钢—混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续组合梁桥负弯矩区会产生混凝土受拉、钢梁受压的不利情况,特别是混凝土板的开裂会引起组合梁刚度降低和耐久性下降,因此深入理解组合梁桥负弯矩区的受力性能,有效控制或防止负弯矩区混凝土开裂就成为连续组合梁桥设计中的一个关键问题。本文结合国家自然科学基金资助项目,通过理论推导、模型试验和数值模拟,对短期荷载作用下正常使用阶段组合梁负弯矩区受力性能、混凝土裂缝发展规律及其控制方法开展了深入的研究,所做的主要工作和结论如下:
     (1)建立了竖向荷载作用下同时考虑组合梁滑移效应、剪力滞效应和Timoshenko梁剪切变形多重影响的荷载效应理论分析方法。对组合梁混凝土翼板的内顶板、悬臂板和宽钢箱梁底板分设了不同的剪滞翘曲形函数,采用能量变分原理,得到了正常使用阶段组合梁在均布荷载、集中荷载和两点对称荷载作用下更为精确的应力和挠度解析解,为后续负弯矩区的相关研究提供了理论分析手段;
     (2)建立了轴向荷载作用下同时考虑组合梁滑移效应和剪力滞效应双重影响的荷载效应理论分析方法。根据体外预应力组合梁的特点,采用能量变分原理,分别得到了预应力轴力和弯矩作用下截面应力的解析解,发现锚固端和张拉端在预加应力阶段就存在较大的应力集中和滑移变形,根据分析结果给出了预加应力阶段组合梁结合面的相对滑移规律和纵向剪力的计算方法,为连接件的局部加强设计提供了理论依据:
     (3)对3根反向加载的钢—混凝土简支组合梁和3根2跨连续组合梁进行了静载试验,对混凝土板裂缝发展规律和体外预应力对组合梁裂缝、刚度及承载力等方面的改善作用进行了重点研究,将试验结果和理论推导结果进行了相互验证。通过试验得到了负弯矩作用下组合梁截面的应变分布规律、结合面滑移规律、内力重分布规律及裂缝的发展规律,证实在短期荷载下对组合梁施加体外预应力是控制负弯矩区开裂的一种有效措施;
     (4)对钢—混凝土组合梁负弯矩区的裂缝宽度和刚度进行了研究。考虑了配筋力比和横向钢筋间距对裂缝间距的影响,根据试验结果对裂缝宽度计算公式进行了修正;提出了采用考虑滑移效应和受拉刚化效应的等效刚度进行正常使用阶段连续组合梁挠度计算的方法;
     (5)采用能量变分原理得到了沿梁轴仅部分开裂的变刚度组合梁荷载效应的理论解,分析了混凝土开裂对组合梁负弯矩区剪力滞效应和有效翼缘宽度的影响,给出了组合梁负弯矩区有效翼缘宽度的建议修正公式。分析表明:混凝土开裂使组合梁负弯矩区剪力滞系数减小,有效翼缘宽度增大,可在负弯矩区等效跨度范围内按完全开裂的等截面梁进行有效翼缘宽度的计算。在连续组合梁中,等效跨度应充分考虑实际反弯点的位置;
     (6)根据活性粉末混凝土(RPC)较高的抗拉强度和较小的收缩徐变,提出了钢—活性粉末混凝土组合梁的概念,通过全过程受力性能分析,从理论上表明了采用RPC新材料作为组合梁翼板也是提高负弯矩区抗裂性能的一种有效措施,尤其是采用钢一预应力RPC组合梁时,效果更显著。
Continuous composite beams have some disadvantages when the steel girder is in compression while the concrete slab is in tension at the negative moment zone,and the crack of concrete slab will decrease the stiffness and durability,so it is very important to understand the behaviors of negative moment zone deeply,and control or prevent concrete crack at the negative moment zone of continuous composite beams.Combined with the project granted by national natural science foundation of China,the behaviors of negative moment zone,concrete crack mechanics and control method under short-term loads are studied in service stage for composite beams,the main contents and conclusions are as follows:
     (1) Considering multiple effects of slip,shear lag,and Timoshenko shear deformation,a theoretical method for analyzing load effects under vertical loads is established for steel-composite beams(short for SCBs).With the inner and cantilever concrete top slab and the steel bottom slab set by different shear lag warping shape functions,the more accurate elastic closed-form solutions of stress and flexibility under uniform load,concentrated load,and two-point symmetry loads are deduced in service stage by energy-variational principle.These solutions are used in subsequent study of SCBs' behaviors at negative moment zone.
     (2) Considering double effects of slip and shear lag,a theoretical method for analyzing load effects under axial load is established for prestressed SCBs.According to the characteristics of external prestressed SCBs,analytical stress solutions of prestressed SCBs under prestressing axial load and eccentric bending moment are decuced by energy-variational principle.The slip law between concrete slab and steel girder is analyzed,which shows that the stress concentrate and slip are rather greater in prestressing stage.The calculation method of longitudinal shear force is suggested, which can provide a reference for local strengthening design of connectors.
     (3) Static model tests are conducted on three simply-supported SCBs under negative moment and three continuous two-span SCBs under concentrated loads.The study focuses on the development law of concrete crack and improvement effect due to external prestressing on crack,stiffness,and bearing capacity of composite beams.The law of stress distribution,slip,internal force redistribution,and crack development under negative moment are obtained in the tests.The investigation results show that under short-term loads,applying prestress in concrete slab is an effective measure for crack control under negative moment.At the same time,the theoretical results and test results are verified each other.
     (4) The crack widths and stiffness of SCBs at negative moment zone are studied. The force ratio and transverse reinforcement spacing are considered in crack spacing, the formula of crack width is modified.Based on the concept of reduced stiffness due to slip effect and the tension stiffening effect,the calculation precision will increase if calculating the deflection of continuous composite beams in service stage by effective stiffness.
     (5) The theoretical load effect solutions of variable stiffness SCBs which cracked in partial range along the beam are obtained by energy-variational principle.The influence of concrete crack on shear lag effect and effective flange width are investigated,and the verified formula of effective flange width at negative moment zone is suggested.The study results suggest that the concrete crack would lead to smaller shear lag coefficient and larger effective flange width,the effective flange width could be calculated by using a completed cracked beam with a uniform cross-section in the range of equivalent span length corresponding to the negative moment zone.It is also important that the actual position of inflection point should be carefully considered for the continuous composite beams.
     (6) According to the super tension strength and lower shrinkage and creep of Reactive Powder Concrete(short for RPC),the concept of steel-RPC composite beam is introduced.The full-range analysis shows that adopting RPC as the material of slab is also an effective measure which can increases the crack resistance of composite beams at negative moment zone,especially when the steel-RPC composite beam is applied prestressing load.
     There are totally 121 graphs,13 tables and 184 references in this paper.
引文
[1]Johnson R.P.,Buckby R.J.Composite structures of steel and concrete[J],vol 2:bridges.2nd Ed.London:Collins,1986.
    [2]聂建国,樊健生.国内钢-混凝土组合梁的研究及其应用综述[J].第十届全国结构工程学术会议,2001(10):182-190.
    [3]Heins C.P.,Firmage D.A.Design of modern steel highway bridges[M].New York:Wiley,1979.
    [4]Rambod Hadidi,S.M.,M.Ala Saadeghvaziri,M.Transverse Cracking of Concrete Bridge Decks:State-of-the-Art[J].Journal of Bridge Engineering,2005,10(5):503-510
    [5]Portland Cement Association PCA.Durability of concrete bridge decks-A cooperative study.Final Rep.,Ill.1970
    [6]Kosel,H.C.,Michols,K.A.Evaluation of concrete deck cracking for selected bridge deck structures of Ohio Turnpike.Rep.,Ohio Turnpike Commission,Construction Technology Laboratory,Ohio Department of Transportation,Columbus,Ohio.1985.
    [7]Krauss,P.D.,Rogalla,E.A.Transverse cracking in newly constructed bridge decks.NCHRP Rep.No.380,Transportation Research Board,National Research Council,Washington,D.C.1996.
    [8]Schmitt,T.R.,and Darwin,D.Effect of material properties on cracking in bridge decks[J].J.Bridge Eng.,1999,4(1):8-13.
    [9]Issa,M.Investigation of cracking in concrete bridge decks at early ages[J].J.Bridge Eng.,1999,4(2),116-124.
    [10]Frosch,R.J.,Radabaugh,R.D.,and Blackman,D.T.Investigation of transverse deck cracking.Proc.,Structures Congress,ASCE,Reston,Va.2002.
    [11]French,C.,Eppers,L.,Le,Q.,and Hajjar,J.F.Transverse cracking in concrete bridge decks.Transportation Research Record 1688,Transporation Research Board,Washington,D.C.,1999,21-29.
    [12]Jean Paul Lebet.Influence of concrete cracking on composite bridge behaviour[J].Composite Construction in Steel and Concrete.2006,77-86
    [13]Hyung-Keun Ryua,Sung-Pil Changa,Young-Jin Kimb,Byung-Suk Kim.Crack control of a steel and concrete composite plate girder with prefabricated slabs under hogging moments[J].Engineering Structures,2005,27:1613-1624
    [14]Ramm W,Elz S.Behaviour and cracking of slabs as part of composite beams in regions with negative bending moments[J].In:Composite construction in steel and concrete Ⅲ,proceedings of an engineering foundation conference,ASCE.1996,871-886.
    [15]Dakhil,F.H.,Cady,P.D.Cracking of fresh concrete as related to reinforcement[J].ACI J.1975.72(8):421-428.
    [16]Saadeghvaziri,M.A.,and Hadidi,R.Transverse cracking of concrete bridge decks:Effects of design factors[J].J.Bridge Eng.,2005,10(5):511-519.
    [17]Ramey,G.E.,Wolff,A.R.,and Wright,R.L.Structural design actions to mitigate bridge deck cracking[J].Pract.Period.Struct.Des.Constr.1997,2(3):118-124.
    [18]赵国藩,李树瑶,廖婉卿,等.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社, 1991.
    [19]江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社,1998.
    [20]Randl E.,Johnson R.P.Widths of initial cracks in concrete tension flanges of composite beams[J].Proc.Int.Assoc.for Bridge and Struct.Engrg,1982,54(11):69-80.
    [21]Johnson R.P.,Allison R.W.Cracking in concrete tension flanges of composite T-beams[J].The Struct.Engr.,1983,61(3):9-16.
    [22]周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1991.
    [23]严正庭,严立.钢与混凝土组合结构计算构造手册[M].北京:中国建筑工业出版社,1996.
    [24]聂建国,樊健生,王挺.钢-压型钢板混凝土组合梁裂缝的试验研究[J].土木工程学报,2002,35(1):15-20.
    [25]Roik K.Methods of prestressing continuous composite girders[J].Proceedings conference on steel girders,London,1968:75-81.
    [26]Dezi L.,Leoni G.,Tarantino A.M.Time-dependent analysis of prestressed composite beams [J].L Struct.Engrg.,ASCE,1995,121(4):621-633.
    [27]Prodyot K.B.,Alfarabi M.S.,Nesar U.A.Partially prestressed continuous composite beams Ⅱ[J].J.Struct.Enrg.,ASCE,1987,113(9):1926-1938.
    [28]Roik K.,Haensel J.Design and construction methods for composite girders in Europe[J].The design of steel bridges,London,Granada,1981:387-408.
    [29]Troitsky M.S.Prestressed steel bridges,theory and design[M].Newyork:Van Nostrand Reinhold Company,1990.
    [30]Kwak H.G.,Seo Y.J.,Jung C.M.Effects of the slab casting sequences and the drying shrinkage of concrete slabs on the short-term and long-term behavior of composite steel box girder bridges.Part 1[J].Engineering Structures,2000,23:1453-1466.
    [31]侯文崎,罗如登,叶梅新.钢-高配筋现浇混凝土结合梁裂缝宽度试验研究[J].中国铁道科学,2001,22(5):54-60.
    [32]Hyung-Keun Ryu,Sung-Pil Chang.Ultimate strength of continuous composite box-girder bridges with precast decks[J].Journal of Constructional Steel Research.2005,61:329-343.
    [33]Hyung-Keun Ryu,Chang-Su Shim,Sung-Pil Chang,Chul-Hun Chung.Inelastic behaviour of externally prestressed continuous composite box-girder bridge with prefabricated slabs[J].Journal of Constructional Steel Research.2004,60:989-1005.
    [34]C.-S.Shim,S.-P.Chang.Cracking of continuous composite beams with precast decks[J].Journal of Constructional Steel Research.2003,59:201-214
    [35]Jacques Brozzett.Design development of steel-concrete composite bridges in France[J].Journal of Constructional Steel Research.2000,55:229-243
    [36]Johnson R.P.Composite structures of steel and concrete,vol 1:Beams,columns,frames and appplications in building[J].2nd Ed.Oxford:Blackwell Scientific,1994.
    [37]聂建国.钢-混凝土组合梁结构-试验、理论及应用[M].科学出版社,北京:2005.
    [38]胡夏闽.欧洲规范4钢-混凝土组合梁设计方法(3)-组合梁的内力分析[J].工业建筑,1995,25(11):55-59.
    [39]Eurocode 4.Part 1:General Rules and Rules for Buildings[S].Revised draft,1991.
    [40]GB500017-2003钢结构设计规范[S].北京:中国建筑工业出版社,2003.
    [41]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程学报,1983,16(1):1-13.
    [42]吴幼明,罗旗帜,岳珠峰.薄壁箱梁剪滞效应的能量变分法[J].工程力学,2003,20(4):161-165.
    [43]Kristek V.A shear lag analysis for composite box girder[J].Journal of Construction Steel research,1990,16(1):15-17.
    [44]Song Q,Scordelis A C.Shear-lag analysis of T-,I-,and box beams[J].J.Struct.Engerg.,ASCE,1990,116(5):1290-1305.
    [45]Asekola.A.O.The dependence of shear-lag on partial interaction in composite beams[J].International Journal of Solids Structures.1974,10(4):389-400.
    [46]Wu Yaping,Lai Yuanming,Zhu Yuanlin.Analysis of shear lag and shear deformation effects in laminted composite box beams under bending loads[J].Composite Structures.2002,55(2):147-156.
    [47]张阳.带波形钢腹板悬臂挑梁的组合脊骨梁力学性能分析与试验研究[D].湖南大学,2006.
    [48]孙飞飞,李国强.考虑滑移、剪力滞后和剪切变形的钢-混凝土组合梁解析解[J].工程力学,2005,22(2):96-103.
    [49]程海根,强士中.钢-砼组合箱梁考虑滑移时剪力滞效应分析[J].中国铁道科学,2003,24(6):49-52
    [50]Adekola AO.Effective widths of composite beams of steel and concrete[J].Structural Engineer,1968,46(9):285-289.
    [51]Ansourian P,Aust MIE.The effective width of continuous composite beams[J].Civil Engineering Transitions,1983,25(1):63-69.
    [52]Moffatt,K.R.,Dowling,P.J.British shear lag rules for composite girders[J].J.Strnct.Div.ASCE,1978,104(7):1123-1130.
    [53]Cheung,M.S.,and Chan,M.Y.T.Finite strip evaluation of effective flange width of bridge girders.Basin Res.,1978,5:174-185.
    [54]Johnson,R.P.Research on steel-concrete composite beams[J].J.Struct.Div.ASCE,1970,96(3):445-459.
    [55]Heins,C.P.,and Fan,H.M.Effective composite beam width at ultimate load[J].J.Struct.Div.ASCE,1976,102(11):2163-2179.
    [56]Elkelish S,Robison H.Effective widths of composite beams with ribbed metal desk[J].Canadian Journal of Civil Engineering,1986,13(2):66-75.
    [57]Amadio C,Fragiacomo M.Effective width evaluation for steel-concrete composite beams [J].Journal of Constructional Steel Research,2002,58(3):373-388.
    [58]Amadio C,Fedrigo C.Experimental evaluation of Effective width in steel-concrete composite beams[J].Journal of Constructional Steel Research,2004,60(2):199-220.
    [59]Methee Chiewanichakorn,Amjad J.Aref,Stuart S.Chen,Il-Sang Ahn.Effective Flange Width Definition for Steel-Concrete Composite Bridge Girder[J].Journal of Structural Engineering,2004,130(12),2016-2031.
    [60]易海波.钢-混凝土组合梁翼板有效宽度的试验与分析[D].长沙:湖南大学,2005.
    [61]聂建国,田春雨.简支组合梁板体系有效宽度分析[J].土木工程学报,2005,38(2):8-12.
    [62]Amjad J.Aref,Methee Chiewanichakorn,Stuart S.Chen,Il-Sang Ahn.Effective Slab Width Definition for Negative Moment Regions of Composite Bridges[J].Jonrnal of Bridge Engineering.2007,12(3):339-349.
    [63]Il-Sang Ahn,Methee Chiewanichakorn,Sruart S.Chen,Amjad J.Aref.Effective flange width provisions for composite steel bridges[J].Engineering Structures,2004,26:1843-1851.
    [64]樊健生.钢-混凝土连续组合梁的试验及理论研究[D].北京:清华大学,2003.
    [65]李运生,王元清,石永久,张彦玲.组合梁桥有效翼缘宽度国内外规范的比较分析[J].铁道科学与工程学报,2006,3(2):34-38.
    [66]AASHTO.LRFD bridge design specifications.Washington(DC):American Association of State Highway and Transportation Officials,AASHTO;2002.
    [67]CSA.Canadian highway bridge design code(CAN/CSA-S6-00)[S].CSA International,2000.
    [68]JRA.Design specifications for highway bridges(part Ⅰ-in general and part Ⅲ-steel bridges).Japan Road Association,1996(in Japanese).
    [69]胡夏闽.欧洲规范4钢-混凝土组合梁设计方法(9)-组合梁的挠度和裂缝控制[J].工业建筑,1996,26(5):47-50.
    [70]Francisco Virtuoso,Ricardo Vieira.Time dependent behaviour of continuous composite beams with flexible connection[J].Journal of Constructional Steel Research,2004,60:451-463.
    [71]JTJ025-86公路桥涵钢结构及木结构设计规范[S].北京:人民交通出版社,1987.
    [72]聂建国,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,11(1):21-27
    [73]Nie Jianguo,Cai C.S.Steel-concrete composite beams considering shear slip effects[J].J.Structural Engineering,ASCE,2003:495-506.
    [74]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].1995,28(2):11-17.
    [75]聂建国,李勇,等.钢-混凝土组合梁刚度的研究[J].清华大学学报(自然科学版),1998,(10):38-41.
    [76]蒋丽忠,余志武,李佳.均布荷载作用下钢混凝土简支组合梁变形计算的一般公式混凝土简支梁界面滑移理论及变形计算[J].工程力学,2003,20(2):133-137.
    [77]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土简支梁界面滑移理论及变形计算[J].土木工程学报,2003,36(8):1-6.
    [78]GB50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [79]聂建国等.组合梁负弯矩区混凝土板的裂缝宽度.哈尔滨工业大学学报(增刊)[J].1995,28(5):226-233
    [80]聂建国,樊健生,王挺.钢-压型钢板混凝土组合梁裂缝的试验研究[J].土木工程学报,2002,(1):17-22
    [81]Barnard P.R.,Johnson R.P.Plastic behavior of continuous composite beams[J].Proc.Instn Cir.Engrs,Part 2,1965,32(10):180-197.
    [82]Hamada S.,Longworth J.Ultimate strength of continuous composite beams[J].J.structural division,1976,102(7):1463-1478.
    [83]Hope-Gill M.C.,Johnson R.P.Tests on three three-span continuous composite beams[J].Proc.Instn Civ.Engrs,Part 2,1976,61(6):367-381.
    [84]Ansourian P.Experiments on continuous composite beams[J].Proc.Instn Civ.Engrs,Part 2,1981,71(12):25-71.
    [85]聂建国,张眉河.钢-混凝土组合梁负弯矩区板裂缝的研究[J].清华大学学报,1997,37(6):95-99.
    [86]张眉河.钢-混凝土组合梁负弯矩区工作性能的试验研究[D].硕士学位论文,北京:清华大学,1995.
    [87]朱聘儒,高向东.钢-砼连续组合梁塑性铰特性及内力重分布研究[J].建筑结构学报,1990,11(6):17-22.
    [88]王庆利,刘之洋,李玉坤,等.连续组合梁的塑性性能研究[J].沈阳建筑工程学院学报,1998,14(3):278-281.
    [89]王连广,刘之洋.钢与轻骨料混凝土组合梁[M].成都:西南交通大学出版社,1998.
    [90]叶梅新,张晔芝.负弯矩作用下钢-混凝土结合梁性能研究[J].中国铁道科学,2001,22(5):41-47.
    [91]余志武,周凌宇,罗小勇.钢-部分预应力混凝土连续组合梁内力重分布研究[J].建筑结构学报,2002,23(6):64-69.
    [92]刘自明,汪双炎,童智洋.结合梁负弯矩区模型试验研究[J].钢结构,2001,16(5):35-38.
    [93]Nan Zhang,Chung C.Fu.Experimental and theoretical studies on composite steel-concrete box beams with external tendons[J].Engineering Structures,2009,31:275-283.
    [94]洪英维.体外预应力钢箱-混凝土组合梁试验研究[D].南京工业大学硕士学位论文,南京,2005.
    [95]Szilard.Design of Prestressed Composite Steel Beams[J].Journal of the Structural Division ASCE.1959,85(9):97-124.
    [96]Hoadley P G.Behavior of prestressed Composite Steel Bemas[J].Journal of the Structural Division ASCE.1963,89(3):21-34.
    [97]Reagam R S.Krahl N W.Behavior of prestressed composite steel beams[J].Journal of the Structural Division ASCE.1967,93(6):87-108.
    [98]Andrea Dall' Asta,Luigino Dezi.Nonlinear behavior of externally prestressed composite beams:Analytical model[J].Journal of the Structural Division ASCE,1998,124(5):588-597.
    [99]Basu.P.K,Sharif.A.M.Partically prestressed continuous composite beams[J].Journal of Structural Engineering,ASCE.1987,113(9):1909-1938.
    [100]Wenxin Tong,Saadatmanesh H.Parametric study of continuous prestressed composite girders [J].Journal of the Structural Division ASCE,1992,112(3):186-206.
    [101]Ayyub,B.M Sohn,Y.G,Hamid Saadatmanesh.Prestressed composite gidrer Ⅰ:Experimental study of negative moment[J].Journal of Structural Engineering,ASCE.1992,118(10):2743-2763.
    [102]Ayyub,B.M Sohn,Y.G,Hamid Saadatmanesh.Prestressed composite gidrerⅡ:Analytical study of negative moment[J].Journal of Structural Engineering,ASCE.1992,118(10):2763-2783.
    [103]Nie JG,Cai CS,Zhou TR,Li Y.Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect[J].J Struct Eng,ASCE 2007;133(4):530-540.
    [104]张志彬,陈世鸣.体外预应力钢-混凝土组合梁混凝土有效翼缘宽度[J].钢结构,2003,18(68):33-35.
    [105]薛伟辰,李杰,何池.预应力组合梁长期性能试验研究与时随分析[J].中国公路学报,2003,16(4):40-43.
    [106]宗周红,郑则群,房贞政,车惠民.体外预应力钢-混凝土组合梁试验研究[J].中国公路学报,2002,15(1):44-49.
    [107]宗周红,车惠民.预应力钢-混凝土组合梁有限元非线性分析[J].中国公路学报,2000,13(2):48-51.
    [108]聂建国,李绍敬,李晨光,刘航.预应力钢-混凝土连续组合梁内力重分布试验研究[J].工业建筑,2003,33(12):12-14.
    [109]陈世明,孙森泉,张志彬.体外预应力钢-混凝土组合梁负弯矩区的承载力研究[J].土木工程学报,2005,38(11):14-20.
    [110]王景全,殷惠光,刘其伟.体外预应力组合梁负弯矩区抗弯承载能力研究[J].中国矿业大学学报,2007,36(3):376-380.
    [111]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
    [112]戴益民,廖莎.钢-混凝土预制板组合梁栓钉连接件的试验研究[J].建筑技术开发,2005,32(5):27-28.
    [113]聂建国,王洪全,谭英,陈戈.钢-高强混凝土组合梁的试验研究[J].建筑结构学报,2004,25(1):58-62.
    [114]许伟,王连广,朱浮声,石刚.钢与高强混凝土组合梁变形性能试验研究[J].东北大学学报(自然科学版)2003,24(4):389-391.
    [115]许伟,朱浮声,王连广,许峰.钢与高强混凝土组合梁的抗裂性能[J].东北大学学报(自然科学版)2004,25(1):92-95.
    [116]王连广,刘莉,郑宇.钢与高强混凝土预应力组合梁承载力计算[J].东北大学学报(自然科学版)2005,26(2):164-166.
    [117]刘莉,王连广,时光.钢与高强混凝土预应力组合梁滑移性能试验研究[J].东北大学学报(自然科学版),2006,27(8):93-936.
    [118]许伟,王连广,许峰,朱浮声.预应力钢与高强混凝土组合梁变形性能[J].东北大学学报(自然科学版),2005,26(4):393-396.
    [119]谢建斌,何天淳,程赫明,等.循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J].兰州理工大学学报,2004,30(2):104-109.
    [120]周安,戴航,刘其伟.体内预应力钢纤维混凝土-钢组合梁负弯矩区抗裂及裂缝宽度试验研究[J].建筑结构学报,2007,28(3):82-90.
    [121]贾艳东,刘玉臣,孙志屏,赵辛.钢与钢纤维混凝土组合梁栓钉连接件的性能试验[J].兰州理工大学学报,2008,34(4):141-144.
    [122]中国工程建设标准化协会标准.CECS38:92钢纤维混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [123]中国工程建设标准化协会标准.CECS38:2004纤维混凝土结构设计规程[S].北京:中国计划出版社.2004.
    [124]Richard P,Cheyrezy M.H.Reactive Powder Concretes with High Ductility and 200-400 Mpa Compressive strength[J].AC1 Spring Convention,San Francisco,1994.
    [125]N.Roux,C.Andrade and M.Sanjuan.Experimental study of durability of reactive powder concretes[J].Journal of materials in civil engineering,1996,8(1):1-6.
    [126]Bonneau,et al.Reactive powder concretes:from theory to practice[J].Concrete International,1996,18(4):47-49.
    [127]Pierre Richard,Marcel Cheyrezy.Composition of Reactive Powder Concretes[J].Cement and Concrete Research,1995,25(7):1501-1511.
    [128]Richard P,Cheyrezy M.H.Reactive Powder Concretes with High Ductility and 200-400 Mpa Compressive strength.ACI Spring Convention,San Francisco,1994.
    [129]龙广成.活性粉末混凝土力学性能的试验研究[J].混凝土,2004,(9):44-45.
    [130]Perry,V.Reactive powder concrete[J].PCI Journal,2001,46(4):118.
    [131]Marcel Cheyrezy.Structural Applications of RPC[J].Concrete,1999,1:20-23.
    [132]周文元.活性粉末混凝土在道路桥梁工程中的应用[J].水运工程,2004,12:103-105.
    [133]肖瑞敏,龙广成.活性粉末混凝土的工程应用研究[J].建筑技术,2004,1:37-38.
    [134]Marcel Cheyrezy.Structural Applications of RPC[J].Concrete,1999,1:20-23.
    [135]Bonneau,O.,Lachemi,M.,et al.Mechanical properties and durability of two industrial reactive powder concretes[J].ACI Materials Journal,1997,94(4):286-290.
    [136]Cheng,R.B.,Study of mechanical properties of reactive powder concrete elements[D].National Taiwan University,Taipei,Taiwan,2003.
    [137]周一桥,杜亚凡.世界上第一座预制预应力活性粉末混凝土结构-舍布鲁克人行桥[J].国外桥梁,2003,(3):18-23.
    [138]Behloul B,Lee K C.Ductal Seonyu footbridge[J].Structure Concrete,2003,4(4):195-201.
    [139]Candrlic,V;Mandic,A;Bleiziffer,J.The largest concrete arch bridge designed of RPC200[J].4th Symposium on Strait Crossing.Bergen,Norway,2001:145-151.
    [140]Candrlic,V;Bleiziffer J;Mandic A.Bakar Bridge in Reactive Powder Concrete.Proceedings of the Third International Conference on Arch Bridge.Paris,France,2001:695-700.
    [141]陈昀明等.432m活性粉末混凝土拱桥的设计[J].世界桥梁,2005,1:1-4,16.
    [142]Jackie Voo,Stephen J.Foster,R.Ian Gilbert and N.Gowfipalan.Design of disturbed regions in Reactive Powder Concrete bridge girders[J].Bridge Materials,2001,117-127.
    [143]刘娟红,宋少民,梅世刚.RPC高性能水泥基复合材料的配制与性能研究[J].武汉理工大学学报,2001,23(11):14-18.
    [144]谢友均,刘宝举,龙广成.掺超细粉煤灰活性粉末混凝土的研究[J].建筑材料学报,2001,4(3):280-284.
    [145]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配制试验研究[J].中国公路学报,2003,16(4):44-49.
    [146]铁路桥梁采用RPC混凝土新型材料的前期研究(试验研究阶段报告).北京交通大学.2003年8月.
    [147]Perry,V.Reactive powder concrete Source[J]:PCI Journal,2001,46(4):118.
    [148]张士铎,王文州.桥梁工程结构中的负剪力滞效应[M].人民交通出版社,2004,121-128
    [149]倪元增,钱寅泉.弹性薄壁梁桥分析[M].北京:人民交通出版社,2000.
    [150]周凌宇.钢-混凝土组合箱梁受力性能及空间非线性分析[D].中南大学,2004.
    [151]周小蓉等.体外预应力钢-混凝土组合梁[J].钢结构,2005,20(79):9-17.
    [152]周安,戴航,刘其伟.体内预应力组合梁混凝土预压应力分析[J].工业建筑,2005,35(增 刊):94-96.
    [153]刘玉擎.组合结构桥梁[M].人民交通出版社,北京:2005,21-23.
    [154]N.Gattesco.Analytical modeling of nonlinear behavior of composite beams with deformable connection[J].Journal of Constructional Steel Research,1999,52:195-218.
    [155]黄侨.桥梁钢-混凝土组合梁结构设计原理[M].北京:人民交通出版社,2001.
    [156]余志武,郭风琪.部分预应力钢-混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报.2004,25(4):55-59.
    [157]New York State Department of Transportation NYDOT.The state of the art bridge deck.Final Rep.The Bridge Deck Task Force,NYDOT,Albany,N.Y.1995.
    [158]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [159]Comite Euro-lnternational du Beton.Bulletein D'information No.213/214 CEB-FIP Model Code 1990(Concrete Structures)[S].Lausanne,May 1993.
    [160]中国建筑科学研究院译.美国钢筋混凝土房屋建筑规范ACI 318M-89(1992年公制修订版)[S].北京:1993.
    [161]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8.
    [162]劳埃·扬.张培信译.钢-混凝土组合结构设计[M].上海:同济大学出版社,1991.
    [163]J.M.Castro,A.Y.Elghazouli,B.A.lzzuddin.Assessment of effective slab widths in composite beams[J].Journal of Constructional Steel Research.2007,63:1317-1327.
    [164]曹国辉,方志.变分原理分析开裂简支箱梁剪力滞效应[J].计算力学学报,2007,24(6):853-858.
    [165]罗旗帜.基于能量原理的薄壁箱梁剪力滞理论与试验研究[D].湖南大学,2005.
    [166]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨工业大学出版社,2007.
    [167]Qing Quan Liang.Strength Analysis of Steel-Concrete Composite Beams in Combined Bending and Shear[J].Journal of Structural Engineering,2005,131(10):1593-1600.
    [168]Baskar,K.,Shanmugam,N.E.,and Thevendran,V.Finite-element analysis of steel-concrete composite plate girder[J].J.Struct.Eng.,2002,128(9):1158-1168.
    [169]Liang,Q.Q.,Uy,B.,Bradford,M.A.,and Ronagh,H.R..Ultimate strength of continuous composite beams in combined bending and shear[J].J.Constr.Steel Res.,2004,60(8):1109-1128.
    [170]郑则群,房贞政,宗周红.预应力钢-混凝土组合梁非线性有限元解法[J].哈尔滨工业大学学报,2004,36(2):218-222.
    [171]Hsu Thomas T C,Mo Y L.Softening of concrete in torsional members-prestressed concrete.ACI Journal,1985,82(5):603-615.
    [172]欧洲混凝土委员会CEP-FIP模式规范[S].1993.
    [173]闫光杰.200MPa级活性粉末混凝土(RPC)的破坏准则与本构关系研究[D].北京交通大学博士学位论文,2005.
    [174]杨志慧.不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D].北京交通大学硕士学位论文,2005.
    [175]Kazunori Fujikake,et al.Nonlinear Analysis for Reactive Powder Concrete Beams under Rapid Flexural Loadings[J].Journal of Advanced Concrete Technology,2006,4(1):85-97.
    [176]刘文会.预应力钢-混凝土组合梁桥结构行为研究[D].吉林大学博士学位论文,2005.
    [177]Couchman G.,Lebet J.A new design method for continuous composite beams allowing for rotation capacity[J].Preceedings of the engineering foundation conference,1996:725-737.
    [178]张彦玲,阎贵平,安明喆,钟铁毅.钢-活性粉末混凝土组合梁极限承载力的初步研究[J].北京交通大学学报,2009,33(1):81-85
    [179]张彦玲,李运生,王元清,季文玉.钢-活性粉末混凝土简支组合梁正截面破坏模式研究[J].铁道科学与工程学报,2009,6(1):6-9
    [180]Hou ZM,Zhang YL,Yan GP.Study on the behavior of simply supported steel-reactive powder concrete composite beams.The 10th International Symposium on Structural Engineering for Young Experts,2008:1808-1819.
    [181]Si Larbi A,Ferrier E,Jurkiewiez B,Hamelin P.Static behaviour of steel-concrete beam connected by bonding[J].Engineering Structures,2007,29(6):1034-1042.
    [182]L.Bouazaoui,G.Perrenot,Y.Delmas,A.Li.Experimental study of bonded steel concrete composite structures[J].Journal of Constructional Steel Research,2007,63:1268-1278.
    [183]L.Bouazaoui,B.Jurkiewiez,Y.Delmas,A.Li.Static behaviour of a full-scale steel-concrete beam with epoxy-bonding connection[J].Engineering Structures,2008,30:1981-1990.
    [184]Thomann M,Lebet J-P.A mechanical model for connections by adherence for steel-concrete composite beams[J].Engineering Structures,2008,30:163-173.