智能窗用有机/无机电致变色薄膜的结构与性能调控及器件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着全球环境污染和能源危机问题日益严重,如何有效地节约资源与保护环境以实现可持续发展是当前科技领域的重要课题。电致变色材料作为一种新型的节能材料,由于在建筑节能领域的应用前景而受到极大关注。若能突破电致变色材料在制备和应用中的诸多关键技术,开发出高性能、低成本而又实用性强的电致变色材料,则有望解决现有电致变色薄膜材料在实际应用中的瓶颈问题。本论文以WO3和NiO为主要研究对象,以调控其微观结构和形貌为手段,通过液相法制备了微纳米结构的电致变色薄膜,并通过有机复合化对其进行改性研究,主要目的是提高其光调节范围、电致变色效应速度、着色效率以及循环寿命。此外,还组装了基于凝胶电解质的NiO/WO3互补型电致变色器件,并对其电致变色性能和实用化前景进行了研究和探索。
     采用简单的水热法在FTO导电基底上制备了垂直定向排列的一维WO3纳米结构阵列和自编织的W03纳米片电致变色薄膜,且所制备的WO3均为六方相结构。研究发现水热反应溶液中尿素的含量以及溶剂中水和乙腈的比例对产物最终的形貌起到关键作用,以水为溶剂,通过调节尿素含量得到了长方形的WO3纳米棒阵列,而当尿素含量不变,通过调节溶剂中水和乙腈的体积比例得到了圆柱形纳米棒阵列的WO3薄膜。与传统的纳米颗粒薄膜相比,垂直定向的纳米棒阵列结构具有较大的活性比表面积和有序的离子通道,不仅可以缩短离子的扩散路径,而且有利于电解液与纳米棒的充分接触。因此电致变色性能得到了明显改善。其中着色时间和褪色时间分别为6-9s和3~5s,着色效率最高可以达到106.8cm2/C。以乙腈为溶剂加入少量水,并同时加入尿素和草酸来调控W03的结构形貌,可以得到一种由纳米线编织而成的纳米片状结构。这种编织体结构大大增加了电化学反应的活性比表面积,因此着色效率有了明显提高,可以达到134cm2/C,然而由于这种相互交错的编制体结构会阻碍离子的嵌入和迁出,因此着色和褪色时间有所延长。
     采用水热法在FTO导电基底上制备了NiO电致变色薄膜。通过调节水热反应溶液中过硫酸钾和氨水的添加量分别得到了自组装的NiO多级微米片和六方形的NiO纳米盘薄膜。对于自组装的NiO多级微米片薄膜来说,微米片之间相互交错排列所形成的大孔结构以及微米片中存在的由于纳米叶子的自组装而形成的小孔结构,不仅增大了其电化学反应的活性比表面积,而且有利于Li+的嵌入/脱出反应,因此具有良好的电致变色性能。其中,着色时间和褪色时间分别为4.6和7.2s,着色效率可以达到89.3cm2/C。此外,与文献报道的多孔的NiO纳米片薄膜相比,多级NiO微米片薄膜结构稳定、具有一定机械强度,能承受由于离子和电子的双注入和脱出所引起的晶格应力和体积变化,显示了良好的循环稳定性。
     分别采用浸泡法和电化学沉积法在FTO玻璃上制备了微纳米结构的PANI电致变色薄膜。浸泡法制备PANI薄膜时,掺杂剂的种类对PANI薄膜的结构和形貌具有重要影响。当草酸作为掺杂剂时,得到的是致密的PANI纳米颗粒薄膜,当丙烯酸作为掺杂剂时,得到的是PANI微米棒薄膜,采用电化学氧化聚合制备PANI薄膜时,沉积方式对薄膜的结构形貌具有重要影响。其中,恒流和恒压沉积得到的薄膜均为致密的无定形PANI薄膜,而循环伏安法得到的是纳米棒网络结构的PANI薄膜;结合水热法和循环伏安法实现了W03和PANI在纳米层次上的结构设计。WO3/PANI复合薄膜结合了两者的优点,具有了双重的电致变色效应。与单一的W03薄膜相比,复合薄膜显示了多色性,且由于形成了施主-受主系统,加速了离子和电子的迁移速度,实现了快速响应。与单一PANI薄膜相比,复合薄膜中W03纳米棒阵列结构使得覆盖在其表面的PANI纳米短棒的活性比表面得到充分利用,从而提高了其光调制范围和着色效率。
     采用水热法在FTO玻璃上制备了三种多孔结构的NiO电致变色薄膜,并结合循环伏安法在NiO多孔结构上生长了PANI纳米结构,得到了三种不同的复合电致变色薄膜。由于NiO和PANI均在正压下着色,负压下褪色,因此,NiO/PANI复合薄膜在电致变色性能上具有一定的增强效果,与互补型的WO3/PANI复合薄膜相比,具有更好的电致变色性能。其在550nm处的光调制范围可以达到62%,着色效率高达121cm2/C,着色和褪色时间分别为90和120ms。
     以自编织W03纳米片薄膜和NiO多级微米片薄膜为电致变色层和离子存储层,分别组装了基于液态和固态电解质的NiO/WO3互补型电致变色器件。在NiO/WO3互补器件中,NiO不仅作为离子存储层,也起到了互补变色的作用,W03薄膜和NiO薄膜电致变色的叠加效应,使器件的电致变色性能得到提高。如基于液态电解质的器件的着色时间和褪色时间分别为1.8和3.2s,着色效率可以达到146.9cm2/C。而基于凝胶电解质的全固态器件,由于凝胶态电解质层中电子和离子的迁移受到非导电性聚合物框架结构的阻碍作用,使其迁移比较缓慢,且凝胶电解质的稳定性和机械强度比较差,导致在电致变色循环过程中,聚合物框架结构遭到破坏而坍塌,导致了不可逆循环,因此电致变色性能较差,还有待提高,距离实用化还有一定距离。
With the emergence of environmental pollution and energy crisis, effective energy conservation and environmental protection for achieving sustainable development are currently important issues in scientific community. Electrochromic (EC) materials, as one of the energy-saving materials, have attracted vast attention owing to the potential application in smart windows. Although the research is very wide for the organic/inorganic EC materials, there are many problems in the practical applications, such as the poor cycle stability, slow switching responses, low optical modulation and high power consumption, which make them difficult to meet the needs of practical applications. This thesis focused on the liquid-phase fabrication of inorganic and organic/inorganic composite EC films composed of micro/nanomaterials. The effects of the various nanostructures on the EC performance of these films were examined in detail. Finally, an all-solid-state electrochromic device based on NiO/WO3complementary structure and gel electrolyte was fabricated and its EC properties were also systematically investigated.
     Vertically aligned 1D WO3nanostructure and self-weaving WO3nanoflake films were grown on fluorine-doped tin oxide (FTO) coated glass substrate using a crystal-seed-assisted hydrothermal technique, respectively. Detailed mechanistic studies revealed that the composition of the precursor solution played important roles in determining the final shape and size of the WO3nanostructures. The rectangular nanorod array film can be obtained in the presence of1.2mmol urea with water as the solvent. While the cylindrical nanorods were grown by tuning the solvent composition with the urea content fixed at1.2mmol. Due to the large tunnels in the hexagonally structured WO3, and the large active surface area available for electrochemical reactions, a large optical modulation of66% at632.8nm and a potential of -2.0V, fast switching speeds of6.7s and3.4s for coloration and bleaching, respectively, and a high coloration efficiency of106.8cm2/C were achieved for the cylindrical nanorod array film. Interestingly, with addition of oxalic acid and urea to a mixed solvent of de-ionized water and acetonitrile, WO3nanoflakes woven from nanowires were grown. This unique nanostructure gives a coarse surface, making a larger surface area available for reactions in electrochemical processes and therefore a higher coloration efficiency of134.4cm2/C was achieved. Moreover, the braided structure is more solid than that of the previously reported nanowire arrays and may enhance the long-term cycling stability, which is a crucial parameter for practical devices. However, its coloration and bleaching times were prolonged because the intertwined structure would hinder the ion intercalation/deintercalation.
     Thin films of hexagonal NiO nanoplates and hierarchical NiO micro flakes assembled from nanoleaves were grown directly on FTO-coated glass substrates using a facile and template-free hydrothermal technique. As compared to conventional nanoporous structures or other1D nanostructures, the hierarchically assembled microflakes produced a larger active surface area, which is not only limited to the large open-pore voids between the microflakes, but also to the pore structure formed by the oriented assembly of the nanoleaves. It is noteworthy that the microflakes are made of atomically thin nanoleaves, which is similar to the layered WO3and MoO3nanosheets reported in the previous literatures. Such a layered structure that made of atomically thin nanoleaves would facilitate ion intercalation/deintercalation by reducing their diffusion path lengths. Thus, the films exhibited a high optical modulation (62.5%at550nm), large coloration efficiency (89.3cm2/C at550nm by applying a low coloration voltage of-1.0V) and fast switching responses with a coloring time of4.6s and a bleaching time of7.2s. Moreover, for the hierarchically assembled NiO films, the nanoleaves were assembled into microflake through the noncovalent bonds and gave an orderly integration architecture. This structure exhibited better structural stability and mechanical properties than the randomly distributed nanoplates. Therefore, it would reduce the dissolution caused by volumetric changes and lattice stresses during the repeated Li+ insertion and extraction process and result in a good cycling durability.
     The soaking method and electrochemical deposition method were used to fabricate micro/nanostructured PANI EC films. Films of PANI nanoparticles were obtained by soaking the FTO glass in a solution containing0.5mol/L aniline and0.5mol/L aqueous H2SO4with oxalic acid as a dopant.When acrylic acid was used as the dopant, the resulting films were composed of PANI microrods. For the electrochemical oxidation polymerization of PANI film, the mode of deposition had a significant impact on the morphologies of the films. The dense amorphous PANI films were prepared through the constant current or voltage mode. While the nanorods film was grown by potentiodynamic cycle at a sweep rate of100mV/s. Therefore, the potentiodynamic cycle method was used to deposit PANI nanostructures on the WO3nanorods array film. The resulting WO3/PANI composite films exhibited double electrochromic effect of WO3and PANI. Compared with the single WO3films, the composite films showed tuning-color and fast switching responses with a coloring time of800ms and a bleaching time of500ms, which is attributed to the formation of donor-acceptor systems. The composite films also exhibited a high optical modulation (42% at632.8nm), large coloration efficiency (76cm2/C by applying a low coloration voltage of0.8V) as compare to the single PANI film.
     The highly porous NiO/polyaniline composite films were prepared by combining hydrothermal process and electro-polymerization. Firstly, three types of porous NiO films have been synthesized by tuning the composition of the precursor solution in hydrothermal reaction vessel. Secondly, PANI nanostructures were deposited onto the as-prepared NiO porous structures by potentiodynamic cycle method. Since NiO and PANI are both colored under positive voltage and bleached under negative voltage, the NiO/PANI composite films showed highly enhanced EC performance as compared to the WO3/PANI composite films. A large optical modulation of62% at550nm, fast switching speeds of90and120ms for coloration and bleaching, respectively, and a high coloration efficiency of121cm2/C were achieved for the composite film assembled from NiO nanoplates and polyaniline pleated structures.
     An all-solid-state EC device for modulating the optical transmittance was fabricated based on NiO/W03complementary structure and gel electrolyte. For comparation, a corresponding device based on liquid electrolyte was also manufactured. Due to the fast ions migration velocity, the device based on liquid electrolyte showed fast switching speeds of1.8and3.2s for coloration and bleaching, respectively, and a high coloration efficiency of146.9cm2/C. However, the device based on gel electrolyte gave poor EC performance because the migration of ions in the gel electrolyte was hindered by the non-conductive polymer frame, which led to a low switching kinetics. Moreover, due to the poor chemical stability and mechanical strength of the gel electrolyte, the polymer frame would be destroyed or collapsed during the coloration/bleaching process, and led to an irreversible cycle. Thus, it is necessary to improve the EC performance of all-solid-state device in our following research work and make it feasible for practical applications.
引文
[1]Dudley, B. British Petroleum statistical review of world energy June 2012, http://www.bp.com/statisticalreview.
    [2]Smalley, R. E. Future global energy prosperity:the terawatt challenge, MRS Bull., 2005,30,412-417.
    [3]Perez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information, Energy and Buildings,2008,40,394-398.
    [4]罗宏杰,高彦峰,二氧化钒智能节能材料的溶液法制备与光学性能,中国材料进展,2009,28,38-42.
    [5]Deb, S. K. Electrochromic characters of WO3, Appl. Opt. Suppl.,1969,3,193-199.
    [6]Wohler, F. Ueber das Wolfram, Ann. Phys.,1924,2,345-358.
    [7]Glember, O.; Saurr, H. Uber wolframoxyde, Z. Anorg. Allg. Chem.,1943,252, 144-159.
    [8]Glember, O.; Naumann, C. Kristallisierte wolframblauverbindungen; wasserstoffanaloga der wolframbronzen HxW03, Z. Anorg. Allg. Chem.,1951,265, 288-302.
    [9]Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys.,1961,34,862-863.
    [10]Deb, S. K. A novel eleetrophotographic system, Appl. Opt.,1969,8,192-195.
    [11]Deb, S. K. Optical and photoelectric properties and color centers in thin films of tungsten oxide, Philos. Mag.,1973,27,801-822.
    [12]Lampert, C. M. Innovative Solar Optical Materials, Opt. Eng.,1984,23,92.
    [13]Lampert, C. M. Electrochromic materials and devices for energy efficient windows, Sol. Energy Mater.,1984,11,1-27.
    [14]Svensson, J. S. E. M.; Granqvist, C. G. Electrochromic tungsten oxide films for energy efficient windows, Sol. Energy Mater.,1984,11,29-34.
    [15]Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and electrochromic devices, Cambridge, New York,2007; Electrochromics in the world, http://www.ec-ind.com.
    [16]Huiberts, J. N.; Griessen, R.; Rector, J. H.; Wijngaarden, R. J.; Dekker, J. P.; De Groot, D. G.; Koeman, N. J. Yttrium and lanthanum hydride films with switchable optical properties, Nature,1996,380,231-234.
    [17]Griessen, R.; Huiberts, J. N.; Kremers, M.; van Gogh, A. T. M.; Koeman, N. J.; Dekker, J. P.; Notten, P. H. L. Yttrium and lanthanum hydride films with switchable optical properties, J. Alloys Compd.,1997,253-254,44-50.
    [18]Svensson, J. S. E. M.; Granqvist, C. G Electrochromic coating for "Smart Window", Sol. Energy Mater.,1985,12,391-402.
    [19]Gillaspie, D. T.; Tenent, R. C.; Dillon, A. C. Metal-oxide films for electrochromic applications:present technology and future directions, J. Mater. Chem.,2010,20, 9585-9592.
    [20]Granqvist, C. G.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G A.; Ronnow, D.; Mattsson, M. S.; Veszelei, M.; Vaivars, G. Recent advances in electrochromics for smart windows applications, Sol. Energy,1998,63.199-216.
    [21]Ozer, N.; Lampert, C. M. Electrochromic characterization of sol-gel deposited coatings. Sol. Energy Mater. Sol. Cells,1998,54,147-156.
    [22]Velevska, J.; Ristova, M. Electrochromic properties of NiOx prepared by low vacuum evaporation, Sol. Energy Mater. Sol. Cells,2002,73,131-139.
    [23]Granqvist, C. G. Solar energy materials, Adv. Mater.,2003,15,1789-1803.
    [24]Granqvist, C. G Oxide electrochromics:Why, how, and whither, Sol. Energy Mater. Sol. Cells,2008,92,203-208.
    [25]Abe, Y.; Lee, S. H.; Zayim, E. O.; Tracy, C. E.; Pitts, J. R.; Deb, S. K. Electrochromic properties of Ni oxide thin films in diluted acidic electrolytes and their stability, Sol. Energy Mater. Sol. Cells,2008,92,160-163.
    [26]Zayim, E. O.; Turhan, I.; Tepehan, F. Z.; Ozer, N. Sol-gel deposited nickel oxide films for electrochromic applications, Sol. Energy Mater. Sol. Cells,2008,92, 164-169.
    [27]Cogan, S. F.; Plante, T. D.; McFadden, R. S.; Rauh, R. D. Solar modulation in a-WO3-IrO2 and c-KxWO3+(x/2)/a-IrO2 complementary electrochromic windows, Sol. Energy Mater.,1987,16,371-382.
    [28]Patil, P. S.; Kawar, R. K.; Sadale, S. B. Electrochromism in spray deposited iridium oxide thin films, Electrochim. Acta,2005,50,2527-2532.
    [29]Hillman, A. R.; Skopek, M. A.; Gurman, S. J. X-ray spectroscopy of electrochemically deposited iridium oxide films:detection of multiple sites through structural disorder, Phys. Chem. Chem. Phys.,2011,13,5252-5263.
    [30]Backholm, J.; Avendano, E.; Azens, A.; Azevedo, G M.; Coronel, E.; Niklasson, G. A.; Granqvist, C. G. Iridium-based oxides:Recent advances in coloration mechanism, structural and morphological characterization,2008, Sol. Energy Mater. Sol. Cells, 92,91-96.
    [31]Nishio, K.; Watanabe, Y.; Tsuchiya, T. Preparation and properties of electrochromic iridium oxide thin film by sol-gel process, Thin Solid Films,1999,350,96-100.
    [32]Hersam, M. C.; Comstock, D. J.; Christensen, S. T.; Elam, J. W.; Pellin, M. J. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide template atomic layer deposition, Electrochem. Commun.,2010,12,1543-1546.
    [33]Hu, J.; Abdelsalam, M.; Bartlett, P.; Cole, R.; Sugawara, Y.; Baumberg, J.; Mahajan, S.; Denuault, G. Electrodeposition of highly ordered macroporous iridium oxide through self-assembled colloidal templates, J. Mater. Chem.,2009,19,3855-3858.
    [34]Chen, Y. J.; Taylor, R. L.; Scherson, D. Electrochemical and in situ optical studies of supported iridium oxide films in aqueous solutions, J. Electrochem. Soc.,2009,156, F14-F21.
    [35]Burke, L. D.; Murphy, O. J. Electrochromic behavior of oxide-films grown on cobalt and manganese in base, J. Electroanal. Chem.,1980,109,373-377.
    [36]Burke, L. D.; Murphy, O. J. Electrochromic behavior of electrodeposited cobalt oxide-films, J. Electroanal. Chem.,1980.112,379-382.
    [37]Yoshino, T.; Baba, N. Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition, Sol. Energy Mater. Sol. Cells,1995,39, 391-397.
    [38]Kadam, L. D.; Patil, P. S. Step potential analysis of cobalt oxide based electrochromic devices, Sol. Energy Mater. Sol. Cells,2001,70,15-23.
    [39]Xia, X. H.; Tu, J. P.; Zhang, J.; Xiang, J. Y.; Wang, X. L.; Zhao, X. B. Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties, ACS Appl. Mater. Interfaces,2010,2,186-192.
    [40]Xia, X. H.; Tu, J. P.; Zhang, J.; Xiang, J. Y.; Wang, X. L.; Zhao, X. B. Fast electrochromic properties of self-supported Co3O4 nanowire array film, Sol. Energy Mater. Sol. Cells,2010,94,386-389.
    [41]Xia, X. H.; Tu, J. P.; Zhang, J.; Huang, X. H.; Wang, X.L.; Zhang, W.K.; Huang, H. Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition, Electrochem. Commun.,2008,10,1815-1818.
    [42]Xia, X. H.; Tu, J. P.; Zhang, J.; Huang, X. H.; Wang, X.L.; Zhao, X. B. Improved electrochromic performance of hierarchically porous Co3O4 array film through self-assembled colloidal crystal template, Electrochim. Acta,2010,55,989-994.
    [43]Orel, B.; Macek, M.; Lavrencic-Stangar, U.; Pihlar, B. Amorphous Nb/Fe-oxide ion-storage films for counter electrode applications in electrochromic devices, J. Electrochem. Soc.; 1998,145,1607-1614.
    [44]Wang, Z. C.; Chen, J. F.; Hu, X. F. Electrochromic properties of aqueous sol-gel derived vanadium oxide films with different thickness, Thin Solid Films,2000,375, 238-241.
    [45]Maccanetal, A.; Design, production and characterization of an all solid state electrochromicmedium size device, Sol. Energy,1998,63,217-229.
    [46]Ozer, N.; Lampert, C. M. Electrochromic performance of sol-gel deposited WO3-V2O5 films, Thin Solid Films,1999,349,205-211.
    [47]Wang, Y; Cao, G. Li+-intercalation electrochemical/electrochromic properties of vanadium pentoxide films by sol electrophoretic deposition, Electrochim. Acta,2006, 51,4865-4872.
    [48]Patil, C. E.; Jadhav, P. R.; Tarwal, N. L.; Deshmukh, H. P.; Karanjkar, M. M.; Patil, P. S. Electrochromic performance of mixed V2O5-MoO3 thin films synthesized by pulsed spray pyrolysis technique, Mater. Chem. Phys.,2011,126,711-716.
    [49]Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhanen, T.; Steiner, U. A nanostructured electrochromic supercapacitor, Nano Lett.,2012,12,1857-1862.
    [50]Kim, S.; Taya, M. Electrochromic windows based onV2O5-TiO2 and poly(3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) coatings, Sol. Energy Mater. Sol. Cells,2012,107,225-229.
    [51]Costa, C.; Pinheiro, C.; Henriques, I.; Laia, C. A. T. Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes, ACS Appl. Mater. Interfaces,2012,4,5266-5275.
    [52]Scarminio, J.; Urbano, A.; Gardes, B. The Beer-Lambert law for electrochromic tungsten oxide thin films, Mater. Chem. Phys.,1999,61,143-146.
    [53]Deepa, M.; Sharma, R.; Basu, A.; Agnihotry, S. A. Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films, Electrochim. Acta,2005,50,3545-3555.
    [54]Subrahmanyam, A.; Karuppasamy, A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, Sol. Energy Mater. Sol. Cells, 2007,91,266-274.
    [55]Deepa, M.; Singh, D. P.; Shivaprasad, S. M.; Agnihotry, S. A. A comparison of electrochromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films, Curr. Appl. Phys.,2007,7,220-229.
    [56]Granqvist, C. G.; Avendano, E.; Azens, A. Electrochromic coatings and devices: survey of some recent advances, Thin Solid Films,2003,442,201-211.
    [57]Kenichi, M.; Michio, E. Structural and electrochromic properties of tungsten and molybdenum trioxide electrodes in acidic media, J. Electrochem. Soc.,1990,137, 1169-1175.
    [58]Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MOO3 nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater.,2009,21, 5681-5690.
    [59]Hsu, C. S.; Chan, C. C.; Huang, H. T.; Peng, C. H.; Hsu, W. C. Electrochromic properties of nanocrystalline MoO3 thin films, Thin Solid Films,2008,516, 4839-4844.
    [60]Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. Transition metal oxide films: Technology and "Smart Windows" electrochromic device performance, Prog. Org. Coat.,2012,74,635-639.
    [61]Lin, Y. S.; Tsai, T. H.; Hung, S. C.; Tien, S. W. Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/molybdenum oxide films for flexible electrochromic devices, J. Solid State Electrochem.,2013,17,1077-1088.
    [62]Yang, X. F.; Ding, H. Y.; Zhang, D.; Yan, X. H.; Lu, C. Y.; Qin, J. L.; Zhang, R. G.; Tang, H.; Song, H. J. Hydrothermal synthesis of MoO3 nanobelt-graphene composites, Cryst. Res. Technol,2011,46,1195-1201.
    [63]Su, L. Y.; Lu, Z. All solid-state smart window of electrodeposited WO3 and TiO2 particulate film with PTREFG gel electrolyte, J. Phys. Chem Solids,1998,59, 1175-1180.
    [64]Dinh, N. N.; Oanh, T.; Long, P. D.; Bernard, M. C.; Goff, A. H. L. Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol-gel met. Thin Solid Films,2003,423,70-76.
    [65]Jonsson, A.; Roos, A.; Jonson, E. K. The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil, Sol. Energy Mater. Sol. Cells,2010,94,992-997.
    [66]Chen, J. Z.; Ko, W. Y.; Yen, Y C.; Chen, P. H.; Lin, K. J. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties, ACS Nano,2012,6,6633-6639.
    [67]Benoit, A.; Paramasivam, I.; Nah, Y. C.; Roy, P.; Sehmuki, P. Decoration of TiO2 nanotube layers with WO3 nanocrystals for high electrochromic activity, Electrochem. Comm.,2009,11,728-732.
    [68]Ghieov, A.; Tsuchiya, H.; Halm, R.; Maeak, J. M.; Munoz, A. G.; Sehmuki, P. TiO2 nanotubes:H+ insertion and strong electrochromic effects, Electrochem. Comm., 2006,8,528-532.
    [69]Hanzu, I.; Hornebecq, V.; Djenizian, T.; Knauth, P. In situ study of electrochromic properties of self-assembled TiO2 nanotubes, Comptes Rendus Chimie,2013,16, 96-102.
    [70]Weng, W.; Higuehi, H.; Suzuki, M.; Fukuoka, T.; Shimomura, T.; Ono, M.; Radhakrishnan, M.; Wang, H. J.; Suzuki, N.; Oveisiand, H.; Yamauehi, Y. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity, Angew. Chem. Int. Ed.,2010,49,3956-3959.
    [71]Takagi, S.; Makuta, S.; Veamatahau, A.; Otsuka, Y.; Tachibana, Y. Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO2 nanohybrid films, J. Mater. Chem.,2012,22,22181-22189.
    [72]Green M. The promise of electrochromic systems, Chem. Ind.,1996,17,641-644.
    [73]Mortimer, R. J. Electrochromic materials, Chem. Soc. Rev.,1997,26,147-156.
    [74]Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications, Displays,2006,27,2-18.
    [75]Mortimer, R. J. Organic electrochromic materials, Electrochim. Acta,1999,44, 2971-2981.
    [76]Barna, G. G.; Fish, J. G. An improved electrochromic display using an asymmetrical viologen, J. Electrochem. Soc.,1981,128,1290-1292.
    [77]Mortimer, R. J.; Varley, T. S. Novel color-reinforcing electrochromic device based on surface-confined ruthenium purple and solution-phase methyl viologen, Chem. Mater.,2011,23,4077-4082.
    [78]Sun, X. W.; Wang, J. X. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode, Nano Lett.,8,2008,1884-1889.
    [79]Guyon, F.; Pondaven, A.; Guenot, P.; Her, M. L. Bis(2,3-naphthalocyaninato) lutetium(III) and (2,3-Naphthalocyaninato)(phthalocyaninato)lutetium(III) complexes: synthesis, spectroscopic characterization, and electrochemistry, Inorg. Chem.,1994, 33,4787-4793.
    [80]Bariain, C.; Matias, I. R.; Fernandez-Valdivielso, C.; Arregui, F. J.; Rodriguez-Mendez, M. L.; Saja, J. A. Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths, Sens. Actuators, B,2003,93,153-158.
    [81]Zhang, J. D.; Lu, F. L.; Huang, H. C.; Wang, J.; Yu, H. A.; Jiang, J. Z.; Yan, D. H.; Wang, Z. Y. Near infrared electrochromism of lutetium phthalocyanine, Synth. Met., 2005,148,123-126.
    [82]张征林,王怡红,王宏,苏连永,陆祖宏,电子元件与材料,1999,15,32-36.
    [83]Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers:a unique polymer nanostructure for versatile applications, Acc. Chem. Res.,2009,42,135-145.
    [84]Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells, Adv. Funct. Mater., 2001,11,15-26.
    [85]Kobayashi, T.; Yoneyama, H.; Tamura, H. Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem. Interfa. Electrochem.,1984,177,281-291.
    [86]Somani, P. R.; Radhakrishnan, S.; Electrochromic materials and devices:present and future, Mater. Chem. Phys.,2003,77,117-133.
    [87]MacDiarmid, A. Q.; Epstein, A. J. Polyanilines:a novel class of conducting polymers, Faraday Discuss. Chem. Soc.,1989,88,317-332.
    [88]Xiong, X.; Phua, S. L.; Dunn, B. S.; Ma, J.; Lu, X. H. Covalently bonded polyaniline TiO2 hybrids:a facile approach to highly stable anodic electrochromic materials with low oxidation potentials, Chem. Mater.,2010,22,255-260.
    [89]Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D. Multicolor electrochromic polyaniline-WO3 hybrid thin films:One-pot molecular assembling synthesis, J. Mater. Chem.,2011,21,17316-17324.
    [90]Zhu, J. H.; Wei, S. Y.; Zhang, L.; Mao, Y. B.; Ryu, J.; Karki, A. B.; Younge, D. P.; Guo, Z. H. Polyaniline-tungsten oxide metacomposites with tunable electronic properties, J. Mater. Chem.,2011,21,342-348.
    [91]Jean, R. Conjugated poly(thiophenes):synthesis, functionalization, and applications, Chem. Rev.,1992,92,711-738.
    [92]Jonas, F.; Schrader, L. Conductive modifications of polymers with polypyrroles and polythiophenes, Synth. Met.,1991,41,831-836.
    [93]Sassi, M.; Salamone, M. M.; Ruffo, R.; Mari, C. M.; Pagani, G. A; Beverina, L. Gray to colorless switching, crosslinked electrochromic polymers with outstanding stability and transmissivity from naphthalenediimmide-functionalized EDOT, Adv. Mater.,2012,24,2004-2008.
    [94]Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers:structures and devices, Chem. Mater., 2004,16,4401-4412.
    [95]Alkan, S.; Cutler, C. A.; Reynolds, J. R. High-quality electrochromic polythiophenes via BF3·Et20 electropolymerization, Adv. Funct. Mater.,2003,13,331-336.
    [96]Girottoand, E. M.; Paoli, M. A. D. Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye, Adv. Mater.,1998,10,790-793.
    [97]谢允斌,黄美荣,李新贵,多功能性聚吡咯复合膜,化学进展,2006,18,1677-1683.
    [98]Katsumi, Y.; Koji, S.; Gyosuke, K. Electrochromism of poly(pyrrole) film on Au nano-brush electrode, Synth. Met.,2009,159,188-193.
    [99]Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices, Adv. Mater,2001,13,783-786.
    [100]Sapp, S. A.; Sotzing, G. A.; Reynold, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices, Chem. Mater.,2008,10,2101-2109.
    [101]Rocco, A. M.; Paoli, M. A. D.; Zanelli, A.; Mastragostino, M. An electrochromic device combining polypyrrole and WO3 Liquid electrolyte, Electrochim. Acta,2009, 41,2805-2810.
    [102]Salje, E.; Viswanathan, K. Physical-properties and phase-transitions in WO3, Acta Crystallogr. Sect. A,1975, A31,356-359.
    [103]Faughnan, B. W.; Crandallandp, R. S.; Heyman, M. Electrochromism in WO3 amorphous films, RCA Rev.,1975,36,177-197.
    [104]Faughnan, B. W.; Crandalland, R. S.; Lampert, M. A. Model for bleaching of WO3 electrochromic films by an electric-field, Appl. Phys. Lett.,1975,27,275-277.
    [105]Schirmer, O. F.; Wittwer, V.; Bau, G. Dependence of WO3 electrochromic absorption on crystallinity, J. Electrochem. Soc,1977,124-125,749-753.
    [106]Chang, I. F.; Gilbert, B. L.; Sun, T. I. Electrochemichromic systems for display applications, J. Electrochem. Soc.,1975,122,955-962.
    [107]Zhang, J.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Zhao, Z. J.; Tu, J. P. Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers, Electrochim. Acta,2010,55,6953-6958.
    [108]Livage, J.; Ganguli, D. Sol-gel electrochromic coatings and devices:A review, Sol. Energy Mater. Sol. Cells,2001,68,365-381.
    [109]Purushothaman, K. K.; Muralidharan, G. The effect of annealing temperature on the electrochromic properties of Nanostruetured NiO films. Sol. Energy Mater. Sol. Cells, 2009,93,1195-1201.
    [110]Deepa, M.; Sharma, R.; Basu, A.; Agnihotry, S. A. Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films, Electrochim. Acta,2005,50,3545-3555.
    [111]Kattouf, B.; Ein-Eli, Y.; Siegmann, A.; Frey, G. L. Hybrid mesostructured electrodes for fast-switching proton-based solid state electrochromic devices, J. Mater. Chem. C, 2013,1,151-159.
    [112]Srivastava, A. K.; Deepa, M.; Singh, S.; Kishore, R.; Agnihotry, S. A. Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films, Solid State Ionics,2005,176,1161-1168.
    [113]Khoo, E.; Lee, P. S.; Ma, J. Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application, J. Eur. Ceram. Soc.,2010,30,1139-1144.
    [114]Yasuda, K.; Schmuki, P. Formation of self-organized zirconium titanate nanotube layers by alloy anodization, Adv. Mater.,2007,19,1757-1760.
    [115]Tacconi, N.; Chenthamarakshan, C.; Yogeeswaran, G.; Watcharenwong, A.; Zoysa, R.; Basit, N.; Rajeshwar, K. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates:influence of process variables on morphology and photoelectrochemical response, J. Phys. Chem. B,2006,110,25347-25355.
    [116]Chen, W. H.; Lai, M. Y.; Tsai, K. T.; Liu, C. Y.; Wang, Y. L. Spontaneous formation of ordered nanobubbles in anodic tungsten oxide during anodization, J. Phys. Chem. C, 2011,115,18406-18411.
    [117]Nah, Y. C.; Ghicov, A.; Kim, D.; Schmuki, P. Enhanced electrochromic properties of self-organized nanoporous WO3, Electrochem. Commun.,2008,10,1777-1780.
    [118]Ou, J. Z.; Balendhran, S.; Field, M. R.; McCulloch, D. G.; Zoolfakar, A. S.; Rani, R. A.; Zhuiykov, S.; O'Mullaneb, A. P.; Kalantar-zadeh, K. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties, Nanoscale,2012, 4,5980-5988.
    [119]Peng, X.; Chen A. Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates, Adv. Funct. Mater.,2006,16,1355-1362.
    [120]Liu, B.; Boercker, J. E.; Aydil, E. S. Oriented single crystalline titanium dioxide nanowires, Nanotechnology,2008,19,505604.
    [121]Su, Y. F.; Weng, Y. C.; Chou, T. C. Templateless nanofiber photoelectrode prepared using mild hydro thermal conditions, J. Electrochem. Soc.,2008,155, K23-K29.
    [122]Lee, S. H.; Deshpande, R.; Parilla, P. A.; Jones, K. M.; To, B.; Mahan, A. H.; Dillon, A. C. CrystallineWO3 nanoparticles for highly improved electrochromic applications, Adv. Mater.,2006,18,763-766.
    [123]Jiao, Z. H.; Sun, X. W.; Wang, J. M.; Ke, L.; Demir, H. V. Hydrothermally grown nano structured WO3 films and their electrochromic characteristics, J. Phys. D:Appl. Phys.,2010,43,285501.
    [124]Zhang, J.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Gu, C. D. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance, J. Mater. Chem.,2011,21,5492-5498.
    [125]Wang, Q.; Wen, Z.; Li, J. Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures, Inorg. Chem.,2006,45,6944-6949.
    [126]Yoo, S. J.; Jung, Y. H.; Lim, J. W.; Choi, H. G.; Kim, D. K.; Sung, Y. E. Electrochromic properties of one-dimensional tungsten oxide nanobundles, Sol. Energy Mater. Sol. Cells,2008,92,179-183.
    [127]Agrawal, A.; Habibi, H. R.; Agrawal, R. K. Effect of deposition pressure on the micro structure and electrochromic properties of electron-beam-evaporated nickel oxide films, Thin Solid Films,1992,221,239-233.
    [128]Tomesi, R. M.; Vazquez, M. V.; Gorenstein, A. Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation, Thin Solid Films,1993,229,180-186.
    [129]Lampert, G M.; Omstead, T. R.; Yu, P. G. Optical materials technology for energy efficiency and solar energy conversion, Proc. SPIE,1985,562,1517-1520.
    [130]Gaipenter, M. I.; Conell, R. S.; Corrigan, D. A. The electrochromic properties of hydrous nickel oxide, Sol. Energy Mater.,1987,16,333-346.
    [131]Meng, L. J.; Andrjtschky, M.; DosSantos, M. P. The effect of substrate-temperature on the properties of dereactive magnetron sputtered titanium-oxide films, Thin Solid Films,1993,223,242-247.
    [132]Martini, M.; Brito, G. E. S.; Fantini, M. C. A.; Craievich, A. F.; Gorenstein, A. Electrochromic properties of NiO-based thin films prepared by sol-gel and dip coating, Electrochim. Acta,2001,46,2275-2279.
    [133]Purushothaman, K. K.; Antony, S. J.; Muralidharan, G. Optical, structural and electrochromic properties of nickel oxide films produced by sol-gel technique, Sol. Energy,2011,85,978-984.
    [134]Purushothaman, K. K.; Dhanashankar, M.; Muralidharan, G. Preparation and characterization of F-doped SnO2 films and electrochromic properties of FTO/NiO films, Curr. Appl. Phys.,2009,9,67-72.
    [135]Al-Ghamdi, A. A.; Mahmoud, W. E.; Yaghmour, S. J.; Al-Marzouki, F. M. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method, J. Alloys Compd.,2009,486,9-13.
    [136]Park, S. H.; Lim, J. W.; Yoo, S. J.; Cha, I. Y.; Sung, Y. E. The improving electrochromic performance of nickel oxide film using aqueous N, N-dimethylaminoethanol solution, Sol. Energy Mater. Sol. Cells,2012,99,31-37.
    [137]Lou, X. C.; Zhao, X. J.; Feng, J. M.; Zhou, X. D. Electrochromic properties of Al doped B-subsituted NiO films prepared by sol-gel, Prog. Org. Coat.,2009,64, 300-303.
    [138]Wu, M. S.; Yang, C. H. Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition, Appl. Phys. Lett., 2007,91,033109.
    [139]Dalavi, D. S.; Suryavanshi, M. J.; Mali, S. S.; Patil, D. S.; Patil, P. S. Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants, J. Solid State Electrochem.2012,16, 253-263.
    [140]Yuan, Y. F.; Xia, X. H.; Wu, J. B.; Chen, Y. B.; Yang, J. L.; Guo, S. Y. Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition, Electrochim. Acta,2011,56,1208-1212.
    [141]Cai, G. F.; Tu, J. P.; Zhang, J.; Mai, Y. J.; Lu, Y.; Gu, C. D.; Wang, X. L. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties, Nanoscale,2012,4,5724-5730.
    [142]Dalavi, D. S.; Devan, R. S.; Patil, R. S.; Ma, Y. R.; Kang, M. G.; Kim, J. H.; Patil, P. S. Electrochromic properties of dandelion flower like nickel oxide thin films, J. Mater. Chem. A,2013,1,1035-1039.
    [1]Scarminioa, J.; Urbanoa, A.; Gardes, B. The Beer-Lambert law for electrochromic tungsten oxide thin films, Mater. Chem. Phys.,1999,61,143-146.
    [2]Deepa, M.; Sharma, R.; Basu, A.; Agnihotry, S. A. Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films, Electrochim. Acta,2005,50,3545-3555.
    [3]Subrahmanyam, A.; Karuppasamy, A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films, Sol. Energy Mater. Sol. Cells, 2007,91,266-274.
    [4]Lee, H.; Deshpande, R.; Parilla, P. A.; Jones, K. M.; To, B.; Mahan, A. H.; Dillon, A. C. CrystallineWO3 nanoparticles for highly improved electrochromic applications, Adv. Mater.,2006,18,763-766.
    [5]Marsen, B.; Cole, B.; Miller, E. L. Influence of sputter oxygen partial pressure on photoelectrochemical performance of tungsten oxide films, Sol. Energy Mater. Sol. Cells,2007,91,1954-1958.
    [6]Lee, S. H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Czanderna, A. W.; Deb, S. K. Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency, Appl. Phys. Lett.,1999,75,1541-1543.
    [7]Patel, K. J.; Panchal, C. J.; Desai, M. S.; Mehta, P. K. An investigation of the insertion of the cations H+, Na, K+on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures, Mater. Chem. Phys.,2010,124,884-890.
    [8]Cheng, W.; Baudrin, E.; Dunn, B.; Zink, J. I. Synthesis and electrochromic properties of mesoporous tungsten oxide, J. Mater. Chem.,2001,11,92-97.
    [9]Tsuchiya, H.; Macak, M. J.; Sieber, I.; Taveira, L.; Ghicov, A.; Sirotna, K.; Schmuki, P. Self-organized porous WO3 formed in NaF electrolytes, Electrochem. Comm., 2005,7,295-298.
    [10]Deepa, M.; Singh, D. P.; Shivaprasad, S. M.; Agnihotry, S. A. A comparison of electrochromic properties of sol-gel derived amorphous and nanocrystalline tungsten oxide films, Curr. Appl. Phys.,2007,7,220-229.
    [11]Wang, J. M.; Khoo, E.; Lee, P. S.; Ma, J. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods, J. Phys. Chem. C,2008,112, 14306-14312.
    [12]Jiao, Z. H.; Sun, X. W.; Wang, J. M.; Ke, L.; Demir, H. V. Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics, J. Phys. D:Appl. Phys.,2010,43,285501.
    [13]Khoo, E.; Lee, P.S.; Ma, J. Electrophoretic deposition (EPD) of WO3 nanorods for electrochromic application, J. Eur. Ceram. Soc.,2010,30,1139-1144.
    [14]Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire, Nano Res.,2010,3,281-287.
    [15]Granqvist, C. G.; Avendano, E. Azens, A. Electrochromic coatings and devices: survey of some recent advances, Thin Solid Films,2003,442,201-211.
    [16]C.G. Granqvist, Electrochromic tungsten oxide films:Review of progress 1993-1998, Sol. Energy Mater. Sol. Cells,2000,60,201-262.
    [17]Lee, S. H.; Cheong, H. M.; Tracy, C. E.; Mascarenhas, A.; Pitts, J. R.; Jorgensen G.; Deb, S. K. Alternating current impedance and Raman spectroscopic study on electrochromic a-W03 films, Appl. Phys. Lett.,2000,76,3908.
    [18]Zhao, Z. G.; Miyauchi, M. Shape modulation of tungstic acid and tungsten oxide hollow structures, J. Phys. Chem. C,2009,113,6539-6546.
    [19]Loeser, E.; DelaCruz, M.; Madappalli, V. Solubility of urea in acetonitrile water mixtures and liquid-liquid phase separation of urea-saturated acetonitrile water mixtures, J. Chem. Eng. Data,2011,56,2909-2913.
    [20]Zhang, J.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Gu, C. D. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance, J. Mater. Chem.,2011,21,5492-5498.
    [21]Wang, J. M.; Khoo, E.; Lee, P. S.; Ma, J. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte, J. Phys. Chem. C,2009,113, 9655-9658.
    [22]Gu, Z. J.; Zhai, T. Y.; Gao, B. F.; Sheng, X. H.; Wang, Y. B.; Fu, H. B.; Ma, Y.; Yao, J. N. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures, J. Phys. Chem. B,2006,110,23829-23836.
    [23]Lou, X. W.; Zeng, H. C. An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution, Inorg. Chem.,2003,42,6169-6171.
    [24]Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties, Nano Lett.,2011,11,203-208.
    [25]Su, J. Z.; Guo, L. J.; Bao, N. Z.; Grimes, C. A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting, Nano Lett., 2011,11,1928-1933.
    [26]Gu, Z. J.; Ma, Y.; Yang, W. S.; Zhang, G. J.; Yao, J. N. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures, Chem. Commun.,2005,3597-3599.
    [27]Custelcean, R. Crystal engineering with urea and thiourea hydrogen-bonding groups, Chem. Commun.,2008,295-307.
    [28]Baeck, S. H.; Choi, K. S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. Enhancement of potocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films, Adv. Mater.,2003,15,1269-1273.
    [29]Jiao, Z. H.; Wang, X.; Wang, J. M.; Ke, L.; Demir, H. V.; Koh, T. W.; Sun, X. W. Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance, Chem. Commun.,2012,48,365-367.
    [1]Velevska, J.; Ristova, M. Electrochromic properties of NiOx prepared by low vacuum evaporation, Sol. Energy Mater. Sol. Cells,2002,73,131-139.
    [2]Granqvist, C. G. Solar energy materials, Adv. Mater.,2003,15,1789-1803.
    [3]Avendano, E.; Berggren, L.; Niklasson, G A.; Granqvist, C. G.; Azens, A. Electrochromic materials and devices:Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films, Thin Solid Films,2006,496, 30-36.
    [4]Redel, E.; Mlynarski, J.; Moir, J.; Jelle, A.; Huai, C.; Petrov, S.; Helander, M. G.; Peiris, F. C.; Freymann, G. V.; Ozin, G. A. Electrochromic bragg mirror:ECBM, Adv. Mater.,2012,24, OP265-OP269.
    [5]Purushothaman, K. K.; Antony, S. J.; Muralidharan, G. Optical, structural and electrochromic properties of nickel oxide films produced by sol-gel technique, Sol. Energy,2011,85,978-984.
    [6]Park, S. H.; Lim, J. W.; Yoo, S. J.; Cha, I. Y.; Sung, Y. E. The improving electrochromic performance of nickel oxide film using aqueous N,N-dimethylaminoethanol solution, Sol. Energy Mater. Sol. Cells,2012,99,31-37.
    [7]Yuan, Y. F.; Xia, X. H.; Wu, J. B.; Chen, Y B.; Yang, J. L.; Guo, S. Y. Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition, Electrochim. Acta,2011,56,1208-1212.
    [8]Dalavi, D. S.; Suryavanshi, M. J.; Mali, S. S.; Patil, D. S.; Patil, P. S. Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants, J. Solid State Electrochem.,2012,16, 253-263.
    [9]Avendan O, E.; Azens, A.; Niklasson, G A.; Granqvist, C. G Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta, Sol. Energy Mater. Sol. Cells,2004,84,337-350.
    [10]Penin, N.; Rougier, A.; Laffont, L.; Poizot, P.; Tarascon, J. M. Improved cyclability by tungsten addition in electrochromic NiO thin films, Sol. Energy Mater. Sol. Cells, 2006,90,422-433.
    [11]Tenent, R. C.; Gillaspie, D. T.; Miedaner, A.; Parilla, P. A.; Curtis, C. J.; Dillon, A. C. Fast-switching electrochromic Li+doped NiO films by ultrasonic spray deposition. J. Electrochem. Soc.,2010,157, H318-H322.
    [12]Lou, X. C.; Zhao, X. J.; Feng, J. M.; Zhou, X. D. Electrochromic properties of Al doped B-subsituted NiO films prepared by sol-gel, Pro. Org. Coat.,2009,64, 300-303.
    [13]赵莉丽,苏革,曹立新,柳伟,王景,董征,宋美芹,铜掺杂氧化镍电致变色薄膜的制备及性能,光学学报,2011,31,0431001.
    [14]Wu, M. S.; Yang, C. H. Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition, Appl. Phys. Lett., 2007,91,033109.
    [15]Xiao, R.; Cho, S.; Liu, R. Controlled electrochemical synthesis of conductive polymer nanotube structures, J. Am. Chem. Soc.,2007,129,4483-4489.
    [16]Cai, G. F.; Tu, J. P.; Zhang, J.; Mai, Y. J.; Lu, Y.; Gu, C. D.; Wang, X. L. An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties, Nanoscale,2012,4,5724-5730.
    [17]Lee, J. H. Gas sensors using hierarchical and hollow oxide nanostructures:Overview, Sens. Actuators, B,2009,140,319-336.
    [18]Ou, J. Z.; Balendhran, S.; Field, M. R.; McCulloch, D. G.; Zoolfakar, A. S.; Rani, R. A.; Zhuiykov, S.; O'Mullaneb, A. P.; Kalantar-zadeh, K. The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties, Nanoscale,2012, 4,5980-5988.
    [19]Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater.,2008,20,2878-2887.
    [20]Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Qian, Y. T. Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors, CrystEngComm,2011, 13,626-632.
    [21]Byrappa, K.; Yoshimura, M. Handbook of hydrothermal technology, Elsevier, New York,2001.
    [22]Kuang, D. B.; Lei, B. X.; Pan, Y. P.; Yu, X. Y.; Su, C. Y. Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process, J. Phys. Chem. C,2009,113,5508-5513.
    [23]Ma, J. M.; Wang, Y. P.; Wang, Y. J.; Chen, Q.; Lian, J. B.; Zheng, W. J. Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties J. Phys. Chem. C,2009,113,13588-13592.
    [24]张荣,陈静,结晶控制技术对晶体形貌的影响,广州化工,2011,39,30-31.
    [25]Ma, J. M.; Yang, J. Q.; Jiao, L. F.; Mao, Y. H.; Wang, T. H.; Duan, X. C.; Lian, J. B.; Zheng, W. J. NiO nanomaterials:controlled fabrication, formation mechanism and the application in lithium-ion battery, CrystEngComm,2012,14,453-459.
    [26]Dong, L. H.; Chu, Y.; Sun, W. D. Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies, Chem.-Eur. J.,2008, 14,5064-5072.
    [27]Li, J. T.; Zhao, W.; Huang, F. Q.; Manivannanc, A.; Wu, N. Q. Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes, Nanoscale,2011, 3,5103-5109.
    [28]Decker, F.; Passerini, S.; Pileggi, R.; Scrosati, B. The electrochromic process in non-stoichiometric nickel oxide thin film electrodes Electrochim. Acta,1992,37, 1033-1038.
    [29]Huang, H.; Tian, J.; Zhang, W. K.; Gan, Y. P.; Tao, X. Y.; Xia, X. H.; Tu, J. P. Electrochromic properties of porous NiO thin film as a counter electrode for N1O/WO3 complementary electrochromic window, Electrochim. Acta,2011,56, 4281-4286.
    [30]Bouessaya, I.; Rougier, A.; Poizot, P.; Moscovici, J.; Michalowicz, A.; Tarascon, J. M. Electrochromic degradation in nickel oxide thin film:A self-discharge and dissolution phenomenon, Electrochim. Acta,2005,50,3737-3745.
    [31]Kadam, L. D.; Patil, P. S. Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique, Sol. Energy Mater. Sol. Cells,2001,69, 361-369.
    [1]Amb, C. M.; Dyerand, A. L.; Reynolds, J. R. Navigating the color palette of solution-processable electrochromic polymers, Chem. Mater.,2011,23,397-415.
    [2]Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci.,2009,34,783-810.
    [3]Caseri, W. Color switching in nanocomposites comprising inorganic nanoparticles dispersed in a polymer matrix, J. Mater. Chem.,2010,20,5582-5592.
    [4]Amb, C. M.; Beaujuge, P. M.; Reynolds, J. R. Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach, Adv. Mater.,2010,22,724-728.
    [5]Steekler, T. T.; Zhang, X.; Hwang, J.; Honeyager, R.; Ohira, S.; Zhang, X. H.; Grant, A.; Ellinger, S.; Odom, S. A.; Sweat, D.; Tanner, D. B.; Rinzler, A. G.; Barlow, S.;.Bredas, J. L.; Kippelen, B.; Marder, S. R.; Reynolds, J. R. A spray-processable, low bandgap and ambipolar donor-acceptor conjugated polymer, J. Am. Chem. Soc., 2009,131,2824-2826.
    [6]Shen, P. K.; Huang, H. T.; Tseung, A. C. C. A study of tungsten trioxide and polyaniline composite films:electrochemical and electrochromic behavior, J. Electrochem. Soc.,1992,139,1840-1845.
    [7]Zhu, J. H.; Wei, S. Y.; Zhang, L.; Mao, Y. B.; Ryu, J.; Karki, A. B.; Younge, D. P.; Guo, Z. H. Polyaniline-tungsten oxide metacomposites with tunable electronic properties, J. Mater. Chem.,2011,21,342-348.
    [8]Wei, H. G; Yan, X. R.; Wu, S. I; Luo, Z. P.; Wei, S. Y; Guo, Z. H. Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage, J. Phys. Chem. C,2012, 116,25052-25064.
    [9]Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D. Multicolor electrochromic polyaniline-WO3 hybrid thin films:one-pot molecular assembling synthesis, J. Mater. Chem.,2011,21,17316-17324.
    [10]Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; MacDiarmid, A. G. X-Ray structure of polyaniline, Micro molecules,1991,24,779-789.
    [11]Zhao, G Y.; Li, H. L. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors, Microporous Mesoporous Mater.,2008,110, 590-594.
    [12]Xing, S. X.; Chu, Y.; Sui, X. M.; Wu, Z. S. Synthesis and characterization of polyaniline in CTAB/hexanoI/water reversed micelle, J. Mater. Science,2005,40, 215-218.
    [13]Zou, B. X.; Liang, Y.; Liu, X. X.; Diamond, D.;Lau, K. T. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite, J. Power Sources,2011,196,4842-4848.
    [14]Jiang, H. F.; Liu, X. X. One-dimensional growth and electrochemical properties of polyaniline deposited by a pulse potentiostatic method, Electrochim. Acta,2010,55, 7175-7181.
    [15]Hoang, H. V.; Holze, R. Electrochemical synthesis of polyaniline/montrnorillonite nanocomposites and their characterization, Chem. Mater.,2006,18,1976-1980.
    [16]Mu, S. Pronounced effect of the ionic liquid on the electrochromic property of the polyaniline film:color changes in the wide wavelength range, Electrochim. Acta, 2007,52,7827-7834.
    [17]Ram, M. K.; Maceioni, E.; Nicolini, C. The electrochromic response of polyaniline and its copolymerics ystems, Thin Solid Films,1997,303,27-33.
    [18]Granqvist, C. G.; Electrochromic tungsten oxide films:Review of progress 1993-1998, Sol. Energy Mater. Sol. Cells,2000,60,201-262.
    [19]Kellenberger, A.; Dmitrieva, E.; Dunsch, L. Structure dependence of charged states in "Linear" polyaniline as studied by in situ ATR-FTIR spectroelectrochemistry, J. Phys. Chem. B,2012,116,4377-4385.
    [20]El-Said, W. A.; Yea, C. H.; Choi, J. W.; Kwon, I. K. Ultrathin polyaniline film coated on an indium-tin oxide cell-based chip for study of anticancer effect, Thin Solid Films,2009,518,661-667.
    [21]Zhu, J.; Wei, S.; Zhang, L.; Mao, Y.; Ryu, J.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. Electrical and dielectric properties of polyaniline-Al2O3 nanocomposites derived from various Al2O3 nanostructures, J. Mater. Chem.,2011,21,3952-3959.
    [22]Li, Y.; Zhao, X.; Xu, Q.; Zhang, Q.; Chen, D. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors, Langmuir,2011,27,6458-6463.
    [23]Yoneyama, H.; Hirao, S.; Kuwabata, S. Preparation and electrochemical properties of WO3-incorporated polyaniline films, J. Electrochem. Soc.,1992,139,3141-3146.
    [1]Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.;Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett.,2013,13,1764-1769.
    [2]Raman, N.; Sudharsan, S.; Pothiraj, K. Synthesis and structural reactivity of inorganic-organic hybrid nanocomposites-A review, J. Saudi Chem. Soc.,2012,16, 339-352.
    [3]Rawolle, M.; Niedermeier, M. A.; Kaune, G.; Perlich, J.; Lellig, P.; Memesa, M.; Cheng, Y. J.; Gutmann, J. S.; Muller-Buschbaum, P. Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials, Chem. Soc. Rev.,2012,41,5131-5142.
    [4]Gangopadhyay, R.; De, A.; Ghosh, G. Polyaniline-poly(vinyl alcohol) conducting composite:material with easy processability and novel application potential, Synth. Met.,2001,123,21-31.
    [5]Kimura, K.; Kumar, J. Electrochromism of Polyaniline/Poly(4-styrenesulfonate) complex, J. Printing Sci. Technol.,2004,41,109-116.
    [6]Svegl, F.; Vuk, A. S.; Hajzeri, M.; Perse, L. S.; Orel, B. Electrochromic properties of Ni(1-x)O and composite Ni(1-x)O-polyaniline thin films prepared by the peroxo soft chemistry route, Sol. Energy Mater. Sol. Cells,2012,99,14-25.
    [7]Aleahmad, M.; Taleghani, H.G.; Eisazadeh, H. Preparation and characterization of PAn/NiO nanocomposite using various surfactants, Synth. Met.,2011,161,990-995.
    [8]Sonavane, A. C.; Inamdar, A. I.; Deshmukh, H. P.; Patil, P. S. Multicoloured electrochromic thin films of NiO/PANI, J. Phys. D:Appl. Phys.,2010,43,315102.
    [9]El-Sayed, H. A.; Birss, V.1. Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nano Lett.,2009,9,1350-1355.
    [10]Nah, Y. C.; Ghieov, A.; Kim, D.; Berger, S.; Sehmuki, P. TiO2-WO3 composite nanotubes by alloy anodization:growth and enhanced electrochromic properties, J. Am. Chem. Soc.,2008,130,6154-6155.
    [11]Shambharkar, B. H.; Umare, S. S. Synthesis and characterization of polyaniline/NiO nanocomposite, J. Appl. Polym. Sci.,2011,122,1905-1912.
    [12]Song, G. P.; Han, J.; Guo, R. Synthesis of polyaniline/NiO nanobelts by a self-assembly process, Synth. Met.,2007,157,170-175.
    [13]Han, J.; Song, G P.; Guo, R. Synthesis of rectangular tubes of polyaniline/NiO composites, J. Polym. Sci. Part A:Polym. Chem.,2006,44,4229-4234.
    [14]Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhang, W. K.; Huang, H. A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance, Nanotechnology,2008,19,465701.
    [15]Xia, X. H.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Xiang, J. Y. Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries, Electrochem. Comm., 2008,10,1288-1290.
    [16]Qi, Y. N.; Zhang, J.; Qiu, S. J.; Sun, L. X.; Xu, F.; Zhu, M.; Ouyang, L. Z.; Sun, D. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites, J. Therm. Anal. Calorim.,2009,98,533-537.
    [17]Ram, M. K.; Maccioni, E.; Nicolini, C. The electrochromic response of poly aniline and its copolymeric systems, Thin Solid Films,1997,303,27-33.
    [1]Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and electrochromic devices, Elsevier, NewYork,2007, http://www.cambridge.org.
    [2]Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem.,2007, 17,127-156.
    [3]Papaefthimiou, S.; Leftheriotis, G.; Yianoulis, P. Advanced electrochromic devices based on WO3 thin films, Electrochim. Acta,2001,46,2145-2150.
    [4]Vasilopoulou, M.; Aspiotis, G.; Kostis, I.; Argitis, P.; Davazoglou, D. Fabrication of WO3-based electrochromic displays using solid or gel-like organic electrolytes, J. Phys.:Conf. Ser.,2005,10,329-332.
    [5]Zhang, J.; Tu, J. P.; Xia, X. H.; Qiao, Y.; Lu, Y. An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte, Sol. Energy Mater. Sol. Cells,2009,93,1840-1845.
    [6]Rocco, A. M.; DePaoli, M. A.; Zanelli, A.; Mastragostino, M. An electrochromic device combining polypyrrole and WO3:Liquid electrolyte, Electrochim. Acta,2009, 41,2805-2810.
    [7]Nguyen, C. A.; Xiong, S. X.; Ma, J.; Lu, X. H.; Lee, P. S. Toward Electrochromic Device Using Solid Electrolyte with Polar Polymer Host, J. Phys. Chem. B,2009, 113,8006-8010.
    [8]Souza, F. L.; Aegerter, M. A.; Leite, E. R. Solid hybrid polyelectrolyte with high performance in electrochromic devices:Electrochemical stability and optical study, Sol. Energy Mater. Sol. Cells,2007,91,1825-1830.
    [9]Agrawal, R. C.; Pandey, G. P. Solid polymer electrolytes:materials designing and all-solid-state battery applications:an overview, J. Phys. D:Appl. Phys.,2008,41, 223001.
    [10]DePaoli, M. A.; Zanelli, A.; Mastragostino, M.; Rocco, A. M. An electrochromic device combining polypyrrole and WO3:Solid-state device with polymeric electrolyte, J. Electroanal. Chem,2007,435,217-224.
    [11]Noto, V. D.; Lavina, S.; Giffin, G. A.; Negro, E.; Scrosati, B. Polymer electrolytes: Present, past and future, Electrochim. Acta,2011,57,4-13.
    [12]Lee, K. S.; Jun, Y.; Park, J. H. Controlled dissolution of polystyrene nanobeads: transition from liquid electrolyte to gel electrolyte, Nano Lett.,2012,12,2233-2237.
    [13]Leite, E. R.; Souza, F. L.; Bueno, P. R.; Lazaro, S.; Longo, E. Hybrid organic-inorganic polymer:A new approach for the development of decoupled polymer electrolytes, Chem. Mater.,2005,17,4561-4563.