简支变连续法加固混凝土梁桥疲劳试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对已有损伤的混凝土简支梁桥采用简支变连续非预应力法实施加固,可有效提高结构体系的承载能力和正常使用性能。由于自重较大的原因,在我国钢筋混凝土公路桥梁设计规范中不考虑控制截面的疲劳验算。但对于后加固的连续梁体系,中支座截面仅承担二期恒载和活荷载所产生的负弯矩作用,且活荷载效应远大于二期恒载,中支座截面极易因疲劳而产生破坏。本文以辽宁省交通厅重点科研项目(200514)为研究背景,对简支变连续法加固的混凝土梁进行一系列疲劳试验研究:
     (1)通过倒置加载方式,对7根钢纤维自应力混凝土叠合梁进行负弯曲疲劳试验研究。建立了叠合层内钢筋的疲劳方程,提出了钢纤维自应力混凝土叠合梁的疲劳验算方法。试验结果表明,钢纤维自应力混凝土对叠合梁的裂缝宽度和刚度损失有较强的限制作用,疲劳循环达到200万次时,能够满足结构的耐久性能和正常使用性能要求。
     (2)分别以界面构造钢筋配筋率为0、0.082%和0.164%作参量,对负弯矩作用下的叠合梁进行疲劳性能试验研究。试验结果表明,构造钢筋可使钢纤维自应力混凝土叠合层与老混凝土梁协同工作,并可使钢纤维自应力混凝土充分发挥抗裂性能,从而降低结构面层裂缝的开展,提高结构负弯矩区的正常使用性能和耐久性能。
     (3)采用3种混凝土分别对已有损伤的简支梁进行加固,通过疲劳试验,研究不同种类混凝土加固的两跨连续梁疲劳性能。试验结果表明,用钢纤维自应力混凝土加固的连续梁,可使钢筋应力幅、中支座截面曲率及裂缝宽度等得到有效降低。与普通混凝土加固梁相比,经10万次疲劳循环,负弯矩区最大裂缝宽度约降低25.0%~32.0%。
     (4)以湿接缝接头界面的横向构造钢筋配筋率为参量,研究湿接缝接头界面的疲劳性能。试验结果表明,横向构造钢筋可提高湿接缝接头的疲劳抗剪和抗裂性能,并可间接提高中支座及跨中钢筋的疲劳抗弯性能,同时降低结构的整体刚度损失。建议工程中提高湿接缝接头界面的横向构造钢筋含量,其值不宜小于0.003bh_1。
     (5)对钢纤维自应力混凝土加固的两跨连续梁进行疲劳试验,通过与简支阶段无损伤的连续梁进行对比,分析简支变连续法加固的连续梁的疲劳性能。试验结果表明,简支阶段有损伤和无损伤的两种连续梁经1000次疲劳循环后,跨中和中支座钢筋应力幅、跨中截面刚度损失等方面均表现出了较好的一致性。中支座和跨中截面疲劳验算结果表明,用钢纤维自应力混凝土加固的连续梁,中支座截面抗弯刚度显著高于跨中截面,跨中截面内力可向中支座调整,从而提高结构体系的承载能力和抗疲劳性能。
Damaged simply-supported beam bridges were strengthened by transforming the simply-supported beam bridges into continuous beam bridges under non-prestressed which could increase the beating capability and normal usage performance of the structure system effectively.As the deadweight was excessive large,the fatigue check was not considered in the design code of reinforced concrete highways and bridges in our country.But in the continuous beam system that was strengthened,as the mid-bearing section only bore the negative moment produced by the secondary dead loads and live loads and the efficiency of the live loads was greater bigger than that of the secondary dead loads,the middle support section was easy to be damaged due to fatigue.This article took the key scientific research project of Liaoning Province Department of Communications(200514) as the research background and carries out a series of fatigue test researches of the concrete bridges strengthened by transforming the simply-supported into continuous beams:
     (1) Researches in negative bending fatigue test were conducted for 7 steel fiber reinforced self-stressing concrete composite beams through inverted loading mode.Fatigue formula for reinforced steel bars in the composite layers was established and fatigue check method for steel fiber reinforced self-stressing concrete composite beams was proposed.The test results show that the steel fiber reinforced self-stressing concrete restricts greatly the crack width and rigidity loss of the composite beams and that when the fatigue cycle reaches 2 millions times,the structural durability and normal usage performance requirements will be satisfied.
     (2) Researches in fatigue performance tests of the composite beams under the negative moment were conducted respectively when the reinforcement ratios of an interface are 0, 0.082%and 0.164%.The test result shows that the structural steel bars are able to make steel fiber reinforced self-stressing concrete composite layer to work collaboratively with the old concrete beam and make the steel fiber reinforced self-stressing concrete give full play to its anti-crack performance,which could reduce consequently unfolding of crack on the structural surface and improve the normal usage performance and durability of the structural negative moment areas.
     (3) 3 kinds of concrete were used to strengthen the damaged simply-supported beams respectively.The fatigue performance of two continuous beams strengthened by different concretes was researched through the fatigue researches.The test results show that the continuous beams strengthened by the steel fiber reinforced self-stressing concrete can effectively reduce the reinforcement stress amplitude,middle support section curvature and crack width.Compared to the continuous beams strengthened by the common concrete,the max crack width in the negative moment areas after 100,000 fatigue cycles drops approx. 25.0%~32.0%.
     (4) With reinforcement ratio of structure reinforcement at junction of wet-joint as reference,research of the fatigue performance at junction of wet-joint was conducted.Test results show that the structural reinforcement is able to improve the fatigue shear resistance and cracking resistance performance at the junction of wet-joint,indirectly improve the fatigue bending resistance performance of middle supports and mid-span reinforcement and at the same time reduce the overall rigidity loss of the structure.It is advised that content of structural reinforcement at the junction of wet-joint should be increased and it shall be no less than 0.003bh_1.
     (5) Fatigue tests of double-span continuous beams which were strengthened by steel fiber reinforced self-stressing concrete were conducted.Compared with non-damage continuous beams in simply-supported stage,fatigue performance of continuous beams strengthened by transforming the simply-supported beams into continuous beams was analyzed.The test results show that after these two kinds of beams which were damaged and non-damage in simply-supported stage were applied 1,000 fatigue cycles,reinforcement stress amplitude and mid-span section rigidity loss of mid-span and middle support exhibit good consistency.Middle support and mid-span section fatigue check result shows that the middle support section flexural rigidity of the continuous beams strengthened by steel fiber reinforced self-stressing concrete is remarkably higher than that of the mid-span section and that the internal force of the mid-span section is adjusted to the middle support,which improve consequently the bearing capability of the structural system.
引文
[1]蒙云,卢波.桥梁加固与改造[M].北京:人民交通出版社,2004.
    [2]王有志,王广洋,任锋,等.桥梁的可靠性评估与加固[M].北京:中国水利水电出版社,2002.
    [3]谭金华,吕秀杰,徐俊,胡志坚.欧洲桥梁管理概况[J].世界桥梁,2004,(3):35-37
    [4]Bruno D,Carpino R,Greco F.Modelling of mixed mode debonding in externally FRP reinforced beams[J].Composites Science and Technology,2007,67(7-8):1459-1474.
    [5]管仲国.外贴FRP加固混凝土桥梁的加固效率与可加固性[D].上海:同济大学,2006.
    [6]杜修力,张建伟,邓宗才,等.带永久锚具的预应力芳纶纤维布加固技术研究[J].土木工程学报,2007,40(9):43-52.
    [7]Yang D S,Park S K,Neale K W.Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites[J].Composite Structures,2009,88(4):497-508
    [8]Gao Bo,Kim J K,Leung C K Y.Strengthening efficiency of taper ended FRP strips bonded to RC beams[J].Composites Science and Technology,2006,66(13):2257-2264.
    [9]Ekenel M,Myers J J.Durability performance of RC beams strengthened with epoxy injection and CFRP fabrics[J].Construction and Building Materials,2007,21(6):1182-1190.
    [10]王树森.碳纤维加固钢筋混凝土桥梁复合结构的力学行为分析[D].长春:吉林大学,2005.
    [11]孙晓燕,黄承逵,孙保沭.既有桥梁外贴纤维布加固后可靠度分析[J].东南大学学报(自然科学版),2005,35(3):427-432.
    [12]Jing Meng,Raongjant W,Li Zhongxian.Torsional strengthening of reinforced concrete box beams using carbon fiber reinforced polymer[J].Composite Structures,2007,78(2):264-270.
    [13]孙晓燕.服役期及加固后的钢筋混凝土桥梁可靠性研究[D].大连:大连理工大学,2004.
    [14]Owen R,Catrina W,Sami R.Strengthening of prestressed concrete girders with composites:Installation,design and inspection[J].Construction and Building Materials,2009,23(4):1495-1507.
    [15]Wang Y C,Hsu K.Design recommendations for the strengthening of reinforced concrete beams with externally bonded composite plates[J].Composite Structures,2009,88(2):323-332.
    [16]聂建国,陶巍,张天申.预应力高强不锈钢绞线网-高性能砂浆抗弯加固试验研究[J].土木工程学报,2007,40(8):1-7.
    [17]卜良桃.高性能复合砂浆钢筋网(HPF)加固混凝土结构新技术[M].北京:中国建筑工业出版社,2007.
    [18]卜良桃,王济川.建筑结构加固改造设计与施工[M].长沙:湖南大学出版社,2002:22-81.
    [19]Lopez A,Galati N,Alkhrdaji T,Nanni A.Strengthening of a reinforced concrete bridge with externally bonded steel reinforced polymer(SRP)[J].Composites Part B:Engineering.2007,38(4):429-436.
    [20]Cai C S,Nie Jianguo,Shi X M.Interface slip effect on bonded plate repairs of concrete beams[J].Engineering Structures,2007,29(6):1084-1095.
    [21]杨洪波.体外预应力法在连续梁桥加固中的应用研究[D].大连:大连理工大学,2006.
    [22]Ghallab A,Beeby A W.Factors affecting the externa]prestressing stress in externally strengthened prestressed concrete beams[J].Cement and Concrete Composites,2005,27(9-10):945-957.
    [23]周一勤.简支斜梁桥桥面连续板的内力分析[J].华东公路.1992,15(3):65-69.
    [24]何畅,向中富.简支梁桥桥面连续构造的空间仿真分析[J].重庆交通学院学报,2005,24(1):9-15.
    [25]王虎,胡长顺,王秉纲.简支梁桥梁端处桥面连续铺装层结构计算分析[J].西安公路交通大学学报,2000,20(4):1-3.
    [26]张世霖,史福明.简支梁桥面连续结构的设计与观测[J].公路1989,(11):17-20.
    [27]周念先,周世忠.桥面连续简支梁连接板(杆)设计[J].公路,1980(2):13-17.
    [28]Lopes S M R,Harrop J.Flexural behavior of pre-stressed continuous beams[J].Proceedings of the Institution of Civil Engineers.2001,(1):67-74.
    [29]Phipps A R,Spruill J Q D.Biloxi Interstate 110 Viaduct[J].PCI Journal,1990,35(1):120-132.
    [30]Marl R,Montaner J.Continuous pre-cast concrete girder and slab bridge decks.Proc.Instn.Cir.Engrs.Structs.& Bldgs,2000,140:196-206.
    [31]Peterman R J,Ramirez J A.Restrained moments in bridges with full-span pre-stressed concrete form panels[J].PCI Journal,1998,43(1):54-73.
    [32]Peterman R J,Ramirez J A.Behavior and strength of bridges with full-span pre-stressed concrete form panels[J].PCI Journal,1998,43(3):80-91.
    [33]付东阳.先简支后连续体系PC梁受力性能的研究[D].福州:福州大学,1998.
    [34]付东阳,房贞政,上官萍.先简支后连续结构试验研究[J].福建交通科技,1999,(3):35-58.
    [35]上官萍,房贞政,付东阳.先简支后连续桥梁结构体系的应用研究.福州大学学报,2000,28(5):77-81.
    [36]付东阳,房贞政,上官萍.高等级公路桥梁先简支后连续体系研究[J].福州大学学报,1997,S1:75-77.
    [37]麻文燕,向中富,陈善勤.先简支后结构连续梁桥施工顺序分析[J].重庆交通大学学报,2007,26(5):44-48.
    [38]陈善勤,麻文燕.简支转连续梁桥特点及单(双)支座受力分析[J].重庆交通大学学报,2007,26(S1):14-17.
    [39]陈强.先简支后连续结构体系研究[D].杭州:浙江大学,2002.
    [40]陈强.先简支后连续结构体系后连续端部施工顺序研究[J].铁道标准设计,2004,(8):65-68.
    [41]陈强,黄志义,徐兴.先简支后连续结构体系临时支座的合理拆除顺序研究[J].桥梁建设,2005,(1):69-72.
    [42]盛兴旺,周相华.先简支后连续梁桥结构的疲劳性能与抗裂性能[J].中南大学学报,2005,36(3):511-516.
    [43]张百宁,王美强,梁金宏.简支变连续梁加固方法效应分析[J].辽宁交通科技,2005,7:62-64.
    [44]陈生年.简支变连续自应力法加固旧桥的数值分析研究[D].大连:大连理工大学,2007.
    [45]张冠华,陈悦.简支变连续在旧桥加固中的应用[J].公路交通科技,2007,(3):149-151.
    [46]王伯昕,黄承逵,何化南.自应力混凝土在旧桥加固中的抗裂性研究[J].土木工程学报,2009,42(2):86-91.
    [47]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土[M].北京:中国建材工业出版社,2005,84-86.
    [48]杨瑞珊.自应力混凝土管的现状和展望[J].混凝土与水泥制品,1993,(5):23-30.
    [49]阮起楠.自应力混凝土结构设计理论的探讨[J].混凝土与水泥制品,1988,(3):35-38.
    [50]杨瑞珊,张量,霍卫民,等.硫铝酸盐自应力混凝土压力管[J].混凝土与水泥制品,1995,(3):26-31.
    [51]Chang Xu,Lin Haixiao,Huang Chengkui.Experimental study on shear resistance of self-stressing concrete filled circular steel tubes[J].Journal of Constructional Steel Research,2009,65(4):801-807.
    [52]尚作庆,黄承逵.钢管限制对自应力混凝土膨胀的影响[J].建筑材料学报,2007,10(3):59-64.
    [53]黄承逵,徐磊,刘毅.钢管自密实自应力混凝土短柱轴压力学性能试验研究[J].大连理工大学学报,2006,46(5):696-701.
    [54]程庆国,高路彬,徐蕴贤等.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,1999.
    [55]汉南特著,陈建业译.纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1986.
    [56]Zhao Guofan,Huang Chengkui.Test methods and applications of SFRC[C]//IABSE 13th Congress.Helsinki,1988.
    [57]关丽秋,赵国藩.钢纤维混凝土在单向拉伸时的增强机理与破坏形态[J].水利学报,1986,(9):34-43.
    [58]Kazemi M T,Fazileh F,Ebrahiminezhad M A.Cohesive crack model and fracture energy of steel-fiber-reinforced-concrete notched cylindrical specimens[J].Journal.Mat.in Civ.Engrg.,2007,19(10):884-890.
    [59]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [60]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004.
    [61]Kholmyansky M M.Mechanical resistance of steel fiber reinforced concrete to axial load[J].Journal.Mat.in Civ.Engrg.,2002,14(4):311-319.
    [62]李志业,王志杰,关宝树,等.钢纤维混凝土强度、变形和韧性的试验研究[J].铁道学报,1998,20(2):99-105.
    [63]Fattuhi N I.Strength of SFRC corbels subjected to vertical load[J].Journal.Struct.Engrg.,1990,116(3):701-718.
    [64]管仲国,黄承逵,石文龙.钢纤维混凝土极限抗拉强度普适计算模式研究[J].同济大学学报(自然科学版),2005,33(8):1022-1026.
    [65]韩嵘,赵顺波,曲福来.钢纤维混凝土抗拉性能试验研究[J].土木工程学报,2006,39(11):63-67
    [66]Barros J A O,Figueiras J A.Flexural behavior of SFRC:Testing and modeling[J].Journal.Mat.in Civ.Engrg.,1999,11(4):331-339.
    [67]韩菊红,高丹盈,丁自强.钢纤维混凝土替代构造配筋混凝土梁受弯性能试验研究[J].土木工程学报,2006,39(8):33-37.
    [68]Padmarajaiah S K,Ramaswamy A.Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens[J].Cement and Concrete Composites,2004,26(4):275-290.
    [69]Choi O C,Lee C.Flexural performance of ring-type steel fiber-reinforced concrete[J].Cement and Concrete Research,2003,33(6):841-849.
    [70]Lok T S,Xiao J R.Flexural strength assessment of steel fiber reinforced concrete[J].Journal.Mat.in Cir.Engrg.,1999,11(3):188-196.
    [71]邓宗才.钢纤维混凝土疲劳断裂与损伤特性的试验研究[J].土木工程学报,2003,36(2):20-25.
    [72]Zhang Jun,Stang H,Victor C L.Experimental study on crack bridging in frc under uniaxial fatigue tension[J].Journal.Mat.in Cir.Engrg.,2000,12(1):66-73.
    [73]易成,沈世钊,谢和平.局部高密度钢纤维混凝土弯曲疲劳性能研究[J].土木工程学报,2001,34(6):29-37.
    [74]Mohammadi Y,Kaushik S K.Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels[J].Journal.Mat.in Civ.Engrg.,2005,17(6):650-658.
    [75]高丹盈,朱海堂,赵军,等.冻融后钢纤维混凝土力学性能的试验研究[J].郑州大学学报(工学版),2005,26(1):1-4.
    [76]许彬彬.钢纤维混凝土抗冻性的试验研究[J].混凝土与水泥制品,1991,(6):13-15.
    [77]Cengiz D A,Karahan O.Properties of steel fiber reinforced fly ash concrete[J].Construction and Building Materials,2009,23(1):392-399.
    [78]田稳苓.钢纤维膨胀混凝土增强机理及其应用研究[D].大连:大连理工大学,1998.
    [79]田稳苓,黄承逵,李子祥.钢纤维膨胀混凝土管状构件受拉应力-应变全曲线研究[J].大连理工大学学报,2000,40(1):112-116.
    [80]田稳苓,李世春,黄承逵,等.钢纤维膨胀混凝土力学性能试验研究[J].建筑材料学报,2000,3(5):32-37.
    [81]戴建国,黄承逵.钢纤维自应力混凝土力学性能试验研究[J].建筑材料学报,2001,4(1):70-74.
    [82]何化南,黄承逵.钢纤维自应力混凝土的膨胀特征和自应力计算[J].建筑材料学报,2004,7(2):156-160.
    [83]何化南,黄承逵.配筋钢纤维自应力混凝土的抗拉强度计算[J].建筑材料学报,2002,5(1):32-36.
    [84]何化南,黄承逵.钢纤维自应力混凝土受拉应力-应变全曲线试验研究[J].大连理工大学学报,2004,44(5):710-713.
    [85]何化南,黄承逵.钢纤维自应力混凝土受拉构件的界限配筋率[J].混凝土与水泥制品,2002,(2):24-26.
    [86]何化南,黄承逵,秦杰.钢纤维自应力混凝土压力管道自应力计算方法[J].水利学报,2003,(7):124-128.
    [87]陈小锋.钢纤维自应力混凝土加固梁抗弯疲劳性能试验研究[D].大连:大连理工大学,2008.
    [88]赵志方,赵国藩,黄承逵.新老混凝土粘结抗折性能研究[J].土木工程学报,2000,33(2):67-72.
    [89]赵志方,赵国藩,刘健,等.新老混凝土粘结抗拉性能的试验研究[J].建筑结构学报,2001,22(2):51-56.
    [90]李平先,郭进军,赵国藩,等.冻融时引气剂对新老混凝土黏结面劈裂抗拉性能影响的试验研究[J].水利学报,2006,37(7):886-892.
    [91]李平先,赵国藩,张雷顺.新老混凝土粘结面的抗冻融劈拉性能试验研究[J].土木工程学报,2006,39(4):20-25.
    [92]谢慧才,申豫斌.碳纤维混凝土对新老混凝土粘结性能的改善[J].土木工程学报,2003,36(10):15-18.
    [93]刘健,新老混凝土粘结的力学性能研究[D].大连:大连理工大学,2000.
    [94]袁群,刘健.新老混凝土粘结的剪切强度研究[D].建筑结构学报,2001,22(2):46-50.
    [95]王振领,林拥军,钱永久.新老混凝土结合面抗剪性能试验研究[J].西南交通大学学报,2005,40(5):600-604.
    [96]张雷顺,闫国新,张晓磊.新老混凝土切槽法结合面抗剪性能试验研究分析[J].工业建筑,2007,37(6):101-103.
    [97]彭旭民,李兴华,蔡登山.新老混凝土结合面剪切模型试验研究[J].桥梁建设,2001,(3):40-44.
    [98]王建伟,闫国新,张雷顺,等.新老混凝土黏结面抗剪性能的神经网络模拟[J].人民黄河,2008,30(4):72-73.
    [99]胡铁明,黄承逵,陈小锋.构造钢筋影响下新老混凝土结合面抗剪试验研究[J].混凝土,2009,(3):26-28.
    [100]Emmons P H,Vaysburd A M.System concept in design and construction of durable concrete repairs[J].Construction and Building Materials,1996,10(1):69-75.
    [101]Gibergues A C,Saucier F,Grandet J,et al.New-to-old concrete bonding:Influence of sulfates type of new concrete on interface microstructure[J].Cement and Concrete Research,1993,23(2):431-441.
    [102]袁迎曙,钢筋混凝土结构局部补强的收缩应力分析[J].土木工程学报,1996,29(1):33-40.
    [103]刘健,赵国藩.新老混凝土粘结收缩性能研究[J].大连理工大学学报,2001,41(3):339-342.
    [104]韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学,2002.
    [105]韩菊红,赵国藩,张雷顺.新老混凝土粘结面断裂性能试验研究[J].土木工程学报,2003,36(6):31-35.
    [106]韩菊红,赵国藩,张雷顺.新老混凝土粘结面断裂损伤过程区研究[J].工程力学,2004,21(6):31-35.
    [107]ACI318M-05.Building Code Requirements for Structural Concrete and Commentary[S].
    [108]中华人民共和国国家标准.GB 50010-2002混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [109]虞建成,左文生,程祖辉,等.叠合式混凝土板梁桥叠合面受力性能分析[J].东南大学学报(自然科学版),2007,37(2):222-228.
    [110]张雷顺,韩菊红,郭进军,等.新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用[J].土木工程学报,2003,36(4):82-85.
    [111]Nordby G M.Fatigue of concrete-a review of research[J].ACI Journal,1958,55(2):191-220.
    [112]Aas-Jakobsen K,Lenschow R.Behavior of reinforced columns subjected to fatigue loading[J].Journal of the American Concrete Institute,1973,70(3):199-206.
    [113]Tepfers R,Kutti T.Fatigue strength of plain,ordinary,and lightweight concrete[J].Journal of the American Concrete Institute,1979,76(5):.635-652.
    [114]王瑞敏,赵国藩,宋玉普.混凝土的受压疲劳性能研究[J].土木工程学报,1991,24(4):38-47.
    [115]Kim J K,Kim Y Y.Experimental study of the fatigue behavior of high strength concrete[J].Cement and Concrete Research,1996,26(10):1513-1523.
    [116]Sinha B P,Gcrstlc K H,Tulin L G.Stress-strain relations for concrete under cyclic loading[J].ACI Jownal,1964,61(2):195-211.
    [117]Holmen J O.Fatigue of concrete by constant and variable amplitude loading[J].Fatigue Strength of Concrete Structures,ACI Publication SP-75,1982:71-110.
    [118]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报,1998,31(4):1-7.
    [119]姚明初.混凝土在等幅和变幅重复应力下疲劳性能的研究[R].北京:铁道部科学研究院报告,1990.
    [120]AASHTO.Standard specifications for highway bridges,12th Edition.Washington D.C.,1977.
    [121]ACI Committee 443.Analysis and design of reinforced concrete bridge structures.Detroit,1977.
    [122]卢树圣,陈国才.国产T20MnSi16螺纹钢筋的疲劳试验研究[J].长沙铁道学院学报,1990,8(1):91-97.
    [123]曾志斌,李之榕.普通混凝土梁用钢筋的疲劳S-N曲线研究[J].土木工程学报,1999,32(5):10-14.
    [124]李秀芬,吴佩刚,赵光仪.高强混凝上梁抗弯疲劳性能的试验研究[J].土木工程学报,1997,30(5):37-42.
    [125]王海超,贡金鑫,宋元成.钢筋混凝土梁腐蚀疲劳的试验研究[J].建筑结构学报,2004,25(5):105-110.
    [126]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006,293-297.
    [127]万墨林,马颖军.粘钢加固混凝土梁抗疲劳性能试验研究[J].建筑科学,1994,(1):23-28.
    [128]施卫星,朱伯龙,张琨联.两种加固钢筋混凝土T型吊车梁方法的抗疲劳性能试验研究[J].建筑结构学报,1995,16(3):69-75.
    [129]曾宪桃,车惠民.粘贴玻璃钢板加固混凝土梁疲劳试验研究[J].土木工程学报,2001,34(1):33-38.
    [130]Byung H O,Jae Y C,Dae G P.Static and fatigue behavior of reinforced concrete beams strengthened with steel plates for flexure[J].Journal of Structural Engineering,2003,129(4):527-535.
    [131]刘沐宇,李开兵,张学明,等.碳纤维布加固损伤混凝土梁的疲劳性能试验[J].武汉理工大学学报,2004,26(4):52-55.
    [132]刘沐字,李开兵.碳纤维布加固混凝土梁的疲劳性能试验研究[J].土木工程学报,2005,38(9):32-36.
    [133]曾令宏,尚守平,万剑平,等.复合砂浆钢筋网加固钢筋混凝土梁静力和疲劳性能试验研究[J].建筑结构学报,2008,29(1):83-89.
    [134]Li Gengying,Xie Huicai,Xiong Guangjing.Transition zone studies of new-to-old concrete with different binders[J].Cement and Concrete Composites,2001,23(4-5):381-387.
    [135]刘金伟,谢慧才.修补钢筋混凝土梁新老混凝土界面粘结强度的试验研究[J].土木工程学报,2001,34(1):30-32.
    [136]王振领.新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究[D].成都:西南交通大学,2006.
    [137]高剑平,潘景龙,王雨光.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报,2001,34(5):25-29.
    [138]赵志方,赵国藩.采用高压水射法处理新老混凝土粘结面的试验研究[J].大连理工大学学报,1999,39(4):558-561.
    [139]Mattock H.Shear transfer in reinforced concrete[J].Journal of ACI,1969,66(2):119-128.
    [140]李家康.高强混凝土在压剪复合受力下性能的试验研究[J].土木工程学报,1997,30(3):74-80
    [141]李平先,赵国藩,张雷顺.受冻融损伤混凝土与新混凝土的粘结剪切性能试验研究[J].建筑结构学报,2004,25(5):111-117.
    [142]赵志方,周厚贵,袁群,等.新老混凝土粘结机理研究与工程应用[M].北京:中国水利水电出版社,2003,23-28.
    [143]赵志方,周厚贵,刘健等.新老混凝土粘结复合受力的强度特性[J].工业建筑,2002,32(10):37-39.
    [144]张琦,过镇海.砼抗剪强度和剪切变形的研究[J].建筑结构学报,1992,13(5):17-24.
    [145]钢筋混凝土结构教研组.叠合式予应力钢筋混凝土吊车梁的设计、试制及疲劳试验[J].清华大学学报(自然科学版),1959,(2):21-34.
    [146]Comite Euro-International du Beton.Bulletin D'information No.213/214 CEB-FIP Model Code 1990(Concrete Structures).Lausanne,May 1993.
    [147]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003:55-58.
    [148]中华人民共和国行业标准.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [149]Qiu Wenliang,Jiang Meng.Nonlinear finite element analysis of steel-concrete composite beams.Journal of Harbin Institute of Technology(New Series)[J].2005,12(5):581-586.
    [150]Keller T,G(u|¨)rtle H.Composite action and adhesive bond between fiber-reinforced polymer bridge decks and main girders[J].Journal of Composites for Construction,2005,9(4):360-368.
    [151]Suthiwarapirak P,Matsumoto T.Fatigue analysis of RC slabs and repaired RC slabs based on crack bridging degradation concept[J].Journal of Structural Engineering,2006,132(6):939-948.
    [152]Liu Xiaojie,Yu Zhiwu,Jiang Lizhong.Long term behavior of self-compacting reinforced concrete beams[J].Journal of Central South University of Technology.2008,15(3):423-428.
    [153]Mirmiran A,Wei Y M.Damage assessment of FRP-encased concrete using ultrasonic pulse velocity[J].Journal of Engineering Mechanics.2001,127(2):126-135.
    [154]Ufuk D.Ultrasonic pulse velocity in nondestructive evaluation of low quality and damaged concrete and masonry construction[J].Journal of Performance of Constructed Facilities,2007,21(5):337-344.
    [155]Zhao Shunbo,Yang Xiaoming,Li Xiaoke,et al.Experimental study on deterioration of concrete strength under different sub-high temperature cycles[J].Journal of Wuhan University of Technology-Materials Science Edition,2006,21(Sl):53-57.
    [156]Chen Yueshun,Wei Jun,Zhao Xiaolong.Description of concrete durability damage process[J].Wuhan University Journal of Natural Sciences,2006,21(3):209-212.
    [157]虞建成,左文生,程祖辉,等.叠合式混凝土板梁桥叠合面受力性能分析[J].东南大学学报(自然科学版),2007,37(2):222-228.
    [158]Momayez A,Ehsani M R,Ramezanianpour A A,et al.Comparison of methods for evaluating bond strength between concrete substrate and repair materials[J].Cement and Concrete Research,2005,35(4):748-757.
    [159]陈峰,郑建岚.自密实混凝土与老混凝土粘结强度的直剪试验研究[J].建筑结构学报,2007,28(1):59-63.
    [160]ACI318M-05.Building Code Requirements for Structural Concrete and Commentary[S].
    [161]CECS 38:2004.纤维混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [162]Zhu Jinsong,Gao Change,Song Yupu.Fatigue behavior and cumulative damage rule of concrete under cyclic compression with constant confined stress[J].Journal of Harbin Institute of Technology,2005,12(5):62-69.
    [163]Issa M A,Yousif A A,Issa M A.Experimental behavior of full-depth precast concrete panels for bridge rehabilitation[J].ACI Structural Journal,2000,97(3):397-407.
    [164]周旺华.现代混凝土叠合结构[M].北京:中国建筑工业出版社,1998.