%。
     聚吡咯涂层织物的电化学性能随着拉伸程度(范围为0%~60%)而逐渐改善。在三电极体系中,当织物伸长到60%时,其比容量从未伸长时的69.7F g-1(50mVs-1)和:(?)9.4Fg-1(100mVs-1)分别增长到101.9(50mV s-1)和88.2Fg-1(100mV s-1)。在两电极体系中,电流密度为1.0Ag-1时,当织物伸长为20%、40%和60%时,比容量从未拉伸时的108.5Fg-1分别增长到117.6、119.6和125.1Fg-1。另外,拉伸也进一步改善聚吡咯涂层织物的循环性能,在多次充放电之后能保持更多的容量:充放电500个循环后,未拉伸织物剩余比容量为初始值的12.5%;拉伸分别为20%、40%和60%时,剩余的容量分别为其初始容量的45%、53%和55%。但是,考虑到实际应用的需要,其比容量及循环性能还需要进一步提高。
     (3)利用磁控溅射对棉织物进行金涂层,然后在有机溶剂中进行聚吡咯电化学聚合,成功制备了聚吡咯涂层棉织物。所得织物的表面电阻为105Ω/□。在纵向拉伸的过程中,金涂层织物的电阻在初始阶段(3%-25%)有较大波动,之后保持平稳,聚吡咯涂层织物的电阻随着拉伸先增大再减小,但两者在拉伸高达140%时电阻都能保持稳定,显示出良好的拉伸电性能。聚吡咯涂层织物循环拉伸时,织物电阻随着拉伸先增大再减小,应力回复时呈现同样的变化趋势。在反复拉伸1,000次后,聚吡咯涂层织物的电阻变大,但仍保持较低的数值(约1,645Ω/□)。
     循环伏安测试结果显示出该聚吡咯涂层织物具有良好电容性能,在扫速为10、50、100、200及300mV s-1时的比容量分别为254.9、216.7、196.8、166.4和144.8Fg-1。与化学聚合得到的聚吡咯涂层织物相比,比容量有很大提高。在拉伸状态下测试时发现,与化学聚合织物结果不同的是,拉伸30%和未拉伸的织物循环伏安结果基本一致,在扫速为10、50、100、200及300mV s-1时的比容量分别为256.3、225.0、203.4、175.0和149.8g-1。循环性能测试结果表明,电化学聚合得到的聚吡咯涂层织物循环性能有所改善,而且在拉伸30%时循环性能还有进一步提高,即500个循环后剩余比容量为初始值的51%。但是在3,000个循环后,比容量的衰减仍十分严重,剩余比容量仅为初始值的13%。
     锦纶/氨纶织物和棉织物的拉伸性能不同,因此经过聚吡咯涂层后其电化学性能随拉伸的变化也不同:聚吡咯涂层锦纶/氨纶织物的电化学性能随着拉伸(0%~60%)而不断改善,聚吡咯涂层棉织物则是在不同拉伸状态下(0%和30%)保持不变。这也会为以后的实际应用中超级电容器电极材料的选择提供一定的参考,可以根据不同的需要来选择不同拉伸性能的织物基体。
     (4)为进一步改善聚合物的电化学性能,引入了共聚的概念。通过电化学聚合,利用1M LiC104作为掺杂剂,成功地在乙腈溶剂中制备了吡咯和3-(4-叔丁基苯)噻吩的共聚物。SEM、元素分析和FTIR的结果显示共聚物特征较接近聚吡咯,但其中同时包含Py和TPT单体。将得到的共聚物和各单体聚合物分别组装成对称型超级电容器,并进行电化学测试。结果发现,虽然PTPT本身性能较差,但少量PTPT的加入却能明显改善聚吡咯的电化学表现。这可能是因为PTPT的加入,增大了聚合物的比表面积,使其电活性表面最大化,且促进了离子的传递。共聚物超级电容器表现出最高的比容量,在扫描速度为5和500mV s-1时分别为291和203Fg-1。与此相比,在同样条件下,PPy电容器的比容量为216和166F g-1, PTPT电容器为26和6Fg-1。在充放电测试中,共聚物电容器在0.5Ag-1的电流密度下比容量值为279Fg-1,远高于PPy的227Fg-1和PTPT的45Fg-1。在1,000个循环充放电测试后,PPy和PTPT电容器比容量的损失分别为16%和60%,而共聚物电容器的比容量衰减仅为9%,显示了其循环性能的明显改善。利用CV在100mV s-1对共聚物超级电容器进行10,000个循环测试后,其比容量仍能保持为初始值的67%,与此相比,PPy可保持的比容量为48%,PTPT为46%。
The incorporation of electronics into wearable items has demonstrated significant advances in terms of miniaturisation, functionality and comfort. These e-textiles have found broad applications in continuous personal health monitoring, high performance sportswear, wearable displays and a new class of portable devices. Being an indispensable part of these applications, lightweight, stretchable and wearable power sources including batteries and supercapacitors are strongly demanded. To have good combination with fabric, and to make people comfortable while wearing them, the energy source should be flexible and stretchable, the ideal wearable power sources would be made into breathable textile formats with stretchability (i.e. mechanical resilience) being conformal to the curved surface and sustain its function during the body movement. As one type of power sources, supercapacitors possess the advantages of higher power densities, excellent reversibility and long cycle life. They are gaining increasing interest in the application of light weight, ultrathin energy management devices for wearable electronics. Recently, there has been an emerging interest in flexible or stretchable supercapacitors. However, most research works are about flexible supercapacitors, and stretchable ones have been reported rarely. To the best of the authors' knowledge, the application of conducting polymer coated fabric in stretchable supercapacitors has not been reported yet.
     Here we describe a daily-used Nylon Lycra fabric or cotton fabric coated with polypyrrole (PPy) as electrode for stretchable supercapacitors. And different polymerization methods have been investigated to further improve the electrochemical properties of the resultant polymer.
     (1) Conductive PPy coated cotton fabric has been successfully fabricated via different polymerization methods:in-situ polymerization (CP), chemical vapour deposition (CVD) and interfacial polymerization (IP). And fabrics obtained though different polymerization methods displayed different surface morphology. The surface resistances of CVD and IP fabrics were310Ω/(?) and1200Ω/(?), respectively. CVD fabric showed better electrochemical properties than CP and IP fabrics.
     For the in-situ polymerizied PPy coated Nylon Lycra fabric, the conductivity of the fabric could be affected by reaction time and dopants. The best reaction time was2hours. When pTS was used as dopant, the surface resistance was highest (32,500Ω/(?)), while the lowest surface resistance of149Ω/(?) could be obtained when Na2NDS was used as dopant with the reaction time of2h at4℃. Compared with the original Nylon Lycra fabric, slightly higher drawing force was shown for PPy coated fabric, which might be attributed to the stiff PPy layer coating. EIS test proved that the sample obtained after2h polymerization showed the best electrochemical properties. The type of electrolyte used in CV test also had an influence on the electrochemical performance of PPy coated fabrics and highest specific capacitance of123.3F g-1was obtained in1M NaCl at a scan rate of lOmV s-1. However, the specific capacitance decreased when the scan rate increased. This might be explained by the entering into/ejecting and diffusion of counter ions being too slow compared to the transfer of electrons in the PPy matrix at high scan rates.
     (2) PPy coated Nylon Lycra fabric obtained via in-situ chemical polymerization of was investigated as electrode material of stretchable supercapacitor. Such a conductive fabric showed outstanding flexibility and stretchability, and demonstrated strong adhesion between the PPy and the fabric of interest. During stretching at wale direction, the resistance of this PPy coated Nylon Lycra fabric decreased with increasing elongation. After being stretched for1000times, the resistance of this conductive fabric was irreversibly increased. Higher irreversible resistance increase was induced with higher strain applied. Nevertheless, PPy coated Nylon Lycra still sustained its electrochemical properties with less than10%specific capacitance loss after being stretched to100%for1000times. Interestingly, its electrochemical properties could be improved with in-situ strain applied and exhibited a higher specific capacitance. The capacitance increased from69.7and39.4F g-1with0%elongation to101.9and88.2F g-1with60%strain applied at the scan rate of50and100mV s-1, respectively. In a two-electrode system at a current density of1.0A g-1the specific capacitance increased from108.5F g-1with0%strain to117.6,119.6and125.1F g-1with20%,40%and60%elongation, respectively. Also the cycling stability was improved with the applied strain. After500charging/discharging cycles, only12.5%of the initial capacitance was retained for the fabric with no strain applied. The retained capacitance of the fabric increased to45%,53%and55%with20%,40%and60%elongation, respectively. However, we should point out the cycling stability need to be improved for practical applications.
     (3) Electrochemical polymerization was used to obtain PPy coated cotton fabric with better electrochemical performance. The cotton fabric displayed a surface resistance of105Ω/(?) after being sputter coated with gold and electrochemically coated with PPy with50%strain applied. For the Au coated cotton fabric, the normalized electrical resistance increased rapidly with strain at the initial stage of stretching with violent vibration. Then the resistance was decreased and gradually stabilized. The electrical resistance of PPy coated cotton fabric showed a much smaller initial increase with strain after which the resistance was gradually stabilized. They both exhibited excellent stretch ability and sustained their conductivity even at140%elongation. During cycling test, the normalized resistance initially increased and then decreased with elongation. When the strain was released, the resistance was also increased first and then decreased. After being stretched to50%for1000times, the resistance of this conductive fabric was irreversibly increased to1645Ω/(?).
     CV results showed good capacitive behaviour of this PPy coated cotton fabric even at high scan rates. It delivered a specific capacitance of254.9,216.7,196.8,166.4and144.8F g-1at a scan rate of10,50,100,200and300mV s-1, respectively. Those values were much higher than that of the fabric obtained via chemical polymerization. While30%strain was applied to the fabric, its specific capacitance slightly increased to256.3,225.0,203.4,175.0and149.8F g-1at a scan rate of10,50,100,200and300mV s-1, respectively. The cycling stability of the PPy coated fabric obtained via electrochemical deposition was also better than that of the chemically polymerized fabric,51%of the initial capacitance was remained after500CV cycles at a scan rate of100mV s-1. And it was further improved while the fabric was tested with30%strain applied. However, after3000cycles of CV, the specific capacitance still decreased severely, only13%of the initial capacitance was retained.
     Due to the different stretchability of Nylon Lycra fabric and cotton fabric, their electrochemical properties also exhibited different variation trends with strain applied. For the Nylon Lycra fabric, its electrochemical properties could be improved with in-situ strain applied (0%-60%) and exhibited a higher specific capacitance. As to the cotton fabric, its specific kept nearly unchanged with or with30%strain applied. This could provide a reference for the supercapacitor electrode material choosing according to the different needs for various occasions.
     (4) Copolymerization was introduced to improve the performance of the resultant polymer. The copolymer of pyrrole and3-(4-tertbutylphenyl)thiophene (TPT) was synthesized via electropolymerization in acetonitrile with ClO4-as dopant. SEM, FTIR and elemental analysis results showed that the copolymer included both Py and TPT units while the amount of TPT unit was much smaller than Py unit. The resultant homopolymers and copolymer were assembled into supercapacitors to investigate their electrochemical performances. Though the homopolymer PTPT displayed very poor electrochemical properties, an introduction of small amounts of TPT units leads to superior electrochemical properties in comparison with the homopolymer PPy or PTPT. It might be ascribed to the introduction of the PTPT units into PPy improved its available surface area. Copolymer delivered the highest capacitance of291and203F g-1at a scan rate of5and500mV s-1, in comparison with216and166F g"1for PPy,26and6F g-1for PTPT, respectively. In charge/discharge tests, the copolymer electrode exhibited a capacitance of279F g-1at0.5A g-1, much higher than that of PPy (227F g-1) and PTPT (45F g-1). The copolymer electrode also showed an improved cycling stability. After1000charge/discharge cycles at a current density of5A g-1only a9%decrease of capacitance was observed, while PTPT and PPy electrodes lost60%and16%of their initial capacitance, respectively. The cycling stability has also been tested via CV at a scan rate of100mV s-1. After10000CV cycles,67%of the initial capacitance was remained for the copolymer supercapacitor, while the remained values were48%and40%for supercapacitors based on PPy and PTPT, respectively.
引文
1. Carpi F.,De Rossi D., Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Transactions on Information Technology in Biomedicine, 2005.9(3):295-318.
    2. Coyle S., Wu Y.Z., Lau K.T., et al., Smart nanotextiles:A review of materials and applications. Mrs Bulletin,2007.32(5):434-442.
    3. Tao X., ed. Wearable electronics and photonics. Woodhead Publication Limited:Cambridge 2005.
    4. Service R.F., Electronic textiles charge ahead. Science,2003.301(5635):909-911.
    5. Binkley P.F., Frontera W., Standaert D.G., et al., Predicting the potential of wearable technology-Physicians share their vision of future clinical applications of wearable technology. IEEE Engineering in Medicine and Biology Magazine,2003.22(3):23-27.
    6. Paradiso R., Gemignani A., Scilingo E.P., et al., Knitted bioclothes for cardiopulmonary monitoring, in Proceedings of the 25 th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-4:A New Beginning for Human Health, Ieee:New York.2003. p.3720-3723.
    7. Lymberis A.,Dittmar A., Advanced Wearable Health Systems and Applications-Research and Development Efforts in the European Union. Engineering in Medicine and Biology Magazine, IEEE,2007.26(3):29-33.
    8. Marculescu D., Marculescu R., Zamora N.H., et al., Electronic textiles:A platform for pervasive computing. Proceedings of the IEEE,2003.91(12): 1995-2018.
    9. Habetha J. The myheart project-fighting cardiovascular diseases by prevention and early diagnosis.in Engineering in Medicine and Biology Society,2006. EMBS'06.28th Annual International Conference of the IEEE. 2006.
    10. Heilman K.J.,Porges S.W., Accuracy of the LifeShirt (R) (Vivometrics) in the detection of cardiac rhythms. Biological Psychology,2007.75(3):300-305.
    11. Mamagoose:Sudden infant death syndrome monitor. Available from: http://www.verhaert.com/cms/images/stories/pdf in text/verhaert mamagoos e.pdf.
    12. Weber J.L., Blanc D., Dittmar A., et al., Telemonitoring of vital parameters with newly designed biomedical clothing. Studies in health technology and informatics,2004.108:260-5.
    13. Winters J.M.,Yu W., Wearable sensors and telerehabilitation. Engineering in Medicine and Biology Magazine, IEEE,2003.22(3):56-65.
    14. De Rossi D., Lorussi F., Scilingo E.P., et al., Artificial kinesthetic systems for telerehabilitation. Studies in health technology and informatics,2004.108: 209-13.
    15. Kymissis J., Kendall C., Paradiso J., et al. Parasitic power harvesting in shoes, in Second International Symposium on Wearable Computers.1998.
    16. Shenck N.S.,Paradiso J.A., Energy scavenging with shoe-mounted piezoelectrics. Micro, IEEE,2001.21(3):30-42.
    17. Klimiec E., Zaraska W., Zaraska K., et al., Piezoelectric polymer films as power converters for human powered electronics. Microelectronics Reliability, 2008.48(6):897-901.
    18. Pelrine R., Kornbluh R.D., Eckerle J., et al., Dielectric elastomers:generator mode fundamentals and applications.2001:148-156.
    19. Ashley S., Artificial muscles. Scientific American,2003.289(4):52-59.
    20. Starner T., Human-powered wearable computing. IBM Systems Journal,1996. 35(3.4):618-629.
    21. Kishi M., Nemoto H., Hamao T., et al. Micro thermoelectric modules and their application to wristwatches as an energy source. in Eighteenth International Conference on Thermoelectrics.1999.
    22. Jung S., Lauterbach C., Strasser M., et al. Enabling technologies for disappearing electronics in smart textiles, in IEEE International Solid-State Circuits Conference.2003.
    23. Giines S., Neugebauer H., Sariciftci N.S., Conjugated polymer-based organic solar cells. Chemical Reviews,2007.107(4):1324-1338.
    24. Coakley K.M.,McGehee M.D., Conjugated polymer photovoltaic cells. Chemistry of Materials,2004.16(23):4533-4542.
    25. About Power Plastic(?). Available from: http://www.konarka.com/index.php/power-plastic/about-power-plastic/.
    26. Shur M.S., Rumyantsev S.L., Gaska R., Semiconductor thin films and thin film devices for electrotextiles. International Journal of High Speed Electronics and Systems,2002.12(02):371-390.
    27. Castro F.A., Chabrecek P., Hany R., et al., Transparent, flexible and low-resistive precision fabric electrode for organic solar cells, physica status solidi (RRL)-Rapid Research Letters,2009.3(9):278-280.
    28. Kylberg W., de Castro F.A., Chabrecek P., et al., Woven electrodes for flexible organic photovoltaic cells. Advanced Materials,2011.23(8):1015-1019.
    29. Simon P.,Gogotsi Y., Materials for electrochemical capacitors. Nature Materials,2008.7(11):845-854.
    30. Sandhu S.S., Fellner J.P., Brutchen G.W., Diffusion-limited model for a lithium/air battery with an organic electrolyte. Journal of Power Sources,2007. 164(1):365-371.
    31. Mirzaeian M.,Hall P.J., Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009.54(28):7444-7451.
    32. Conway B.E., Transition from 'supercapacitor' to 'battery' behavior in electrochemical energy storage. Journal of the Electrochemical Society,1991. 138(6):1539-1548.
    33. Hadzi-Jordanov S., Angerstein-Kozlowska H., Vukovic M., et al., Reversibility and growth behavior of surface oxide films at ruthenium electrodes. Journal of the Electrochemical Society,1978.125(9):1471-1480.
    34. Conway B.E., Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications, New York:Kluwer Academic/Plenum Publisher. 1999.
    35. Conway B.E., Birss V., Wojtowicz J., The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources,1997.66(1-2):1-14.
    36. 袁国辉,电化学电容器,北京:化学工业出版社.2006.
    37. Huggins R.A., Supercapacitors and electrochemical pulse sources. Solid State Ionics,2000.134(1-2):179-195.
    38. Hall P.J., Mirzaeian M., Fletcher S.I., et al., Energy storage in electrochemical capacitors:designing functional materials to improve performance. Energy& Environmental Science,2010.3(9):1238-1251.
    39. Shi H., Activated carbons and double layer capacitance. Electrochimica Acta, 1996.41(10):1633-1639.
    40. Qu D.,Shi H., Studies of activated carbons used in double-layer capacitors. Journal of Power Sources,1998.74(1):99-107.
    41. Frackowiak E.,Beguin F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon,2001.39(6):937-950.
    42. Futaba D.N., Hata K., Yamada T., et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Materials,2006.5(12):987-994.
    43. Frackowiak E., Jurewicz K., Delpeux S., et al., Nanotubular materials for supercapacitors. Journal of Power Sources,2001.97-98:822-825.
    44. Bordjiba T., Mohamedi M., Dao L.H., New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Advanced Materials,2008. 20(4):815-819.
    45. Frackowiak E., Metenier K., Bertagna V., et al., Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters,2000.77(15): 2421-2423.
    46. Wen S., Jung M., Joo O.S., et al., EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Current Applied Physics,2006.6(6 SPEC. ISS.):1012-1015.
    47. Xing W., Qiao S.Z., Ding R.G., et al., Superior electric double layer capacitors using ordered mesoporous carbons. Carbon,2006.44(2):216-224.
    48. Sevilla M., Alvarez S., Centeno T.A., et al., Performance of templated mesoporous carbons in supercapacitors. Electrochimica Acta,2007.52(9): 3207-3215.
    49. Xu B., Wu F., Chen R., et al., Highly mesoporous and high surface area carbon:A high capacitance electrode material for EDLCs with various electrolytes. Electrochemistry Communications,2008.10(5):795-797.
    50. Pandolfo A.G.,Hollenkamp A.F., Carbon properties and their role in supercapacitors. Journal of Power Sources,2006.157(1):11-27.
    51. Zhang L.L.,Zhao X.S., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews,2009.38(9):2520-2531.
    52. Pech D., Brunet M., Durou H., et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology,2010. 5(9):651-654.
    53. Dmowski W., Egami T., Swider-Lyons K.E., et al., Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. Journal of Physical Chemistry B,2002.106(49):12677-12683.
    54. Fletcher J.M., Gardner W.E., Greenfield B.F., et al., Magnetic and other studies of ruthenium dioxide and its hydrate. Journal of the Chemical Society A:Inorganic, Physical, Theoretical,1968:653-657.
    55. Jayalakshmi M.,Balasubramanian K., Simple capacitors to supercapacitors-An overview. International Journal of Electrochemical Science,2008.3(11): 1196-1217.
    56. Toupin M., Brousse T., Belanger D., Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 2004.16(16):3184-3190.
    57. Wang Y., Takahashi K., Lee K.H., et al., Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Advanced Functional Materials,2006.16(9):1133-1144.
    58. Zhao X., Johnston C., Grant P.S., A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. Journal of Materials Chemistry,2009.19(46):8755-8760.
    59. Chandra A., Roberts A.J., Slade R.C.T., Studies of nanostructures and conductivity in the system VxMo1-xOy. Solid State Communications,2008. 147(3-4):83-87.
    60. Chandra A., Roberts A.J., Yee E.L.H., et al., Nanostructured oxides for energy storage applications in batteries and supercapacitors. Pure and Applied Chemistry,2009.81(8):1489-1498.
    61. Lao Z.J., Konstantinov K., Tournaire Y., et al., Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. Journal of Power Sources,2006.162(2 SPEC. ISS.):1451-1454.
    62. Kim I.H., Kim J.H., Cho B.W., et al., Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications. Journal of the Electrochemical Society,2006. 153(6):A989-A996.
    63. Wallace G.G., Campbell T.E., Innis P.C., Putting function into fashion: Organic conducting polymer fibres and textiles. Fibers and Polymers,2007. 8(2):135-142.
    64. Novak P., Muller K., Santhanam K.S.V., et al., Electrochemically active polymers for rechargeable batteries. Chemical Reviews,1997.97(1):207-282.
    65. Snook G.A., Peng C, Fray D.J., et al., Achieving high electrode specific capacitance with materials of low mass specific capacitance:Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochemistry Communications,2007.9(1):83-88.
    66. Talbi H., Just P.E.; Dao L.H., Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes:Applications for supercapacitors. Journal of Applied Electrochemistry,2003.33(6):465-473.
    67. Wu M., Snook G.A., Gupta V., et al., Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry,2005.15(23):2297-2303.
    68. Skompska M., Mieczkowski J., Holze R., et al., In situ conductance studies of p- and n-doping of poly(3,4-dialkoxythiophenes). Journal of Electroanalytical Chemistry,2005.577(1):9-17.
    69. Ryu K.S., Lee Y.-G., Hong Y.-S., et al., Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor. Electrochimica Acta, 2004.50(2-3):843-847.
    70. Villers D., Jobin D., Soucy C., et al., The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor. Journal of the Electrochemical Society,2003.150(6):A747-A752.
    71. Lota K., Khomenko V., Frackowiak E., Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. Journal of Physics and Chemistry of Solids,2004.65(2-3):295-301.
    72. Snook G.A.,Chen G.Z., The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. Journal of Electroanalytical Chemistry,2008.612(1):140-146.
    73. Pomfret S.J., Adams P.N., Comfort N.P., et al., Inherently electrically conductive fibers wet spun from a sulfonic acid-doped polyaniline solution. Advanced Materials,1998.10(16):1351-1353.
    74. Wang X., Schreuder-Gibson H., Downey M., et al., Conductive fibers from enzymatically synthesized polyaniline. Synthetic Metals,1999.107(2):117-121.
    75. Yang J., Burkinshaw S.M., Zhou J., et al., Fabrication and characteristics of 2-acrylamido-2-methyl-1-propanesulfonic acid-doped polyaniline hollow fibers. Advanced Materials,2003.15(13):1081-1084.
    76. Joanna Tsang, Sarah Leung, Xiao-ming Tao, et al., Effect of fabrication temperature on strain-sensing capacity of polypyrrole-coated conductive fabrics. Polymer International,2007.56:827-833.
    77. Varesano A., Aluigi A., Florio L., et al., Multifunctional cotton fabrics. Synthetic Metals,2009.159(11):1082-1089.
    78. Lin T., Wang L., Wang X., et al., Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films, 2005.479(1-2):77-82.
    79. Beneventi D., Alila S., Boufi S., et al., Polymerization of pyrrole on cellulose fibres using a FeC13 impregnation-pyrrole polymerization sequence. Cellulose, 2006.13(6):725-734.
    80. Ferrero F., Napoli L., Tonin C., et al., Pyrrole chemical polymerization on textiles:Kinetics and operating conditions. Journal of Applied Polymer Science,2006.102(5):4121-4126.
    81. Kaynak A., Najar S.S., Foitzik R.C., Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synthetic Metals,2008.158(1-2):1-5.
    82. Li Y., Cheng X.Y., Leung M.Y., et al., A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals,2005.155(1):89-94.
    83. Xue P., Tao X.M., Tsang H.Y., In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Applied Surface Science,2007.253(7):3387-3392.
    84. Dall'Acqua L., Tonin C., Varesano A., et al., Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals,2006.156(5-6): 379-386.
    85. Gregory R.V., Kimbrell W.C., Kuhn H.H., Conductive textiles. Synthetic Metals,1989.28(1-2):823-835.
    86. Gregory R.V., Kimbrell W.C., Kuhn H.H., Electrically conductive non-metallic textile coatings. Journal of Coated Fabrics,1991.20:167-175.
    87. Kuhn H.H.,Kimbrell W.C., Electrically conductive textile materials and method for making same. U. S. Patent,1989.4803096(81069).
    88. Kuhn H.H., Intrinsically Conducting Polymers:An Emerging Technology. M. Aldissi ed, Netherlands:Kluwer Academic Publishers.1993.
    89. Liu W., Cholli A.L., Nagarajan R., et al., The role of template in the enzymatic synthesis of conducting polyaniline. Journal of the American Chemical Society,1999.121(49):11345-11355.
    90. Yuan G.L.,Kuramoto N., Chemical synthesis of optically active polyaniline in the presence of dextran sulfate as molecular template. Chemistry Letters, 2002(5):544-545.
    91. Choi S.J., Park S.M., Electrochemical growth of nanosized conducting polymer wires on gold using molecular templates. Advanced Materials,2000.12(20): 1547-1549.
    92. Yuan G.L.,Kuramoto N., Synthesis of helical polyanilines using chondroitin sulfate as a molecular template. Macromolecular Chemistry and Physics,2004. 205(13):1744-1751.
    93. Uemura S., Shimakawa T., Kusabuka K., et al., Template photopolymerization of dimeric aniline by photocatalytic reaction with Ru(bpy)32+ in the presence of DNA. Journal of Materials Chemistry,2001.11(2):267-268.
    94. Tan S.N.,Ge H., Investigation into vapour-phase formation of polypyrrole. Polymer,1996.37(6):965-968.
    95. Xue P.,Tao X.M., Morphological and electromechanical studies of fibers coated with electrically conductive polymer. Journal of Applied Polymer Science,2005.98(4):1844-1854.
    96. G.G. Wallace, G. Tsekouras, Wang C., Inherently conducting polymers via electropolymerization for energy conversion and storage, in Electropolymerization:Concepts, Materials and Applications, S. Consnier,Karyakin A., Editors, WILEY-VCH Verlag GmbH& Co. KGaA: Weinheim.2010. p.215-240.
    97. Li C., Bai H., Shi G., Conducting polymer nanomaterials:electrosynthesis and applications. Chemical Society Reviews,2009.38(8):2397-2409.
    98. Malinauskas A., Malinauskiene J., Ramanavicius A., Conducting polymer-based nanostructurized materials:electrochemical aspects. Nanotechnology, 2005.16(10):R51.
    99. Yamaura M., Hagiwara T., Hirasaka M., et al., Structure and properties of biaxially stretched polypyrrole films. Synthetic Metals,1989.28(1-2):157-164.
    100. Subianto S., Will G.D., Kokot S., Electropolymerization of pyrrole on cotton fabrics. International Journal of Polymeric Materials,2005.54(2):141-150.
    101. Bhadani S.N., Kumari M., Sen Gupta S.K., et al., Preparation of conducting fibers via the electrochemical polymerization of pyrrole. Journal of Applied Polymer Science,1997.64(6):1073-1077.
    102. Bhadani S.N., Sen Gupta S.K., Sahu G.C., et al., Electrochemical formation of some conducting fibers. Journal of Applied Polymer Science,1996.61(2): 207-212.
    103. Seong Hun Kim, Kyung Wha Oh, Bahk J.H., Electrochemically synthesized polypyrrole and Cu-plated Nylon/Spandex for electrotherapeutic pad electrode. Journal of Applied Polymer Science,2004.91:4064-4071.
    104. Babu K.F., Senthilkumar R., Noel M., et al., Polypyrrole microstructure deposited by chemical and electrochemical methods on cotton fabrics. Synthetic Metals,2009.159(13):1353-1358.
    105. De Pinto M.I.S., Mishima H.T., De Mishima B.A.L.P., Polymers and copolymers of pyrrole and thiophene as electrodes in lithium cells. Journal of Applied Electrochemistry,1997.27(7):831-838.
    106. Katz H.E., Searson P.C., Poehler T.O., Batteries and charge storage devices based on electronically conducting polymers. Journal of Materials Research, 2010.25(8):1561-1574.
    107. Nyholm L., Nystrom G., Mihranyan A., et al., Toward flexible polymer and paper-based energy storage devices. Advanced Materials,2011.23(33):3751-3769.
    108. Rudge A., Raistrick I., Gottesfeld S., et al., A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochimica Acta,1994.39(2):273-287.
    109. Snook G.A., Kao P., Best A.S., Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources,2011.196(1):1-12.
    110. Peng C., Zhang S., Jewell D., et al., Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science,2008.18(7):777-788.
    111. Kim J.H., Lee Y.S., Sharma A.K., et al., Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochimica Acta, 2006.52(4):1727-1732.
    112. Xiao Q.,Zhou X., The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta,2003.48(5): 575-580.
    113. Wang D.-W., Li F., Zhao J., et al., Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano,2009.3(7):1745-1752.
    114. Frackowiak E., Khomenko V., Jurewicz K., et al., Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources,2006. 153(2):413-418.
    115. Gangopadhyay R.,De A., Conducting polymer nanocomposites:a brief overview. Chemistry of Materials,2000.12(3):608-622.
    116. Sih B.C.,Wolf M.O., Metal nanoparticle-conjugated polymer nanocomposites. Chemical Communications,2005(27):3375-3384.
    117. Malinauskas A., Malinauskiene J., Ramanavicius A., Conducting polymer-based nanostructurized materials:electrochemical aspects. Nanotechnology, 2005.16(10):R51-R62.
    118. Liu J., Zhang R., Sauve G.v., et al., Highly disordered dolymer dield dffect dransistors:N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. Journal of the American Chemical Society,2008.130(39):13167-13176.
    119. Oliver R., Munoz A., Ocampo C., et al., Electrochemical characteristics of copolymers electrochemically synthesized from N-methylpyrrole and 3,4-ethylenedioxythiophene on steel electrodes:Comparison with homopolymers. Chemical Physics,2006.328(1-3):299-306.
    120. Zhang C., Hua C., Wang G., et al., A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1'-binaphthyl-2,2'-diyl bis(N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochimica Acta,2010.55(13):4103-4111.
    121. Zhang C., Xu Y., Wang N., et al., Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene. Electrochimica Acta,2009.55(1):13-18.
    122. Wang T., Kiebele A., Ma J., et al., Charge transfer between polyaniline and carbon nanotubes supercapacitors:improving both energy and power densities. Journal of the Electrochemical Society,2011.158(1):A1-A5.
    123. Jin S., Liu X., Zhang W., et al., Electrochemical copolymerization of pyrrole and styrene. Macromolecules,2000.33(13):4805-4808.
    124. Seshadri V., Wu L., Sotzing G.A., Conjugated polymers via electrochemical polymerization of thieno[3,4-b]thiophene (T34bT) and 3,4-ethylenedioxythiophene (EDOT). Langmuir,2003.19(22):9479-9485.
    125. Bulut U., Toppare L., Yilmaz F., et al., Synthesis, characterization and electrochromic properties of conducting copolymers of 2,3-bis-(3-thienylcarbonyl)oxy propyl 3-thiophene carboxylate with thiophene and pyrrole. European Polymer Journal,2004.40(11):2421-2426.
    126. Wang B., Zhao J., Cui C., et al., Electrochromic properties of a novel low band gap conjugated copolymer based on 1,4-bis(2-thienyl)-naphthalene and 3,4-ethylenedioxythiophene. Electrochimica Acta,2011.56(13):4819-4827.
    127. Xu L., Zhao J., Liu R., et al., Electrosyntheses and characterizations of novel electrochromic and fluorescent copolymers based on 2,2'-bithiophene and pyrene. Electrochimica Acta,2010.55(28):8855-8862.
    128. Gaupp C.L.,Reynolds J.R., Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules, 2003.36(17):6305-6315.
    129. Chen-Yang Y.W., Li J.L., Wu T.L., et al., Electropolymerization and electrochemical properties of (N-hydroxyalkyl)pyrrole/pyrrole copolymers. Electrochimica Acta,2004.49(12):2031-2040.
    130. Chang C.C., Her L.J., Hong J.L., Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery. Electrochimica Acta,2005.50(22):4461-4468.
    131. Zhang A.Q., Wang L.Z., Zhang L.S., et al., Preparation and electrochemical capacitance of poly(pyrrole-co-aniline). Journal of Applied Polymer Science, 2010.115(3):1881-1885.
    132. Kuwabata S., Ito S., Yoneyama H., Copolymerization of pyrrole and thiophene by electrochemical oxidation and electrochemical behavior of the resulting copolymers. Journal of The Electrochemical Society,1988.135(7): 1691-1695.
    133. Lu J.F., Wang L., Lai Q.Y., et al., Study of capacitive properties in supercapacitor for copolymer of aniline with m-phenylenediamine. Journal of Solid State Electrochemistry,2009.13(12):1803-1810.
    134. Wang J., Too C.O., Wallace G.G., A highly flexible polymer fibre battery. Journal of Power Sources,2005.150(0):223-228.
    135. Wang J., Wang C.Y., Too C.O., et al., Highly-flexible fibre battery incorporating polypyrrole cathode and carbon nanotubes anode. Journal of Power Sources,2006.161(2):1458-1462.
    136. Bae J., Song M.K., Park Y.J., et al., Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angewandte Chemie International Edition,2011.50(7):1683-1687.
    137. Fu Y., Cai X., Wu H., et al., Fiber supercapacitors utilizing pen Ink for flexible/wearable energy storage. Advanced Materials,2012.24(42):5713-5718.
    138. Xiao X., Li T., Yang P., et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano,2012.6(10):9200-9206.
    139. Wang C.Y., Ballantyne A.M., Hall S.B., et al., Functionalized polythiophene-coated textile:A new anode material for a flexible battery. Journal of Power Sources,2006.156(2):610-614.
    140. Wang C.Y., Tsekouras G., Wagner P., et al., Functionalised polyterthiophenes as anode materials in polymer/polymer batteries. Synthetic Metals,2010. 160(1-2):76-82.
    141. Nystrom G., Razaq A., Stromme M., et al., Ultrafast all-polymer paper-based batteries. Nano Letters,2009.9(10):3635-3639.
    142. Cho S.H., Joo J.S., Jung B.R., et al., PET fabric/poly(3,4-ethylenedioxythiophene) composite as polymer electrode in redox supercapacitor. Macromolecular Research,2009.17(10):746-749.
    143. Hu L., Pasta M., La Mantia F., et al., Stretchable, porous, and conductive energy textiles. Nano Letters,2010.10(2):708-714.
    144. Pasta M., La Mantia F., Hu L., et al., Aqueous supercapacitors on conductive cotton. Nano Research,2010.3(6):452-458.
    145. Yuan C, Hou L., Li D., et al., Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors. Electrochimica Acta,2011.56(19):6683-6687.
    146. Yu G., Hu L., Vosgueritchian M., et al., Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Letters,2011.11(7):2905-2911.
    147. Chen P., Chen H., Qiu J., et al., Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Research,2010.3(8):594-603.
    148. Laforgue A., All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. Journal of Power Sources,2011.196(1): 559-564.
    149. Bao L.,Li X., Towards textile energy storage from cotton t-Shirts. Advanced Materials,2012.24(24):3246-3252.
    150. Yu C, Masarapu C, Rong J., et al., Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Advanced Materials, 2009.21(47):4793-4797.
    151. Lipomi D.J., Tee B.C.K., Vosgueritchian M., et al., Stretchable organic solar cells. Advanced Materials,2011.23(15):1771-1775.
    152. Kaltenbrunner M., Kettlgruber G., Siket C, et al., Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Advanced Materials, 2010.22(18):2065-2067.
    153. Wang C., Zheng W., Yue Z., et al., Buckled, stretchable polypyrrole electrodes for battery applications. Advanced Materials,2011.23(31):3580-3584.
    154. Li X., Gu T., Wei B., Dynamic and galvanic stability of stretchable supercapacitors. Nano Letters,2012.12(12):6366-6371.
    155. Lacour S.P., Wagner S., Huang Z.Y., et al., Stretchable gold conductors on elastomeric substrates. Applied Physics Letters,2003.82(15):2404-2406.
    156. Rosset S., Niklaus M., Dubois P., et al., Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Advanced Functional Materials,2009.19(3):470-478.
    157. Swedberg J., Metallized fabrics:from high-tech to home ec. Industrial Fabric Products Review,1998.75(3):40-43.
    158. Yuen C.W.M., Jiang S.Q., Kan C.W., et al., Textile metallisation. Textile Asia, 2006.37(9-10):33-35.
    159. Yip J., Jiang S., Wong C., Characterization of metallic textiles deposited by magnetron sputtering and traditional metallic treatments. Surface and Coatings Technology,2009.204(3):380-385.
    160. G.G. Wallace, G.M. Spinks, P.R. Teasdale, Conducting Electroactive Polymers:Intelligent Materials Systems, Lancaster, USA:Technomic Publishing Company.1997.
    161. Su K., Nuraje N., Zhang L., et al., Fast conductance switching in single-crystal organic nanoneedles prepared from an interfacial polymerization-crystallization of 3,4-ethylenedioxythiophene. Advanced Materials,2007. 19(5):669-672.
    162. Huang J.,Kaner R.B., A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society,2003.126(3):851-855.
    163. Nuraje N., Su K., Yang N.I., et al., Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano,2008.2(3):502-506.
    164. Omastova M., Trchova M., Kovafova J., et al., Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synthetic Metals,2003. 138(3):447-455.
    165. Liu Y.C., Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. Journal of Electroanalytical Chemistry, 2004.571(2):255-264.
    166. Grzeszczuk M., Kepas A., Kvarnstrom C., et al., Effects of small octahedral mono, di, and trivalent hexafluoroanions on electronic and molecular structures of polypyrrole monitored by in situ UV-vis-NIR and resonance Raman spectroelectrochemical measurements. Synthetic Metals,2010.160(7-8):636-642.
    167. Li X., Rong J., Wei B., Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano,2010.4(10): 6039-6049.
    168. Wang J.P., Xu Y.L., Wang J., et al., High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synthetic Metals,2010. 160(17-18):1826-1831.
    169. Xiao C.F., Tao X.M., Leung S.M.Y., et al., Structural characteristics of chemical vapor polymerized polypyrrole/polycaprolactam fiber composites. Polymer International,2006.55(1):101-107.
    170. Afshari M., Gupta A., Jung D., et al., Properties of films and fibers obtained from Lewis acid-base complexed nylon 6,6. Polymer,2008.49(5):1297-1304.
    171. Do C.H., Pearce E.M., Bulkin B.J., et al., FT-IR spectroscopic study on the thermal and thermal oxidative degradation of nylons. Journal of Polymer Science, Part A:Polymer Chemistry,1987.25(9):2409-2424.
    172. Liu J.,Wan M., Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method. Journal of Materials Chemistry,2001.11(2):404-407.
    173. Varesano A., Antognozzi B., Tonin C., Electrically conducting-adhesive coating on polyamide fabrics. Synthetic Metals,2010.160(15-16):1683-1687.
    174. Ding Y., Invernale M.A., Sotzing G.A., Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Applied materials & interfaces,2010.2(6):1588-1593.
    175. Murray P., Spinks G.M., Wallace G.G., et al., Electrochemical induced ductile—brittle transition in tosylate-doped (pTS) polypyrrole. Synthetic Metals,1998.97(2):117-121.
    176. Zheng W., Alici G., Clingan P.R., et al., Polypyrrole stretchable actuators. Journal of Polymer Science Part B:Polymer Physics,2013.51(1):57-63.
    177. Li J., Wang X., Wang Y., et al., Structure and electrochemical properties of carbon aerogels synthesized at ambient temperatures as supercapacitors. Journal of Non-Crystalline Solids,2008.354(1):19-24.
    178. Wang K., Huang J.Y., Wei Z.X., Conducting polyaniline nanowire arrays for high performance supercapacitors. Journal of Physical Chemistry C,2010. 114(17):8062-8067.
    179. Yoon S.B., Yoon E.H., Kim K.B., Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. Journal of Power Sources,2011.196(24):10791-10797.
    180. Wang Q., Wen Z., Li J., A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Advanced Functional Materials,2006.16(16):2141-2146.
    181. Prabaharan S.R.S., Vimala R., Zainal Z., Nanostructured mesoporous carbon as electrodes for supercapacitors. Journal of Power Sources,2006.161(1): 730-736.
    182. Wu J., Zhou D., Too C.O., et al., Conducting polymer coated lycra. Synthetic Metals,2005.155(3):698-701.
    183. Zhang H., Tao X., Yu T., et al., A novel sensate 'string'for large-strain measurement at high temperature. Measurement Science and Technology, 2006.17(2):450-458.
    184. Zhang H., Tao X.M., Wang S.Y., et al., Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Textile Research Journal,2005.75(8):598-606.
    185. Calvert P., Duggal D., Patra P., et al., Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 2008.484:291/[657]-302/[668].
    186. Kuhn H.H., Child A.D., Kimbrell W.C., Toward real applications of conductive polymers. Synthetic Metals,1995.71(1-3):2139-2142.
    187. Wu Q.F., He K.X., Mi H.Y., et al., Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Materials Chemistry and Physics,2007.101(2-3):367-371.
    188. Lee H., Kim H., Cho M.S., et al., Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochimica Acta,2011.56(22):7460-7466.
    189. Jiang S.X., Qin W.F., Guo R.H., et al., Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering. Surface and Coatings Technology,2010.204(21-22):3662-3667.
    190. Meng F.,Ding Y., Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Advanced Materials,2011.23(35):4098-4102.
    191. Ghosh S.,Inganas O., Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Advanced Materials,1999.11(14):1214-1218.
    192. Stoller M.D.,Ruoff R.S., Best practice methods for determining an electrode material's performance for ultracapacitors. Energy& Environmental Science, 2010.3(9):1294-1301.
    193. Miyaura N.,Suzuki A., Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews,1995.95(7):2457-2483.
    194. Guerrero D.J., Ren X., Ferraris J.P., Preparation and characterization of poly(3-arylthiophene)s. Chemistry of Materials,1994.6(8):1437-1443.
    195. Gok A., Omastova M., Yavuz A.G., Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synthetic Metals,2007. 157(1):23-29.
    196. Wu Q., Xu Y., Yao Z., et al., Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano,2010.4(4):1963-1970.
    197. Khomenko V., Raymundo-Pinero E., Frackowiak E., et al., High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Applied Physics A:Materials Science & Processing,2006.82(4):567-573.
    198. Pech D., Brunet M., Durou H., et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology,2010. 5(9):651-654.
    199. Hu C.C., Chang K.H., Lin M.C., et al., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters,2006.6(12):2690-2695.
    200. Choi D., Blomgren G.E., Kumta P.N., Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors. Advanced Materials,2006.18(9):1178-1182.